JPS6134221A - Manufacture of ultra-fine carbon fiber by vapor-phase process - Google Patents

Manufacture of ultra-fine carbon fiber by vapor-phase process

Info

Publication number
JPS6134221A
JPS6134221A JP15515484A JP15515484A JPS6134221A JP S6134221 A JPS6134221 A JP S6134221A JP 15515484 A JP15515484 A JP 15515484A JP 15515484 A JP15515484 A JP 15515484A JP S6134221 A JPS6134221 A JP S6134221A
Authority
JP
Japan
Prior art keywords
gas
compound
carbon fibers
fine carbon
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15515484A
Other languages
Japanese (ja)
Other versions
JPH089808B2 (en
Inventor
Kohei Arakawa
公平 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP59155154A priority Critical patent/JPH089808B2/en
Publication of JPS6134221A publication Critical patent/JPS6134221A/en
Publication of JPH089808B2 publication Critical patent/JPH089808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1276Aromatics, e.g. toluene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1273Alkenes, alkynes
    • D01F9/1275Acetylene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor

Abstract

PURPOSE:To manufacture ultra-fine carbon fiber having excellent crystal orientation, in high yield and productivity, by the high-temperature reaction of a mixed gas consisting of an organic metallic compound vapor and a carrier gas. CONSTITUTION:A carrier gas is introduced through the inlet 40 to the vapor of an organic metallic compound (preferably the compound of iron, cobalt or nickel) in the evaporator 42 to obtain a mixed gas. The mixed gas is introduced through the feeding line 48 and the gas-inlet line 49 into the reaction tube 50 heated with the heater 52, and subjected to the high-temperature reaction to obtain the objective carbon fiber. The organic metallic compound is preferably the one composed solely of carbon, hydrogen and iron. The carrier gas is preferably composed of >=60% H2 gas, 3-20% gases such as He, Ar, Kr, Ne, N2, CO2, etc., and 1-6% H2S.

Description

【発明の詳細な説明】 〔開示の要約〕 有機金属化合物のガスと炭素化合物のガスとキャリヤガ
スとの混合ガスを600℃乃至1300℃の高温化に反
応させて郊、遮下に炭素繊維を製造する方法であって、
直径0.Oj乃至−μm1長さコ乃至5oooμm、ア
スペクト比コ乃至3000θの結晶配向性に優れた微細
炭素繊維を高収率、高生産性で製造することが可能であ
る。
DETAILED DESCRIPTION OF THE INVENTION [Summary of the Disclosure] A mixed gas of an organometallic compound gas, a carbon compound gas, and a carrier gas is reacted at a high temperature of 600°C to 1300°C to form carbon fibers in the surrounding area and as a shield. A method of manufacturing,
Diameter 0. It is possible to produce fine carbon fibers with excellent crystal orientation with a length of Oj to -μm, a length of Ko to 5ooooμm, and an aspect ratio of Ko to 3000θ with high yield and productivity.

〔発明の属する技術分野〕[Technical field to which the invention pertains]

本発明は、気相法による微細炭素繊維の製造方法に関す
るものでわる。
The present invention relates to a method for producing fine carbon fibers using a vapor phase method.

〔従来技術の説明〕[Description of prior art]

気相法による炭素繊維は、結晶配向性に優れておシ、高
強度、高弾性、晶耐食性などの優れた特性を有する素材
である。また気相法による炭素繊維は熱処理をすること
によって単結晶に近い黒鉛構造をとるため、多くの理想
的層間化合物を形成し、銅、アルミニウムに匹敵する高
い導電性、水素の吸蔵能力もの性能を有することが可能
でるり、機能材料としても有望視される素材である。ま
た、機械的特性を例にとれば、すでに商品化されている
PAN (ポリアクリロニトリル)系炭素繊維、ピッチ
系炭素繊維を遥かに上回るものでおり、理想的5tif
f造材料となりうる素材である。
Carbon fiber produced by the vapor phase method is a material with excellent properties such as excellent crystal orientation, high strength, high elasticity, and crystal corrosion resistance. In addition, carbon fiber produced by the vapor phase process takes on a graphite structure close to a single crystal when heat-treated, so it forms many ideal interlayer compounds and has high conductivity and hydrogen storage capacity comparable to copper and aluminum. It is a material that is considered promising as a functional material. In addition, in terms of mechanical properties, it far exceeds the already commercialized PAN (polyacrylonitrile) carbon fiber and pitch carbon fiber, making it ideal for 5tif.
It is a material that can be used as a building material.

従来、気相法による炭素繊維は、電気炉内にアルミナ、
黒鉛などの基板を置き、これに鉄。
Conventionally, carbon fiber produced using the vapor phase method was produced using alumina,
A substrate made of graphite or other material is placed and iron is placed on this.

ニッケルなどの超微粒子触媒を形成せしめ、この上にベ
ンゼンなどの炭化水素のガスと水素などのキャリヤガス
との一混合ガスを導入し、 1010℃〜1300”C
の温度下に炭化水素を分解せしめることにより、基板上
に炭素繊維を成長させる方法が知られている。
An ultrafine particle catalyst such as nickel is formed, a mixed gas of a hydrocarbon gas such as benzene and a carrier gas such as hydrogen is introduced thereon, and the mixture is heated to 1010°C to 1300"C.
A method is known in which carbon fibers are grown on a substrate by decomposing hydrocarbons at a temperature of .

基板上に上記超微粒子触媒を形成させる一般的方法は、
予めt00A〜JOOA@度の金属超微粒子をアルコー
ル等の揮発しやすく表面張力の低い液体に懸濁させ、基
板上にその懸濁液をスプレーするか塗布して後乾燥する
ことである。しかしこの方法では、■基板表面の微妙な
温度ム2や周囲の繊維の密生直によって長さの不均一が
起り易いこと、■炭素供給源としての有機化合物のガス
が反応によって消費されるため、入口−出口で有機化合
物の濃度差が生じ、反応管の入口に近い所と出口に近い
ところで繊維径が相蟲異なること、■基板表面でのみ生
成が行われるため、反応管の中心部分は反応に関与せず
収率が悪いこと、■超微粒子の基板への分散、該基板の
炉内への装着、水素による高温下での還元、有機化合物
の熱分解による炭素繊維の基板上への生成、炉温降下、
次いで繊維の取り出しという独立に実施を必要とするプ
ロセスがおるため、連続製造が困難であり、従って生産
性が悪いなどの問題点を有する。そのため、生産コスト
が非常に高く、既に商品化されているPiNi系炭素繊
維、ピッチ系炭素繊維に対抗することゆ、機能材料など
の特殊な用途を除いて不可能と言える。
A general method for forming the above-mentioned ultrafine particle catalyst on a substrate is as follows:
Ultrafine metal particles having a size of t00A to JOOA are suspended in advance in a liquid that is easily volatile and has a low surface tension, such as alcohol, and the suspension is sprayed or applied onto a substrate and then dried. However, with this method, 1) the length tends to be non-uniform due to the delicate temperature fluctuation of the substrate surface 2 and the dense growth of surrounding fibers; 2) the organic compound gas, which serves as a carbon source, is consumed by the reaction; There is a difference in the concentration of organic compounds between the inlet and the outlet, and the fiber diameters are different near the inlet and the outlet of the reaction tube. ∎ Generation occurs only on the substrate surface, so the center of the reaction tube is (1) Dispersion of ultrafine particles onto a substrate, installation of the substrate in a furnace, reduction with hydrogen at high temperatures, and generation of carbon fibers on the substrate by thermal decomposition of organic compounds. , furnace temperature drop,
Next, there is a process of taking out the fibers that must be carried out independently, which makes continuous production difficult and therefore has problems such as poor productivity. Therefore, the production cost is very high, and it can be said that it is impossible to compete with PiNi-based carbon fibers and pitch-based carbon fibers that have already been commercialized, except for special uses such as functional materials.

そこで、本発明者は、従来の基板に鉄、ニッケルなどの
超微粒子触媒を形成せしめるのに代えて、有機金属化合
物のガスと炭素化合物のガスとキャリヤガスとの混合ガ
スを高温反応させることにより、超微粒子触媒の形成と
炭素繊維の生成を連続的に行うことに成功した。
Therefore, instead of forming ultrafine particle catalysts such as iron and nickel on conventional substrates, the present inventors developed a method of reacting a mixed gas of organometallic compound gas, carbon compound gas, and carrier gas at high temperature. succeeded in continuously forming ultrafine catalyst particles and producing carbon fibers.

〔発明の目的〕[Purpose of the invention]

それ故、この発明の目的は、上述の問題点を除去し、生
産性を高めることのできる気相法による炭素繊維の連続
製造方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for continuously producing carbon fibers by a vapor phase method, which can eliminate the above-mentioned problems and improve productivity.

〔発明の要点〕[Key points of the invention]

本発明によれば、有機金属化合物のガスとキャリヤガス
と必要によって炭素化合物のガスとの混合ガスを高温反
応させることにより気相法による炭素繊維を連続的に製
造する方法が提供される。
According to the present invention, there is provided a method for continuously producing carbon fibers by a vapor phase method by subjecting a mixed gas of an organometallic compound gas, a carrier gas, and optionally a carbon compound gas to a high-temperature reaction.

本発明の方法によれば、直径O,OS−一μm、長さ2
〜300011m、アスペクト比、2〜30000の微
細なる炭素繊維を高収率、高生産性で製造することが容
易である。
According to the method of the invention, diameter O, OS-1 μm, length 2
It is easy to produce fine carbon fibers with a diameter of ~300011 m and an aspect ratio of 2~30000 with high yield and high productivity.

〔発明の好適な態様に関する詳細な説明〕本発明は、有
機金属化合物のガスとキャリヤガスとの混合ガスを高温
反応させることを特徴とする。また更に好適な方法とし
て仁、有機金ハ化合物のガスと炭素化合物のガスとキャ
リヤガスとの混合ガスを高温反応させることを特徴とし
ている。
[Detailed Description of Preferred Embodiments of the Invention] The present invention is characterized by subjecting a mixed gas of an organometallic compound gas and a carrier gas to a high-temperature reaction. A further preferred method is characterized in that a mixed gas of an organic gold compound gas, a carbon compound gas, and a carrier gas is subjected to a high-temperature reaction.

本発明における有機金属化合物とは金属を含む有機化合
物全般を対象としており、特に遷移金属のつくる有機化
合物が有効である。遷移金属のつくる有機化合物は一般
に次のような型に分けられる。即ち、■アルキル化合物
、■アリル化合物、■オレフィン化合物、■サンドイン
チ型化合物、■カルボニル1.■シアニド、■インシア
ニド、■アセチリド等である。遷移金属とh 一般にス
カンジウム、チタン、バナジウム。
The organometallic compound in the present invention refers to all organic compounds containing metals, and organic compounds made by transition metals are particularly effective. Organic compounds produced by transition metals are generally divided into the following types. Namely, ■alkyl compound, ■allyl compound, ■olefin compound, ■sandwich type compound, and ■carbonyl 1. ■Cyanide, ■Incyanide, ■Acetylide, etc. Transition metals and generally scandium, titanium, and vanadium.

クロム、マンガン、 鉄、:7パルト、ニッケル。Chromium, manganese, iron, 7 parts, nickel.

イツトリウム、ジルコニウム、ニオブ、−モリブデン、
ルテニウム、ロジウム、パ2ジウム、タンタル、タング
ステン、レニウム、イリジウム。
Yztrium, zirconium, niobium, -molybdenum,
Ruthenium, rhodium, palladium, tantalum, tungsten, rhenium, iridium.

白金等を指すが、本発明において特に有効に触媒機能を
発揮する遷移金属は、第vm族の鉄。
This refers to platinum, etc., but the transition metal that particularly effectively exhibits a catalytic function in the present invention is iron of group Vm.

コバルト、ニッケルであり、中でも鉄が最も高い触媒機
能を有する。また、化合物として考えた場合、炭素と水
素と金属だけからなる有機金属化合物が最適である。本
発明で対象とされる有機全域化合物は非常に多いため5
代表的化合物を例示する。
Cobalt and nickel, among which iron has the highest catalytic function. Furthermore, when considered as a compound, an organometallic compound consisting only of carbon, hydrogen, and metal is optimal. Since there are a large number of organic compounds targeted by the present invention, 5
Representative compounds are illustrated below.

(C4H? )4T i 、 (CHs)sRe 、 
CHzCHCH2Mn (Co) s 。
(C4H?)4T i, (CHs)sRe,
CHzCHCH2Mn(Co)s.

CHs −C−Co 、 (CHsO)sTa 、 (
CzHs)2FaBr @(CzHs)FeBr2゜(
C6Hs)sPLI、(CsHs)zcr、(CsHs
)2Ti、(CsHs)zFe。
CHs-C-Co, (CHsO)sTa, (
CzHs)2FaBr @(CzHs)FeBr2゜(
C6Hs)sPLI, (CsHs)zcr, (CsHs
)2Ti, (CsHs)zFe.

(CsHs)2Mn 、 (C5H5)2V、 (C6
H6)zMo 、 (CtHy ) zP’e 。
(CsHs)2Mn, (C5H5)2V, (C6
H6) zMo, (CtHy) zP'e.

(CsH5Fe (Co)2)2 、 (C5H5F(
! (CO)2)CN 、 N i (05H5)2 
(CsH5Fe (Co)2)2 , (C5H5F(
! (CO)2) CN, N i (05H5)2
.

Fe(Co)s 、 Fez(Co) ? 、 Fe(
Co)z(No)2.テトラカルボニル鉄、鉄カルボニ
ルハロゲン化物。
Fe(Co)s, Fez(Co)? , Fe(
Co)z(No)2. Tetracarbonyl iron, iron carbonyl halide.

ペンタシアノカルボニル鉄、 N1(Co)n、Cr(
Co)6゜Mo (Co) a 、 W(CO) b等
である。また上記化合物の混合物の使用も可能である。
Pentacyanocarbonyl iron, N1(Co)n, Cr(
Co)6°Mo (Co) a, W(CO) b, etc. It is also possible to use mixtures of the abovementioned compounds.

本発明におけるキャリヤガスとは、直接反応に関与しな
いガス全般を対象としておp、H2゜N2 、 He 
、人r 、 Kr 、 CO2等がある。まり繭記ガス
を混合して使うことも可能でろるし、前記以外のガスも
O−コO%の範囲で含めることも可能である。この種の
ガスとしてはH2S等のイオウ化合物が有効でらるが、
ハロゲン、H20等も4まれa。
The carrier gas in the present invention refers to all gases that are not directly involved in the reaction, such as p, H2°N2, He
, human r, Kr, CO2, etc. It is also possible to use a mixture of Mariyuki gas, and it is also possible to include gases other than the above in an O-CoO% range. Sulfur compounds such as H2S are effective as this type of gas, but
Halogens, H20, etc. are also rare.

また、本発明の好適例における炭素供給源としての炭素
化合物とは、有機鎖式化合物または有機環式化合物から
なる有機化合物全般を対象としている。また有機化合物
以外であっても、COガスのように炭素の供給源となり
うる化合物であれば本発明の詳細な説明 さて有機化合物において、特に有効に利用できる化合物
の具体例を示すと、メタン、エタン等のアルカン化合物
、エチレン、ブタジェン等のアルケン化合物、アセチレ
ン等のアルキン化合物、ベンゼン、トルエン、スチレン
等のアリール炭化水素化合物、インデン、ナフタリン。
Further, the carbon compound as a carbon supply source in the preferred embodiment of the present invention refers to all organic compounds consisting of organic chain compounds or organic cyclic compounds. Further, even if the compound is not an organic compound, it can be used as a carbon supply source, such as CO gas. Alkane compounds such as ethane, alkene compounds such as ethylene and butadiene, alkyne compounds such as acetylene, aryl hydrocarbon compounds such as benzene, toluene, and styrene, indene, and naphthalene.

フェナントレン等の縮合環を有する芳香族炭化水素、シ
クロプロパン、シクロヘキサン等のシクロパラフィン化
合物、シクロペンテン、シクロヘキセン等のシクロオレ
フィン化合物、ステロイド等の縮合環を有する脂環式炭
化水素化合物、メチルチオール、メチルエチルスルフィ
ド。
Aromatic hydrocarbons with condensed rings such as phenanthrene, cycloparaffin compounds such as cyclopropane and cyclohexane, cycloolefin compounds such as cyclopentene and cyclohexene, alicyclic hydrocarbon compounds with condensed rings such as steroids, methylthiol, methylethyl sulfide.

ジメチルチオケトン等の合価脂肪族化合物、フェニルチ
オール、ジフェニルスルフィト等の金儲芳香族化合物、
ベンゾチオフェン、チオフェン等の合価複素型式化合物
等である。
Polyvalent aliphatic compounds such as dimethylthioketone, rich aromatic compounds such as phenylthiol and diphenyl sulfite,
These include compound complex type compounds such as benzothiophene and thiophene.

また、上記化合物の混合物の使用も可能でらり、ナフサ
、ガソリン、ケロシン等の石油から作られた原料等は安
価でおるため工業的に有効に利用できる。本発明の趣旨
からして、炭素化金物とは、炭素の供給源となり得れば
良いのであるから、炭素化合物中の炭素以外の構成元素
には特に制限を設けてはいない。従って、窒素。
It is also possible to use mixtures of the above compounds, and raw materials made from petroleum such as naphtha, gasoline, and kerosene are inexpensive and can be effectively used industrially. In view of the purpose of the present invention, the carbonized metal material is sufficient as long as it can serve as a supply source of carbon, so there is no particular restriction on the constituent elements other than carbon in the carbon compound. Therefore, nitrogen.

酸素、硫黄、弗素、塩素、臭素、沃素、燐、砒素等の元
素が含まれていても良い。
It may contain elements such as oxygen, sulfur, fluorine, chlorine, bromine, iodine, phosphorus, and arsenic.

本発明の方法を具体的に説明すると、有機金属化合物の
ガスとキャリヤガスとの混合ガスを600−1300℃
、更に好適には6000〜lコ00℃の範囲で高温反応
させる。また別法として、有機金属化合物のガスとキャ
リヤガスと炭素化合物との混合ガスをi、oo〜130
0℃、更に好適には6000−7200℃の範囲で高温
反応させる。
To specifically explain the method of the present invention, a mixed gas of an organometallic compound gas and a carrier gas is heated at 600-1300°C.
The reaction is preferably carried out at a high temperature in the range of 6,000 to 00°C. As another method, a mixed gas of an organometallic compound gas, a carrier gas, and a carbon compound is
The reaction is carried out at a high temperature of 0°C, more preferably in the range of 6000-7200°C.

また本発明の場合、有機金^化合物のガスとキャリヤガ
スとの混合ガスの高温反応によって炭素繊維を製造する
ことよりも、有機金属化合物のガスとキャリヤガスと炭
素化合物のガスとの混合ガスを高温反応させることのほ
うが、経済的にも収率の点においても工業的にはるかに
有効な方法である。
In addition, in the case of the present invention, rather than producing carbon fibers by a high-temperature reaction of a mixed gas of an organometallic compound gas, a carrier gas, and a carrier gas, a mixed gas of an organometallic compound gas, a carrier gas, and a carbon compound gas is used. High-temperature reaction is a much more effective method from an industrial standpoint both economically and in terms of yield.

混合ガスの14ff方法は特に制限はないが、上記の別
法、即ち炭素化合物を含む場合について有効に利用でき
る方法を示す。炭素化合物、有機金属化合物がガス体な
らばそのまま混合すれば良い。液体または固体の場合は
加熱容器にそれぞれの化合物を供給しておいて、それぞ
れ別々にキャリヤガスを導入して、炭素化合物のガスと
キャリヤガスとの混合ガス及び有機金属化合物のガスと
キャリヤガスとの混合ガスを得る。
Although there are no particular limitations on the 14ff method for mixed gases, the above-mentioned alternative method, ie, a method that can be effectively used when a carbon compound is included, is shown. If the carbon compound and organometallic compound are gaseous, they may be mixed as they are. In the case of liquid or solid, each compound is supplied to a heating container, and a carrier gas is introduced separately to form a mixed gas of the carbon compound gas and the carrier gas and a mixed gas of the organometallic compound gas and the carrier gas. A mixture of gases is obtained.

それらを更に混合することによって、有機金属化合物の
ガスと炭素化合物のガスとキャリヤガスとの混合ガスを
得る。この場合、一度蒸発または昇華した化合物が再凝
縮しないようにガス管は保温されていなければならない
。また、別法として有機金属化合物を溶解した釆免化合
物の溶液を気化して、溶液と同一組成の有機金属化合物
のガスと炭素化金物のガスとの混合ガス七作製する方法
がるる。この場合キャリヤガスは余初から加えることも
、氷を化合物と有機金属化合物との混合ガスの作!l!
後に加えてもよい。
By further mixing them, a mixed gas of an organometallic compound gas, a carbon compound gas, and a carrier gas is obtained. In this case, the gas pipe must be kept warm so that the compound that has evaporated or sublimated does not condense again. Alternatively, there is a method of vaporizing a solution of a distilled compound in which an organometallic compound is dissolved to produce a mixed gas of an organometallic compound gas and a carbonized metal gas having the same composition as the solution. In this case, you can add the carrier gas from the beginning, or create a gas mixture of the ice compound and the organometallic compound! l!
You can add it later.

有機金属化合物と反表化合物をそれぞれ別々に蒸発もし
くは昇華して後混合する方法においては泉乗化合物また
は有機金6化合物の残存址によって気化量が変動しやす
いため、同方法は別々に蒸発もしくは昇華する方法に比
べ、装置的にもガス濃度の安定性においても極めて優れ
た方法である。
In the method of separately evaporating or sublimating the organometallic compound and the anti-metallic compound and then mixing them, the amount of vaporization tends to fluctuate depending on the residual remains of the Sennori compound or the organo-gold 6 compound. Compared to other methods, this method is extremely superior in terms of equipment and stability of gas concentration.

本発明において、有機金属化合物のガスの全混合ガ子中
に占める割合については、加熱帯域中で有機金属化合物
が分解し、全ての金属が原子状態にあると仮定したとき
の仮想的蒸気圧が、加熱帯域中の温度における該金属の
飽和蒸気圧の約70倍以上の蒸気圧を有することの可能
な金属原子を含むように有機金属化合物のガス濃度を決
めることが必要である。しかし収率を高めるには、金属
原子l@を含む有機金属化合物の場合、そのガスの全混
合ガス中に占める割合はo、oi〜≠O%が好ましい。
In the present invention, regarding the ratio of organometallic compound gas in the total mixed gas, the virtual vapor pressure is calculated assuming that the organometallic compound decomposes in the heating zone and all metals are in an atomic state. , it is necessary to determine the gas concentration of the organometallic compound to contain metal atoms capable of having a vapor pressure of about 70 times or more than the saturated vapor pressure of the metal at the temperature in the heating zone. However, in order to increase the yield, in the case of an organometallic compound containing a metal atom l@, the proportion of the gas in the total mixed gas is preferably o, oi to ≠O%.

炭素化合物の混合ガス中における体積協度に関しては、
その化合物中の炭素数や熱分解条件によってその最適体
積aIf:は変わるが、体積濃度で0.、t %〜≠Q
%の範囲にあるのが好ましい。
Regarding the volume cooperativity of carbon compounds in a mixed gas,
The optimum volume aIf: varies depending on the number of carbon atoms in the compound and the thermal decomposition conditions, but the volume concentration is 0. , t%~≠Q
% range is preferred.

キャリヤガスは、−成分ガスとして使用する場合はN2
ガスが収率、生産性の点において最も良く、更に他のガ
スを混合することによって一層収率が上昇することが分
った。例えば、N2ガスにH2Sを混合する場合/%〜
!係、Ha。
The carrier gas is N2 when used as a -component gas.
It has been found that gas is the best in terms of yield and productivity, and that the yield can be further increased by mixing other gases. For example, when mixing H2S with N2 gas/%~
! Person in charge, Ha.

Ar 、Kr 、N2 、CO2等のキャリヤガスとし
て使用できるガスを混合する場合には、それらを3チル
20%含めることによって収率が一層上昇する。またこ
こで注意を必要とすることは混合ガスの種類によって生
成する炭素繊維の形態に若干の差異≠;める。N2とE
xSの混合ガスの場合、生成する炭素繊維は比較的剛直
で真直ぐな繊維が得られるが、N2とHe 、Ar 、
Kr 、N2゜CO2等との混合ガスの場合湾曲した繊
維が多く得られる。しかし、両者とも一2roo℃以上
の黒鉛化処理によってほとんど差が見られガくなる。
When mixing gases that can be used as carrier gases, such as Ar 2 , Kr 2 , N 2 , CO 2 , etc., the yield is further increased by including them at 20%. It should also be noted that there are slight differences in the morphology of the carbon fibers produced depending on the type of mixed gas. N2 and E
In the case of a mixed gas of
In the case of a mixed gas with Kr, N2°CO2, etc., many curved fibers are obtained. However, in both cases, almost no difference can be seen and the graphitization treatment at temperatures above 12 roo C. becomes weaker.

本発明によれば、反応管内に連続的に混合ガスを導入す
るだけで、反応管の出口より連続的に炭素繊維を取り出
せる。すなわち繊維が微細であるため落下速度が遅く、
管内への蓄積はわずかである。加熱器を縦型にす71.
は更に管内への残留もなく、はとんど管外へ連続的に取
り出せる。また、基板への超微粒子のシード法では基板
表面のみが反応域であるのに比較して1本発明では反応
管内全域に亘って金FJ2超微粒子が浮遊しているため
、反応可能温度域全域で反応が進行することにより収率
が著しく上昇した。
According to the present invention, carbon fibers can be continuously taken out from the outlet of the reaction tube simply by continuously introducing a mixed gas into the reaction tube. In other words, since the fibers are fine, the falling speed is slow;
Accumulation in the tube is minimal. Make the heater vertical71.
Moreover, there is no residual inside the tube, and it can be taken out continuously to the outside of the tube. In addition, in the method of seeding ultrafine particles onto a substrate, only the substrate surface is the reaction area, but in the present invention, the gold FJ2 ultrafine particles are suspended throughout the entire reaction tube, so the entire reaction temperature range is possible. The yield increased significantly as the reaction proceeded.

更に、シード法におけるよりも炭化水素濃度を高くする
ことが可能であることが分った。
Furthermore, it has been found that it is possible to achieve higher hydrocarbon concentrations than in the seeding method.

以上述べた連続製造、収率の上昇、炭化水素を高atで
供給可能などの利点によって、本発明は従来のシード法
に比較して600倍以上の生産性が得られることが分っ
た。また本発明では、直径0.0!μH〜コμm1長さ
一μm〜soo。
It has been found that due to the above-mentioned advantages of continuous production, increased yield, and ability to supply hydrocarbons at high at, the present invention can achieve productivity 600 times or more compared to the conventional seeding method. Moreover, in the present invention, the diameter is 0.0! μH~μm1 Length 1 μm~soo.

μm、7スペクト比2〜30000の結晶配向性に優れ
た微細炭素繊維を高収率、高生産性で容易に製造するこ
とが可能である。ただし、本発明による炭素PR維の長
さは、反応帯域での滞留時間に比例するため、反応帯域
を長くとれば3000011m以上の繊維も作ることは
可能である。また1600℃以上の温度では、長さの成
長速度に比較して径の成長が進行するため、炉内に温度
勾配をつけるか、温度の違う炉を直列結合することによ
って直径も2μm以上にすることは可能である。
It is possible to easily produce fine carbon fibers with excellent crystal orientation of 7 μm and a spectral ratio of 2 to 30,000 with high yield and productivity. However, since the length of the carbon PR fiber according to the present invention is proportional to the residence time in the reaction zone, it is possible to make fibers of 3,000,011 m or more by making the reaction zone longer. Furthermore, at temperatures above 1,600°C, the diameter grows faster than the growth rate in length, so by creating a temperature gradient in the furnace or connecting furnaces with different temperatures in series, the diameter can be increased to 2 μm or more. It is possible.

また本発明で容易に得られる微細な炭素繊維は、長くて
太い繊維と比較して複合材料、機能材料として多くのメ
リットを有している仁とが分った。
It has also been found that the fine carbon fibers easily obtained by the present invention have many advantages as composite materials and functional materials compared to long and thick fibers.

まず最初に複合材料において短繊維に要求される性能は
、■繊維そのものの強度2弾性率が高いこと、■繊維の
7スペクト比が大きいこと、■単位体積当りの表面積が
大きいこと、つまり微細であること、■比重が軽いこと
、等である。
First of all, the properties required of short fibers in composite materials are: ■ high strength and elastic modulus of the fibers themselves, ■ large spectral ratio of the fibers, and ■ large surface area per unit volume. ■It has a light specific gravity, etc.

本発明は上述の全ての点において従来の素材に優越した
理想的複合材料用素材である。また機能材料として検討
した場合においても、眉間化合物を作ることによって有
機反応における有効な触媒となりうるため、比表面積の
大きいことが利点となる。
The present invention is an ideal material for composite materials that is superior to conventional materials in all the above-mentioned respects. Also, when considered as a functional material, the large specific surface area is an advantage because it can be an effective catalyst in organic reactions by forming a glabellar compound.

次に、この発明に係る気相法による微細炭素繊維の製造
方法につき添付図面を参照しながら以下詳細に説明する
Next, a method for producing fine carbon fibers by a vapor phase method according to the present invention will be described in detail below with reference to the accompanying drawings.

まず5本発明における気相法による炭素繊維を製造する
ために使用した装置につき、その概略を示せば第1図お
よび第11凶に示す通りでおる。
First, the outline of the apparatus used to produce carbon fiber by the vapor phase method in the present invention is as shown in FIGS. 1 and 11.

第1図において、有機金属化合物用気化器グー及び炭素
化合物用気化器4L6には各々キャリヤガス導入管弘θ
、4tsが接続され、それぞれの容器には再凝縮を防止
するため周囲が温度制御される構造になった混合ガス供
給94Lrが導出されている。この供給管グざは途中置
換ガス又は少量ガス導入管≠2と合5+LL反応管!θ
に接続される。反応管内の温度は加熱器!コによって温
度制御される。反応管!O内で生成した炭素繊維は繊維
捕集装置74’で捕集され、キャリヤガス及び未燃焼ガ
スは管j乙によって系外に出される。
In FIG. 1, the organometallic compound vaporizer 4L6 and the carbon compound vaporizer 4L6 each have a carrier gas introduction pipe θ.
, 4ts are connected, and a mixed gas supply 94Lr whose surroundings are temperature controlled to prevent recondensation is led out to each container. This supply pipe is a combination of intermediate replacement gas or small amount gas introduction pipe ≠ 2 and 5 + LL reaction tube! θ
connected to. The temperature inside the reaction tube is controlled by a heater! The temperature is controlled by Reaction tube! The carbon fibers produced in O are collected by a fiber collector 74', and the carrier gas and unburned gas are discharged from the system through pipe jB.

第1図において、有機金属化合物を溶解した有機化合物
の貯留を兼ねた溶液供給装gtコOに接続された混合溶
液供給管λコ及びキャリヤガス導入管2μは反応管コロ
に接続されている。
In FIG. 1, a mixed solution supply pipe λ and a carrier gas introduction pipe 2μ, which are connected to a solution supply device gt and also used to store an organic compound in which an organometallic compound is dissolved, are connected to a reaction tube.

混合溶液供給管は、途中で気化が起らないように温度制
御されており、管から出た液体が瞬時に気化できる程度
の温度帯域まで入れられてめる。また反応管コロは加熱
器−lによって温度制御される。反応管コロ内で生成し
た炭素繊維は繊維捕集装置30で捕集され、キャリヤガ
ス及び未反応ガスは管3コによって系外に出される。
The temperature of the mixed solution supply pipe is controlled so that vaporization does not occur midway through the pipe, and the temperature range is such that the liquid coming out of the pipe can instantly vaporize. Further, the temperature of the reaction tube roller is controlled by a heater-l. The carbon fibers produced in the reaction tube roller are collected by a fiber collector 30, and the carrier gas and unreacted gas are taken out of the system through the tube 3.

第3図は、従来のシード法による気相法炭素繊維の一般
的装置図である。炭素化合物気化器60にはキャリヤガ
ス導入管6コ及び混合ガス導出管6μが接続され、導出
管64Lは途中、置換ガス又は還元ガス用導管と合流し
反応管6rに接続している。反応管6rは加熱器[7−
2によって温度制御され、内部には金5超微粒子をシー
ドした基板70が設置されている。キャリヤガス及び未
反応ガスは排気管71/−によって系外に出される。
FIG. 3 is a diagram of a general apparatus for producing vapor-grown carbon fiber using a conventional seeding method. A carrier gas inlet pipe 6 and a mixed gas outlet pipe 6μ are connected to the carbon compound vaporizer 60, and the outlet pipe 64L joins a replacement gas or reducing gas conduit in the middle and is connected to a reaction tube 6r. The reaction tube 6r is a heater [7-
The temperature is controlled by 2, and a substrate 70 seeded with gold 5 ultrafine particles is installed inside. The carrier gas and unreacted gas are discharged to the outside of the system through the exhaust pipe 71/-.

実施例1 次に、この発明に係る気相法による炭素繊維の製造方法
の実施例につき添付図面を参照しながら以下詳説する。
Example 1 Next, an example of the method for manufacturing carbon fiber by a vapor phase method according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図は実施例1に使用した装置の概略系統図である。FIG. 1 is a schematic system diagram of the apparatus used in Example 1.

実施例1においては、有機金属化合物として(CsHs
)2Fg (7エロセン)を、炭素化合物としてCaH
a (ベンゼン)t1キャリヤガスとして 3′−の硫
化水素を含むN2ガスを用いた。反応管はアルミナ製で
内径!Om、長さ1600mでラシ、加熱装置の加熱部
の有効長はりoom、均熱帯域は約J 00 jlmで
らる。
In Example 1, (CsHs
)2Fg (7erocene) as a carbon compound with CaH
a (Benzene) t1 N2 gas containing 3'-hydrogen sulfide was used as the carrier gas. The reaction tube is made of alumina and has an inner diameter! The length is 1600 m, the effective length of the heating section of the heating device is oom, and the soaking zone is approximately J 00 jlm.

まず、気化器4Lコ及び4Atには、それぞれ(CsH
す2Fl及びC4H4を貯えた。ガス導入管ゲタから!
0OWLI/rninの流量で反応管内にN2ガスを送
りながら加熱器!コを昇温した。温度が一定に達してか
ら、ガス導入管ゲタよ#)N2ガスを6001817m
1llの流量で反応管に送りガス置換を行った。30分
のガス置換後、キャリヤガス導入管4tO及びダ≠にN
2ガスを導入しガス導入管ゲタよシHUBガスを導入し
た。反応管に入る直前におけるガスの組成は、H2;H
2S : (CsHs)2Fe : ChHa =I 
J、0 : 2.z : 0.7: / /Jで、総流
量は!10) RJ/mln (常温。
First, for each of the 4L and 4At vaporizers (CsH
2Fl and C4H4 were stored. From the gas introduction pipe geta!
Heater while sending N2 gas into the reaction tube at a flow rate of 0OWLI/rnin! The temperature was raised. After the temperature reaches a certain level, remove the gas inlet pipe.
Gas replacement was performed at a flow rate of 1 liter into the reaction tube. After 30 minutes of gas replacement, add N to the carrier gas inlet pipe 4tO and
2 gases were introduced, and HUB gas was introduced through the gas introduction pipe getter. The composition of the gas just before entering the reaction tube is H2;
2S: (CsHs)2Fe: ChHa =I
J, 0: 2. z: 0.7: / /J, and the total flow rate is! 10) RJ/mln (at room temperature.

常圧換算)であった。均熱部の温度はioり5℃で6す
、生成した炭素繊維は繊維捕集装置Zaとして金1#!
維フィルターを使用し、そこで捕隼した。実験は30分
間継続し、反応管内及びステンレス繊維フィルターへの
炭素繊維の付着量を測定したところ、s、sgのカーボ
ンブラックをほとんど含″1々い微細炭素繊維が得られ
た。
(converted to normal pressure). The temperature of the soaking section is 5°C, and the produced carbon fiber is used as a fiber collecting device Za.
A fiber filter was used to catch the falcons. The experiment continued for 30 minutes, and the amount of carbon fibers adhered to the inside of the reaction tube and the stainless steel fiber filter was measured. As a result, fine carbon fibers containing almost all of the s and sg carbon blacks were obtained.

このときの炭素繊維の平均的な形状は直径O,コμm1
長さ約30μmで6った。
The average shape of the carbon fiber at this time is diameter O, μm1
The length was about 30 μm.

比較例1 1y図は比較例1に使用した装置の概略系統図である。Comparative example 1 Figure 1y is a schematic system diagram of the apparatus used in Comparative Example 1.

#JwJK示した加熱装置7コおよび反応管61は実施
例1で使用したものと同様のものを用いた。また気化器
toKはC6H6を貯えた。反応管の中心には、内径り
!鯉、長さ300wgのアルミナ製パイプ−(i−Jつ
に割って半円状にした基板を置いた。この基板には予め
次のような処理をした。平均粒径600にの鉄の超微粒
予約/ 1it−/ 0001nlのアルコールに懸濁
し、上澄液を採取しスプレーにて基板光面に該上澄液を
散布して乾燥した。
#JwJK The 7 heating devices and reaction tube 61 shown were the same as those used in Example 1. Also, the vaporizer TOK stored C6H6. The center of the reaction tube has an inner diameter! An alumina pipe with a length of 300 wg (i-J) was placed on a substrate made into a semicircular shape. This substrate was previously treated as follows. The particles were suspended in 0001 nl of alcohol, the supernatant liquid was collected, and the supernatant liquid was sprayed onto the optical surface of the substrate and dried.

まず、ガス導入管t6よりN2ガスを500m/ m 
i nの液量で送りながら加M4器7−1を昇温した。
First, N2 gas is introduced from the gas introduction pipe t6 at 500 m/m.
The temperature of the M4 heating vessel 7-1 was raised while feeding the liquid at an amount of 1.

一定温度に達してからガス導入管66にはN2ガスのか
わり4CH2ガス!00#It/minを流した。30
分のガス置換後ガス導入管66は閉めて、キャリヤガス
導入管6λよりN2ガスを/ 001nl/mimの流
量て送った。ガス導出管6参におけるガス組成は、H2
: CbHa = Y 7.6:コ、弘で、総流量はt
 o 、2.z llt/winでめった。
After reaching a certain temperature, 4CH2 gas is introduced into the gas introduction pipe 66 instead of N2 gas! 00#It/min was flowed. 30
After replacing the gas for 1 minute, the gas introduction pipe 66 was closed, and N2 gas was sent from the carrier gas introduction pipe 6λ at a flow rate of 1/001 nl/mm. The gas composition in gas outlet pipe 6 is H2
: CbHa = Y 7.6: Ko, Hiro, total flow rate is t
o, 2. I rarely got zllt/win.

均熱部の温度は、初期の1時間は1090℃、次の1時
間は//Jθ℃、次の一時間は1110℃として昼時間
運転した。加熱器が冷却してから基板を取り出したとこ
ろ、基板表面に直径7μm。
The temperature of the soaking section was set to 1090° C. for the first hour, //Jθ° C. for the next hour, and 1110° C. for the next hour, and the operation was carried out during the daytime. When the substrate was taken out after the heater had cooled down, there was a diameter of 7 μm on the surface of the substrate.

長さ約3俤の炭素繊維が生成していた。基板より炭素繊
維を削りと9重量を測定したところ0.3.21でらっ
た。この比較例は、600回以上の実験結果の中から最
も収率及び生産性の高かった結果を選択したものである
が、実施例1は比較例/に比較してrr倍の生産性があ
る。
Carbon fibers with a length of about 3 yen were produced. When I shaved off the carbon fiber from the substrate and measured its weight, the weight was 0.3.21. This comparative example was selected from the results of more than 600 experiments with the highest yield and productivity, but Example 1 has rr times the productivity compared to Comparative Example. .

しかしこのri倍という数字扛炭素繊維の成長時の比較
でらシ、実施例1が連続生産が可能であるのに対し、比
較例(従来法)では連続生産が不可能という条件を加え
るとその生産性は容易にioo倍以上を達成しているの
である。
However, when comparing the growth of carbon fibers with this number ri times as large as ri, we can see that while continuous production is possible in Example 1, continuous production is not possible in the comparative example (conventional method). Productivity is easily more than IOO times higher.

実施例λ〜// 実施例λ〜//は実施例1と同様の装置を使って行った
結果である。その結果を表−7に示す。
Example λ~// Example λ~// is the result of using the same apparatus as Example 1. The results are shown in Table-7.

実施例/〜//に示すように、キャリヤガスはH2を主
体とする混合ガスが比較的好ましい。
As shown in Examples / to / /, the carrier gas is relatively preferably a mixed gas mainly containing H2.

また、有機化合物に硫黄化合物を使用すると、キャリヤ
ガスとしてH2ガスを使用しても高い収率で炭素繊維を
得ることが可能である。
Furthermore, when a sulfur compound is used as the organic compound, carbon fibers can be obtained in high yield even when H2 gas is used as a carrier gas.

実施例12 実施例1λに使用した実験装置の概略系統図を第1図に
示す。貯留を兼ねた溶液供給装置20にはCbHb/K
Pに対して/moleの(CsHす2Feを溶解した溶
液を貯え、0./ g/minの速度でC6H6、(0
5H5) 2Feの溶液を連続的に10PO℃に加熱さ
れた内径jO龍のアルミナ製反応管に送り、反応管内で
瞬時に気化させた。一方、キャリヤガス導入管コ≠から
はA701j/minの流量でH2ガスを送った。実!
Aは1時間実施し、反応管内及びステンレス繊維フィル
ター30に捕集された炭素繊維の収量を計測した。
Example 12 A schematic system diagram of the experimental apparatus used in Example 1λ is shown in FIG. The solution supply device 20 that also serves as a reservoir contains CbHb/K.
A solution containing (CsH2Fe) of (CsH2Fe) of /mole with respect to P was stored, and C6H6, (0
5H5) A solution of 2Fe was continuously sent to an alumina reaction tube with an inner diameter of JO dragon heated to 10PO°C, and instantly vaporized within the reaction tube. On the other hand, H2 gas was sent from the carrier gas introduction pipe ≠ at a flow rate of A701j/min. fruit!
A was carried out for 1 hour, and the yield of carbon fibers collected in the reaction tube and on the stainless steel fiber filter 30 was measured.

なお、同様の実験を10回繰り返して生産性の安定度を
評価した。結果を表−一、3に示す。
Note that the same experiment was repeated 10 times to evaluate the stability of productivity. The results are shown in Tables 1 and 3.

比較例コ 実施例1と同様の実験装置で、混合ガス組成が実施例1
コと同様になるように東件を設定し、同じく1時間の実
験をio回繰り返した。結果を表−コ、3に示す。
Comparative Example: Using the same experimental equipment as in Example 1, the mixed gas composition was the same as in Example 1.
I set up the East case to be similar to that of Ko, and repeated the same 1-hour experiment io times. The results are shown in Table 3.

表弓     収  fi− 表一コの実験データについて統計解析を行った。Front bow collection fi- Statistical analysis was performed on the experimental data in Table 1.

表−3 文字の定義 xi : i回目の収量(1) n:試行回数(tO) 表−3のデータから、有意水準!チで分散の検定(片側
検定)を行った結果、実施例1−と比較例−において分
散に有意差が見られた。よって、有意水準!チで実施例
/、2のほうが収量が安定していることが言える。
Table-3 Definition of letters xi: i-th yield (1) n: Number of trials (tO) From the data in Table-3, significance level! As a result of performing a variance test (one-sided test) in Example 1, a significant difference in variance was found between Example 1 and Comparative Example. Therefore, the significance level! It can be said that the yield of Example 2 is more stable.

以上、本発明の実施例について説明したが、本発明はこ
れらの実施例に限定されることなく、本発明の精神を逸
脱しない範囲内において適用されることは勿論である。
Although the embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to these embodiments and can be applied within the scope of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る気相法による微細炭素繊維の製造
方法を実施する装置の概略系統図、第1図は気相法によ
る微細炭素繊維の製造方法の別法を実施する装置の概略
系統図、第3図は従来の気相法による炭素繊維の製造に
使用する一般的装置の概略系統図である。 コ0・・・溶液供給装置   ココ・・・混合溶液供給
管−≠・・・キャリヤガス導入管 ム・・・反応管λt
・・・加熱器      3o・・・繊維捕集装置3コ
00.管         参〇、aa・・・キャリヤ
ガス導入管手 敬に ネjH正 )3二(自発) 昭和59年 8月37日 諾庁長官志賀学殿 1、事件の表示 昭和59年寺鴇需第155154号 2、発明の名称 気相法による微細炭素繊維の製造方法 3、補正をする者 事件との関係  特許出願人 住所東京都渋谷区恵比寿3丁目43番2号名称 日機装
株式会社 イ懺者音 桂二部 4、代理人 特願昭59−155154号 (111正  目 1、明細書筒1頁fJrJ4行〜ff13頁第15行の
特許請求の範囲を次の通り補正します。 [2、特許請求の範囲 +11  ffi金運化合物のガスとキャリヤガスとの
混合ガスを高温反応させることを特徴とする気相法によ
る微細炭素繊維の製造方法。 (2)有機金属化合物がFe 、 Co + Niの化
合物である特許請求の範rHJ第1項記載の気相法によ
る微細炭素繊維の製造方法。 (3)有機金属化合物が炭素と水素と鉄だけからなる化
合物である特許請求の範囲第1項記載の気相法による微
細炭素繊維の製造方法。 (4)キャリヤガスがHLガスを60%以上含む混合ガ
スである特許請求の範囲第1項記載の気相法による微細
炭素繊維の製造方法。 (5)  キャリヤガスが1〜6%の10)、S  を
含むH,ガスである特許i?i求の範囲第1項記載の気
相法による徴用炭素IJliw、の製造方法。 (6)  キャリヤガスが3〜20%のlle 、 A
r 。 Kr + Ne lNz 、 CO2等のガスをふくむ
11λガスである特許請求の範囲第1項記載の気相法に
よる微細炭素繊維の製造方法。 (7)混合ガスの反応温度は600〜1300℃である
特許請求の範囲第1項記載の気相法による微細炭素繊維
の製造方法。 (8)有機金属化合物のガスとキードリヤガスと炭素化
合物のガスとの混合ガスを高温反応させることを特徴と
する気相法による微細炭素繊維の製造方法。 (9)有機金属化合物がFe 、 Co 、旧の化合物
である特許請求の範囲第8項記載の気相法による微細炭
素繊維の製造方法。 (10)有機金属化合物が炭素と水素と鉄だけからなる
化合物である特許請求の範囲第8項記載の気相法による
微細炭素繊維の製造方法。 (11)キャリヤガスがH□ガスを60%以上含む混合
ガスである特許請求の範囲第8項記載の気相法による微
細炭素繊維の製造方法。 (12)キャリヤガスが1〜6%の10) 、S  を
含む11λガスである特許請求の範囲第8項記載の気相
法による@細炭素繊維の製造方法。 (13)キャリヤガスが3〜20%のHe + Ar+
Kr + Ne + Nz + COI等のガスを含む
I(2Lガスである特許請求の範囲第8項記載の気相法
による微細炭素繊維の製造方法。 (14)混合ガスの反応温度は600〜1300℃であ
る特許請求の範囲第8項記載の気相法による微細炭素繊
維の製造方法。 (15)有機金属化合物を熔解せしめた炭素化合物の溶
液を気化せしめて、前記溶液と同一組成の炭素化合物と
を機金屈化合物との混合ガスを生成させることを特徴と
する特許請求の範囲第8項記載の気相法による微細炭素
繊維の製造方法、」 2、明ms第14〜25頁の表−1 実施例3のキャリヤガス体積(%)の欄にr 85.8
 Jを加入します。
Fig. 1 is a schematic system diagram of an apparatus for carrying out the method for producing fine carbon fibers by a vapor phase method according to the present invention, and Fig. 1 is a schematic diagram of an apparatus for carrying out another method for producing fine carbon fibers by a vapor phase method. System Diagram, FIG. 3 is a schematic system diagram of a general apparatus used for manufacturing carbon fiber by the conventional vapor phase method. Co0...Solution supply device Coco...Mixed solution supply pipe-≠...Carrier gas introduction pipe M...Reaction tube λt
... Heater 3o... Fiber collection device 300. Pipe 3, aa... Carrier gas introduction pipe operator Keini NejH Masaru) 32 (Voluntary) August 37, 1980 NAO Agency Director General Shiga Gakuden 1, Incident Indication 1981 Temple Toki Demand No. 155154 No. 2, Name of the invention Method for producing fine carbon fibers by vapor phase method 3, Relationship with the case of the person making the amendment Patent applicant address 3-43-2 Ebisu, Shibuya-ku, Tokyo Name Nikkiso Co., Ltd. Part 2, Part 4, Agent Patent Application No. 111, page 1, specification tube page 1, line 4 fJrJ to page ff 13, line 15, the scope of claims is amended as follows. [2. Patent claims Range of +11 ffi A method for producing fine carbon fibers by a gas phase method characterized by reacting a mixed gas of a compound gas and a carrier gas at high temperature. (2) Compounds in which the organometallic compound is Fe, Co + Ni (3) A method for producing fine carbon fibers by a vapor phase method according to claim rHJ paragraph 1. (3) A method according to claim 1, wherein the organometallic compound is a compound consisting only of carbon, hydrogen and iron. A method for producing fine carbon fibers by a vapor phase method. (4) A method for producing fine carbon fibers by a vapor phase method according to claim 1, wherein the carrier gas is a mixed gas containing 60% or more of HL gas. ) Patent i? in which the carrier gas is H gas containing 1 to 6% 10), S2? A method for producing commanded carbon IJliw by a gas phase method according to item 1. (6) lle, A with 3-20% carrier gas
r. The method for producing fine carbon fibers by a vapor phase method according to claim 1, wherein the 11λ gas containing gases such as Kr + Ne INz and CO2 is used. (7) The method for producing fine carbon fibers by a vapor phase method according to claim 1, wherein the reaction temperature of the mixed gas is 600 to 1300°C. (8) A method for producing fine carbon fibers by a gas phase method, which comprises reacting a mixed gas of an organometallic compound gas, a key dryer gas, and a carbon compound gas at a high temperature. (9) The method for producing fine carbon fibers by a vapor phase method according to claim 8, wherein the organometallic compound is a compound of Fe, Co, or a conventional compound. (10) The method for producing fine carbon fibers by a vapor phase method according to claim 8, wherein the organometallic compound is a compound consisting only of carbon, hydrogen, and iron. (11) The method for producing fine carbon fibers by a vapor phase method according to claim 8, wherein the carrier gas is a mixed gas containing 60% or more of H□ gas. (12) The method for producing fine carbon fibers by a vapor phase method according to claim 8, wherein the carrier gas is a 11λ gas containing 1 to 6% of 10) and S. (13) He + Ar+ with a carrier gas of 3-20%
A method for producing fine carbon fibers by a vapor phase method according to claim 8, which is I (2L gas) containing a gas such as Kr + Ne + Nz + COI. (14) The reaction temperature of the mixed gas is 600 to 1300. A method for producing fine carbon fibers by a vapor phase method according to claim 8, wherein the temperature is 0.degree. A method for producing fine carbon fibers by a vapor phase method according to claim 8, which is characterized in that a mixed gas is produced by producing a mixed gas of -1 In the column of carrier gas volume (%) in Example 3, r 85.8
Join J.

Claims (15)

【特許請求の範囲】[Claims] (1)有機金属化合物のガスとキャリヤガスとの混合ガ
スを高温反応させることを特徴とする気相法による微細
炭素繊維の製造方法。
(1) A method for producing fine carbon fibers by a gas phase method, which is characterized by reacting a mixed gas of an organometallic compound gas and a carrier gas at high temperature.
(2)有機金属化合物がFe、Co、Niの化合物であ
る特許請求の範囲第1項記載の気相法による微細炭素繊
維の製造方法。
(2) The method for producing fine carbon fibers by a vapor phase method according to claim 1, wherein the organometallic compound is a compound of Fe, Co, and Ni.
(3)有機金属化合物が炭素と水素と鉛だけからなる化
合物である特許請求の範囲第1項記載の気相法による微
細炭素繊維の製造方法。
(3) The method for producing fine carbon fibers by a vapor phase method according to claim 1, wherein the organometallic compound is a compound consisting only of carbon, hydrogen, and lead.
(4)キャリヤガスがH_2ガスを60%以上含む混合
ガスである特許請求の範囲第1項記載の気相法による微
細炭素繊維の製造方法。
(4) The method for producing fine carbon fibers by a vapor phase method according to claim 1, wherein the carrier gas is a mixed gas containing 60% or more of H_2 gas.
(5)キャリヤガスが1〜6%のH_2Sを含むH_2
ガスである特許請求の範囲第1項記載の気相法による微
細炭素繊維の製造方法。
(5) H_2 in which the carrier gas contains 1-6% H_2S
A method for producing fine carbon fibers by a gas phase method according to claim 1, wherein the method is a gas.
(6)キャリヤガスが3〜20%のHe、Ar、Kr、
Ne、N_2、CO_2等のガスを含むH_2ガスであ
る特許請求の範囲第1項記載の気相法による微細炭素繊
維の製造方法。
(6) He, Ar, Kr with a carrier gas of 3 to 20%,
The method for producing fine carbon fibers by a vapor phase method according to claim 1, wherein the H_2 gas contains gases such as Ne, N_2, CO_2, etc.
(7)混合ガスの反応温度は600〜1300℃である
特許請求の範囲第1項記載の気相法による微細炭素繊維
の製造方法。
(7) The method for producing fine carbon fibers by a vapor phase method according to claim 1, wherein the reaction temperature of the mixed gas is 600 to 1300°C.
(8)有機金属化合物のガスとキャリヤガスと炭素化合
物のガスとの混合ガスを高温反応させることを特徴とす
る気相法による微細炭素繊維の製造方法。
(8) A method for producing fine carbon fibers by a gas phase method, which comprises reacting a mixed gas of an organometallic compound gas, a carrier gas, and a carbon compound gas at high temperature.
(9)有機金属化合物がFe、Co、Niの化合物であ
る特許請求の範囲第8項記載の気相法による微細炭素繊
維の製造方法。
(9) The method for producing fine carbon fibers by a vapor phase method according to claim 8, wherein the organometallic compound is a compound of Fe, Co, and Ni.
(10)有機金属化合物が炭素と水素と鉛だけからなる
化合物である特許請求の範囲第8項記載の気相法による
微細炭素繊維の製造方法。
(10) The method for producing fine carbon fibers by a vapor phase method according to claim 8, wherein the organometallic compound is a compound consisting only of carbon, hydrogen, and lead.
(11)キャリヤガスがH_2ガスを60%以上含む混
合ガスである特許請求の範囲第8項記載の気相法による
微細炭素繊維の製造方法。
(11) The method for producing fine carbon fibers by a vapor phase method according to claim 8, wherein the carrier gas is a mixed gas containing 60% or more of H_2 gas.
(12)キャリヤガスが1〜6%のH_2Sを含むH_
2ガスである特許請求の範囲第1項記載の気相法による
微細炭素繊維の製造方法。
(12) H_ in which the carrier gas contains 1-6% H_2S
2. A method for producing fine carbon fibers by a vapor phase method according to claim 1, wherein two gases are used.
(13)キャリヤガスが3〜20%のHe、Ar、Kr
、Ne、N_2、CO_2等のガスを含むH_2ガスで
ある特許請求の範囲第8項記載の気相法による微細炭素
繊維の製造方法。
(13) He, Ar, Kr with a carrier gas of 3 to 20%
9. The method for producing fine carbon fibers by a vapor phase method according to claim 8, wherein the H_2 gas contains gases such as , Ne, N_2, and CO_2.
(14)混合ガスの反応温度は600〜1300℃であ
る特許請求の範囲第8項記載の気相法による微細炭素繊
維の製造方法。
(14) The method for producing fine carbon fibers by a vapor phase method according to claim 8, wherein the reaction temperature of the mixed gas is 600 to 1300°C.
(15)有機金属化合物を溶解せしめた炭素化合物の溶
液を気化せしめて、前記溶液と同一組成の炭素化合物と
有機金属化合物との混合ガスを生成させることを特徴と
する特許請求の範囲第8項記載の気相法による微細炭素
繊維の製造方法。
(15) Claim 8, characterized in that a solution of a carbon compound in which an organometallic compound is dissolved is vaporized to generate a mixed gas of a carbon compound and an organometallic compound having the same composition as the solution. A method for producing fine carbon fibers using the vapor phase method described above.
JP59155154A 1984-07-27 1984-07-27 Method for producing fine carbon fiber by vapor phase method Expired - Lifetime JPH089808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59155154A JPH089808B2 (en) 1984-07-27 1984-07-27 Method for producing fine carbon fiber by vapor phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59155154A JPH089808B2 (en) 1984-07-27 1984-07-27 Method for producing fine carbon fiber by vapor phase method

Publications (2)

Publication Number Publication Date
JPS6134221A true JPS6134221A (en) 1986-02-18
JPH089808B2 JPH089808B2 (en) 1996-01-31

Family

ID=15599708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59155154A Expired - Lifetime JPH089808B2 (en) 1984-07-27 1984-07-27 Method for producing fine carbon fiber by vapor phase method

Country Status (1)

Country Link
JP (1) JPH089808B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503555A (en) * 1986-06-06 1988-12-22 ハイピリオン・カタリシス・インターナシヨナル・インコーポレイテツド Novel carbon fibrils
JPH0192425A (en) * 1987-09-30 1989-04-11 Nkk Corp Production of carbon fiber with vapor growth
JPH0192422A (en) * 1987-09-30 1989-04-11 Nkk Corp Production of carbon fiber with vapor growth
JPH0192423A (en) * 1987-09-30 1989-04-11 Nkk Corp Production of carbon fiber with vapor growth

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231821A (en) * 1984-04-25 1985-11-18 Asahi Chem Ind Co Ltd Production of carbonaceous fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231821A (en) * 1984-04-25 1985-11-18 Asahi Chem Ind Co Ltd Production of carbonaceous fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503555A (en) * 1986-06-06 1988-12-22 ハイピリオン・カタリシス・インターナシヨナル・インコーポレイテツド Novel carbon fibrils
JPH01131251A (en) * 1986-06-06 1989-05-24 Hyperion Catalysis Internatl Inc Novel carbon fibril, its production and composition containing said fibril
JPH0377288B2 (en) * 1986-06-06 1991-12-10 Haipirion Katarishisu Intern Inc
JPH0192425A (en) * 1987-09-30 1989-04-11 Nkk Corp Production of carbon fiber with vapor growth
JPH0192422A (en) * 1987-09-30 1989-04-11 Nkk Corp Production of carbon fiber with vapor growth
JPH0192423A (en) * 1987-09-30 1989-04-11 Nkk Corp Production of carbon fiber with vapor growth

Also Published As

Publication number Publication date
JPH089808B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US4572813A (en) Process for preparing fine carbon fibers in a gaseous phase reaction
EP0158853B1 (en) A process for preparing carbon fibers in gas phase growth
JP3491747B2 (en) Method for producing carbon nanocoil and catalyst
JP4413046B2 (en) Method for producing vapor grown carbon fiber
EP1966420A1 (en) Vapor-grown carbon fiber and production process thereof
JPS6054998A (en) Production of carbon fiber grown in vapor phase
WO2013081499A2 (en) Method and apparatus for producing long carbon nanotubes
JP4405650B2 (en) Carbonaceous nanotube, fiber assembly, and method for producing carbonaceous nanotube
JP2002146634A (en) Fine carbon fiber and method for producing the same
JPS6134221A (en) Manufacture of ultra-fine carbon fiber by vapor-phase process
JP4706058B2 (en) Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes
JP4357163B2 (en) Fine carbon fiber and composition containing the same
JP5036564B2 (en) Method for producing platelet-type slit vapor-grown carbon fiber
Chen et al. Preparation, morphology and microstructure of segmented graphite nanofibers
TWI306834B (en) A method for manufacturing carbonaceous nanofiber
JP2003089930A (en) Fine carbon fiber mixture and composition containing the same
JP2007169838A (en) Vapor grown carbon fiber and method for producing the same
JP2004238791A (en) Fine carbon fiber
JP2670040B2 (en) Hollow carbon fiber by fluidized vapor deposition
JPH0813254A (en) Hollow carbon yarn by fluidized vapor-phase growth method
JPS62238826A (en) Production of carbon fiber
JPH0280619A (en) Production of carbon fiber
JPH02127523A (en) Carbon fiber of vapor growth
Coville et al. The role of organometallic complexes in the synthesis of shaped carbon materials
JP2003239142A (en) Carbon fiber by gas phase method and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term