JPS63240504A - Preparation of thin dielectric optical film - Google Patents

Preparation of thin dielectric optical film

Info

Publication number
JPS63240504A
JPS63240504A JP7554787A JP7554787A JPS63240504A JP S63240504 A JPS63240504 A JP S63240504A JP 7554787 A JP7554787 A JP 7554787A JP 7554787 A JP7554787 A JP 7554787A JP S63240504 A JPS63240504 A JP S63240504A
Authority
JP
Japan
Prior art keywords
thin film
dielectric
thin dielectric
treatment
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7554787A
Other languages
Japanese (ja)
Other versions
JPH0529083B2 (en
Inventor
Noboru Otani
昇 大谷
Kazuhiko Inoguchi
和彦 猪口
Tetsushi Takegawa
竹川 哲史
Yoshio Okada
岡田 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP7554787A priority Critical patent/JPS63240504A/en
Publication of JPS63240504A publication Critical patent/JPS63240504A/en
Publication of JPH0529083B2 publication Critical patent/JPH0529083B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)

Abstract

PURPOSE:To obtain a thin dielectric optical film which has excellent weatherability and is free from deterioration with lapse of time by forming thin dielectric films consisting of alternately laminated layers of low refractive index dielectric materials and high refractive index dielectric materials, then subjecting the thin dielectric films to a hydrophobicity imparting treatment. CONSTITUTION:The thin dielectric films are the single-half wave type interference filter of 10 layers of the lambda/4 films constituted of the alternately laminated layers of SiO2 which is the low refractive index material and TiO2 which is the high refractive index material. Such thin dielectric films are formed on a glass substrate by using an electron beam vapor deposition method. The interference filter is then subjected to the hydrophobicity imparting treatment by subjecting the filter to a deaeration treatment, then immersing the interference filter a whole day and night in a 4% trimethyl chlorosilane [(CH3)3SiCl]- chloroform soln. The thin dielectric optical film which has the optical characteristics conforming to design values and is free from deterioration with lapse of time is thereby obtd.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、干渉フィルター等として使用される誘電体光
学薄膜の作製方法に関し、特に耐候性に優れ、経時変化
のない干渉フィルター等を得るための誘電体光学薄膜の
作製方法に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for producing a dielectric optical thin film used as an interference filter, etc., and in particular to a method for producing a dielectric optical thin film that has excellent weather resistance and does not change over time. The present invention relates to a method for producing an optical thin film.

〈従来技術〉 誘電体光学薄膜は、反射防止膜を初めとして色分離フィ
ルター、偏光フィルター、各種ミラー、光減衰器等、多
岐にわたって利用されている。これら誘電体薄膜は、真
空蒸着法により容易に形成できるが、耐候性に乏しく、
特に吸湿による経時変化が素子性能を低下させる原因と
なっており、その改善が強く望まれている。
<Prior Art> Dielectric optical thin films are used in a wide variety of applications, including antireflection films, color separation filters, polarizing filters, various mirrors, and optical attenuators. These dielectric thin films can be easily formed by vacuum evaporation, but they have poor weather resistance.
In particular, changes over time due to moisture absorption are a cause of deterioration in device performance, and improvement thereof is strongly desired.

従来行なわれている吸湿性改善の代表的な試みには、以
下の(イ)(ロ)があるが、素子の経時変化を解決する
ことには成功していない。
Typical attempts to improve hygroscopicity that have been made in the past include the following (a) and (b), but they have not succeeded in solving the aging problem of the element.

(イ)第1の方法は、誘電体薄膜を形成した後、該誘電
体薄膜上に保護膜を形成するものであり、″xi体薄膜
薄膜部環境との接触を防ぐことを目的としている。
(a) The first method is to form a dielectric thin film and then form a protective film on the dielectric thin film, and is intended to prevent the xi-body thin film from coming into contact with the environment.

保護膜としては、SiO等単−誘電体物質、又はTag
sとAIO,等の混合誘電体物質から成る単層薄膜、又
はSin、Sin、等異種誘電体物質の交互積層から成
る多層薄膜、あるいはエポキシ等透明高分子薄膜等が試
みられているが、いずれもピンホール等の欠陥を避ける
ことはできないため、経時変化を抑えることは困難であ
る。
As a protective film, a single dielectric material such as SiO, or Tag
Single-layer thin films made of mixed dielectric materials such as S and AIO, multilayer thin films made of alternating layers of different dielectric materials such as Sin, Sin, and transparent polymer thin films such as epoxy have been attempted. However, since defects such as pinholes cannot be avoided, it is difficult to suppress changes over time.

(ロ)第2の方法は、誘電体薄膜形成時に、酸素イオン
、アルゴンイオン等のイオンビームを照射することによ
り薄膜の高充填密度化を図り、吸湿を抑えようとするも
のである(イオンビームアシスト蒸着法=IAD法)。
(b) The second method attempts to suppress moisture absorption by increasing the packing density of the thin film by irradiating it with an ion beam of oxygen ions, argon ions, etc. when forming the dielectric thin film (ion beam Assisted vapor deposition method = IAD method).

この方法では薄膜内の吸着点を不活性化し、経時変化速
度を遅くすることはできるが、水分子の吸着は避けられ
ないため、本質的な経時変化の改善は望めない。
Although this method can inactivate the adsorption points within the thin film and slow down the rate of change over time, it cannot be expected to substantially improve the change over time because adsorption of water molecules is unavoidable.

〈発明の目的〉 本発明は、上記従来技術の欠点を解決すること、具体的
には経時変化を抑止すると共に、低価格、大量処理を可
能にする誘電体光学薄膜の作製方法を提供することを目
的とするものである。
<Objective of the Invention> The present invention aims to solve the above-mentioned drawbacks of the prior art, and specifically to provide a method for producing a dielectric optical thin film that suppresses deterioration over time and enables mass processing at low cost. The purpose is to

〈発明の構成〉 上記目的を達成するため、本発明が採用する誘電体光学
薄膜の作製方法は真空蒸着法等により、単一誘電体物質
から成る誘電体薄膜、あるいは低屈折率誘電体物質と高
屈折率誘電体物質の交互積層から成る誘電体薄膜を形成
した後、該誘電体薄膜に対し疎水化処理を行なうことを
特徴としている。
<Structure of the Invention> In order to achieve the above object, the method for producing a dielectric optical thin film adopted in the present invention is to produce a dielectric thin film made of a single dielectric material or a dielectric material with a low refractive index by a vacuum evaporation method or the like. The method is characterized in that after forming a dielectric thin film consisting of alternately laminated layers of high refractive index dielectric materials, the dielectric thin film is subjected to hydrophobization treatment.

〈発明の実施例〉 以下、本発明を実施例に基づき図面を参照して詳細に説
明する。
<Embodiments of the Invention> The present invention will now be described in detail based on embodiments with reference to the drawings.

本実施例により作製した誘電体薄膜は、第1図に示すご
とく低屈−折率物質である5iOz、及び高屈折率物質
であるTi1tの交互積層により構成されるλ/4膜1
01のシングルハーフウェーブ型(SHW型)干渉フィ
ルタ(以下干渉フィルタと呼ぶ)である。この誘電体薄
膜は電子ビーム蒸着装置を用い、基盤温度300℃、酸
素分圧2XlO’T orrの雰囲気中でガラス基板上
に形成した。
As shown in FIG. 1, the dielectric thin film produced in this example is a λ/4 film 1 composed of alternating layers of 5iOz, a low refractive index material, and Ti1t, a high refractive index material.
01 single half wave type (SHW type) interference filter (hereinafter referred to as interference filter). This dielectric thin film was formed on a glass substrate using an electron beam evaporation device in an atmosphere with a substrate temperature of 300° C. and an oxygen partial pressure of 2XlO'Torr.

この干渉フィルターは、第2図に示すような形成直後の
分光特性を育し、600〜11000nの波長範囲で1
つの透過ピーク(以下メインピークと呼ぶ)をもつもの
である。
This interference filter develops spectral characteristics immediately after formation as shown in Figure 2, and has 1
It has two transmission peaks (hereinafter referred to as main peaks).

第3図は、干渉フィルタを大気中に取り出した後のメイ
ンピーク波長(透過ピーク最大透過率を与える波長)の
経時変化を示している。干渉フィルタを大気中に取り出
した直後にピーク位置が大きく変化し、その後時間と共
に緩やかにピーク位置が変化している。干渉フィルタを
大気中に取り′出した直後に起こる大きなピークシフト
の原因は、主に構成膜表面への水酸基(−OH)の結合
によるものであり、その後に起こる緩やかなピークシフ
トは結合した水酸基(−OH)に大気中の水(ttto
)が水素結合により吸着することによって起こるものと
考えられる。
FIG. 3 shows the change over time in the main peak wavelength (the wavelength that gives the maximum transmittance at the transmission peak) after the interference filter is taken out into the atmosphere. The peak position changes significantly immediately after the interference filter is taken out into the atmosphere, and then changes gradually over time. The cause of the large peak shift that occurs immediately after the interference filter is taken out into the atmosphere is mainly due to the bonding of hydroxyl groups (-OH) to the surface of the constituent membranes, and the gradual peak shift that occurs thereafter is due to the bonding of the hydroxyl groups (-OH) to the surface of the constituent membranes. (-OH) to atmospheric water (ttto
) is thought to be caused by adsorption through hydrogen bonding.

疎水化処理を行なうに先立ち、上記干渉フィルタを1w
t%水酸化ナトリウム(NaOH)水溶液中に超音波を
印加した状態で15分間浸し、続いてエタノール(C*
HsOH)中で10分間の超音波洗浄を行なった後、l
Xl0  ’Torr以下の真空中で460℃lR間の
脱気処理を行なった。上記処理を行なうことにより、干
渉フィルタに吸着した水(t−two)をほぼ完全に取
り除くことができる。
Prior to hydrophobic treatment, the above interference filter was heated to 1w.
It was immersed in a t% sodium hydroxide (NaOH) aqueous solution for 15 minutes while applying ultrasound, and then immersed in ethanol (C*
After 10 minutes of ultrasonic cleaning in HsOH),
Degassing treatment was carried out at 460°C and 1R in a vacuum of Xl0' Torr or less. By performing the above processing, the water (t-two) adsorbed on the interference filter can be almost completely removed.

第4図は、脱気処理までを行なった誘電体多層膜のピー
クシフトの様子を時間軸に対して示したものである。ピ
ーク位置が時間に対して緩やかに変化しており、脱気処
理後の表面に再び水が吸着する過程を表わしている。
FIG. 4 shows the peak shift of the dielectric multilayer film, which has been subjected to degassing treatment, with respect to the time axis. The peak position changes slowly over time, indicating the process in which water is adsorbed again on the surface after degassing.

次に、脱気処理を施した干渉フィルタを4%トリメチル
クロロシラン((CH5)−3iCl)−クロロホルム
溶液に一昼夜浸す事により干渉フィルタの疎水化処理を
行なった。
Next, the interference filter subjected to the deaeration treatment was immersed in a 4% trimethylchlorosilane ((CH5)-3iCl)-chloroform solution overnight to perform hydrophobization treatment on the interference filter.

CH2 5t−011+(CHa)ssicl −5t−0−3
t−C1ls + tlc1C[Ia 疎水化処理は、上式に従って反応が起こり、干渉フィル
タに結合した水酸基(−OH)のHが疎水性基((cH
り3St−)に置換される。
CH2 5t-011+(CHa)ssicl-5t-0-3
t-C1ls + tlc1C[Ia In the hydrophobization treatment, a reaction occurs according to the above formula, and H of the hydroxyl group (-OH) bonded to the interference filter becomes a hydrophobic group ((cH
3St-).

第5図に水酸化ナトリウム処理、及び脱気処理を施した
後、疎水化処理を施した干渉フィルタのピーク位置の変
化の様子を示す。形成直後に比べて大きく変化していた
ピーク位置が、上記処理を行なうことにより、形成直後
のピークとほぼ等しい位置に戻り、処理後は全くピーク
の移動が生じなかった。
FIG. 5 shows changes in the peak position of an interference filter that has been subjected to sodium hydroxide treatment and deaeration treatment, and then to hydrophobization treatment. The peak position, which had changed significantly compared to immediately after formation, returned to a position approximately equal to the peak immediately after formation by performing the above treatment, and no peak movement occurred after the treatment.

なお、誘電体薄膜が水と接しない状態、例えば窒素雰囲
気中等で疎水化処理を行う場合には脱気処理等を行わな
(とも同様な効果を得ることができる。又、脱気処理は
誘電体層表面の吸着水を除去する為のものであり、その
方法は真空加熱に限らず不活性ガス雰囲気中での加熱等
吸着水を除去できる方法であればいずれの方法でもよい
。又、脱気処理に先立つ水酸化ナトリウム水溶液による
処理は、脱気処理後の試料への水分の吸着を遅らせる効
果があり、脱気処理後疎水化処理までの間に試料が大気
と接する環境では、上記処理を行なうことが望ましい。
Note that when performing hydrophobization treatment in a state where the dielectric thin film does not come into contact with water, for example in a nitrogen atmosphere, degassing treatment etc. (the same effect can be obtained also). This is to remove adsorbed water on the surface of the body layer, and the method is not limited to vacuum heating, but any method that can remove adsorbed water, such as heating in an inert gas atmosphere, may be used. Treatment with an aqueous sodium hydroxide solution prior to air treatment has the effect of delaying the adsorption of moisture to the sample after deaeration treatment, and in environments where the sample comes into contact with the atmosphere after deaeration treatment and before hydrophobization treatment, the above treatment is effective. It is desirable to do this.

又、水酸化ナトリウム水溶液の濃度、及び処理時間は本
実施例における条件に限らず、膜特性に影響を与えない
範囲で任意に選べば良い。
Further, the concentration of the aqueous sodium hydroxide solution and the treatment time are not limited to the conditions in this example, and may be arbitrarily selected within a range that does not affect the film properties.

疎水性基は、実施例で述べたトリメチルシラン基に限ら
ず (R)m  、 −M−の構造の化合物基であればよい
The hydrophobic group is not limited to the trimethylsilane group described in the examples, but may be any compound group having the structure (R)m, -M-.

ここで、RはCHs  、 C* Hs−等のCnH*
n  I−で表される飽和炭化水素基であり、MはS 
i、T i。
Here, R is CHs, CnH* such as C*Hs-
n is a saturated hydrocarbon group represented by I-, and M is S
i, T i.

Sn等3価または4価の元素である。ここでmはMの価
数を表わしている。又、Ot)m+−は同一飽和炭化水
素基からなる場合でも、異種飽和炭化水素基からなる場
合でも実施例と同様の効果を得ることができる。
It is a trivalent or tetravalent element such as Sn. Here, m represents the valence of M. Moreover, the same effect as in the example can be obtained even when Ot)m+- is composed of the same saturated hydrocarbon group or different saturated hydrocarbon groups.

尚、以上の実施例では水酸化ナトリウム処理を行ったも
のであるが、これに代えて水酸化カリウム処理を行って
もよい。
In the above examples, sodium hydroxide treatment was performed, but potassium hydroxide treatment may be performed instead.

〈発明の効果〉 以上のように、本発明の誘電体光学薄膜の作製方法を用
いれば、設計値通りの光学的特性をもち、経時変化のな
い、誘電体光学薄膜を得ることができる。
<Effects of the Invention> As described above, by using the method for producing a dielectric optical thin film of the present invention, it is possible to obtain a dielectric optical thin film that has optical properties as designed and does not change over time.

さらに、イオンビームアシスト蒸着(I AD)法のよ
うに高価なイオン源を用いる必要がなく、又、蒸着中に
特別な処理を施す必要がないため、誘電体薄膜形成は従
来法により行なうことができる。
Furthermore, unlike the ion beam assisted deposition (IAD) method, there is no need to use an expensive ion source, and there is no need for special treatment during deposition, so the dielectric thin film can be formed using conventional methods. can.

更に、脱気処理、及び疎水化処理は一度に大量に行なえ
るため、誘電体光学薄膜作製の低コスト化を図ることが
できる。
Furthermore, since the degassing treatment and the hydrophobization treatment can be performed in large quantities at once, it is possible to reduce the cost of producing the dielectric optical thin film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は10層の誘電体多層膜SHW型干渉フィルター
の模式図、第2図は第1図に示した10層の誘電体多層
膜SHW型干渉フィルターの形成直後の分光特性図、第
3図は10層の誘電体多層膜SHW型干渉フィルターを
大気中に取り出した後のピーク位置の変化の様子を示す
グラフ図、第4図は10層の誘電体多層膜SHW型干渉
フィルターを脱気処理した後、再び大気中に放置した際
のピーク位置の変化の様子を示すグラフ図、第5図は脱
気処理した10層の誘電体多層膜SHW型干渉フィルタ
ーに疎水化処理を施したものを、再び大気中に放置した
際のピーク位置の変化の様子を示すグラフ図である。 #12m
Fig. 1 is a schematic diagram of a 10-layer dielectric multilayer SHW type interference filter, Fig. 2 is a spectral characteristic diagram of the 10-layer dielectric multilayer SHW type interference filter shown in Fig. 1 immediately after formation, and Fig. 3 The figure is a graph showing how the peak position changes after a 10-layer dielectric multilayer SHW type interference filter is taken out into the atmosphere. Figure 4 shows the 10-layer dielectric multilayer SHW type interference filter being degassed. A graph showing how the peak position changes when the filter is left in the air again after treatment. Figure 5 shows a degassed 10-layer dielectric multilayer SHW type interference filter subjected to hydrophobization treatment. FIG. 3 is a graph showing how the peak position changes when the sample is left in the atmosphere again. #12m

Claims (1)

【特許請求の範囲】 1、真空蒸着法等により単一誘電体物質から成る誘電体
薄膜、あるいは低屈折率誘電体物質と高屈折率誘電体物
質の交互積層からなる誘電体薄膜を形成した後、 該誘電体薄膜に対し疎水化処理を行なうことを特徴とす
る誘電体光学薄膜の作製方法。 2、誘電体薄膜に対し疎水化処理を行なうに先立ち、該
誘電体薄膜に対し脱気処理を行なうことを特徴とする特
許請求の範囲第1項記載の誘電体光学薄膜の作製方法。 3、誘電体薄膜に対し疎水化処理を行なうに先立ち、該
誘電体薄膜を水酸化ナトリウム水溶液中又は水酸化カリ
ウム水溶液中に浸した後、脱気処理を行なうことを特徴
とする特許請求の範囲第1項記載の誘電体光学薄膜の作
製方法。
[Claims] 1. After forming a dielectric thin film made of a single dielectric material or a dielectric thin film made of alternating layers of a low refractive index dielectric material and a high refractive index dielectric material by a vacuum evaporation method, etc. . A method for producing a dielectric optical thin film, which comprises performing a hydrophobic treatment on the dielectric thin film. 2. The method for producing a dielectric optical thin film according to claim 1, wherein the dielectric thin film is subjected to a degassing treatment before being subjected to a hydrophobic treatment. 3. The scope of claims characterized in that, prior to performing hydrophobization treatment on the dielectric thin film, the dielectric thin film is immersed in an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution and then subjected to a deaeration treatment. 2. A method for producing a dielectric optical thin film according to item 1.
JP7554787A 1987-03-27 1987-03-27 Preparation of thin dielectric optical film Granted JPS63240504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7554787A JPS63240504A (en) 1987-03-27 1987-03-27 Preparation of thin dielectric optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7554787A JPS63240504A (en) 1987-03-27 1987-03-27 Preparation of thin dielectric optical film

Publications (2)

Publication Number Publication Date
JPS63240504A true JPS63240504A (en) 1988-10-06
JPH0529083B2 JPH0529083B2 (en) 1993-04-28

Family

ID=13579331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7554787A Granted JPS63240504A (en) 1987-03-27 1987-03-27 Preparation of thin dielectric optical film

Country Status (1)

Country Link
JP (1) JPS63240504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233501A (en) * 1990-02-09 1991-10-17 Copal Co Ltd Optical multilayered film filter element and production thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226237A (en) * 1975-08-25 1977-02-26 Ulvac Corp Process for treating the surface of a lens made of synthesized plastics
JPS5695201A (en) * 1979-05-16 1981-08-01 Satis Vacuum Ag Method and device for vacuum treatment of optical object* particularly for plastic eye glasses and lens
JPS62169102A (en) * 1986-01-21 1987-07-25 Seiko Epson Corp Method for modifying surface of inorganic coating film
JPS63168602A (en) * 1987-01-06 1988-07-12 Sharp Corp Preparation of thin optical dielectric film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226237A (en) * 1975-08-25 1977-02-26 Ulvac Corp Process for treating the surface of a lens made of synthesized plastics
JPS5695201A (en) * 1979-05-16 1981-08-01 Satis Vacuum Ag Method and device for vacuum treatment of optical object* particularly for plastic eye glasses and lens
JPS62169102A (en) * 1986-01-21 1987-07-25 Seiko Epson Corp Method for modifying surface of inorganic coating film
JPS63168602A (en) * 1987-01-06 1988-07-12 Sharp Corp Preparation of thin optical dielectric film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233501A (en) * 1990-02-09 1991-10-17 Copal Co Ltd Optical multilayered film filter element and production thereof

Also Published As

Publication number Publication date
JPH0529083B2 (en) 1993-04-28

Similar Documents

Publication Publication Date Title
FR2801684A1 (en) Heat absorbing filter operating in the visible and infrared ranges for use in surgical and therapy applications, and manufacture
US4172156A (en) Method of depositing a reflection reducing coating on substrates of organic material
CN110133783A (en) A kind of infrared narrow band filter manufacturing method
JPH0720303A (en) Reflection-preventing structure
Hass et al. On the structure and properties of some metal and metal oxide films
JPS5860701A (en) Reflection preventing film
JPS63240504A (en) Preparation of thin dielectric optical film
CN114415281B (en) Preparation method of ultra-wide passband shortwave pass filter film
JP3355786B2 (en) Manufacturing method of optical components for infrared
JPS63168602A (en) Preparation of thin optical dielectric film
US5825549A (en) Optical thin film for optical element
JP2007156321A (en) Method for manufacturing optical multilayer filter
CN111101096B (en) Method for manufacturing silicon dioxide film and silicon dioxide-containing film element
CN112327390B (en) Flat-plate type laser beam splitting film based on composite material and design method thereof
JP3079580B2 (en) Thin film for optical component, optical component having the same, and method of manufacturing the same
JPH10268107A (en) Synthetic resin lens with antireflection film
JPH10115711A (en) Production of optical thin film
US5350605A (en) Process for the preparation of an optical structure and optical structure obtained thereby
JPH10123303A (en) Antireflection optical parts
US9156995B2 (en) Preparation of stable metal oxide sols, notably for making thin abrasion-resistant films with optical properties
JPH03108136A (en) Optical recording medium and its production
JPS59107A (en) Manufacture of color resolving filter
JPH06331809A (en) Metallic mirror and its production
JPS60100914A (en) Producton of anti-cloud synthetic resin mirror
JPH0250104A (en) Metallic reflecting mirror