JPH06331809A - Metallic mirror and its production - Google Patents

Metallic mirror and its production

Info

Publication number
JPH06331809A
JPH06331809A JP5145703A JP14570393A JPH06331809A JP H06331809 A JPH06331809 A JP H06331809A JP 5145703 A JP5145703 A JP 5145703A JP 14570393 A JP14570393 A JP 14570393A JP H06331809 A JPH06331809 A JP H06331809A
Authority
JP
Japan
Prior art keywords
film
protective film
substrate
reflective film
metal mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5145703A
Other languages
Japanese (ja)
Other versions
JP3320148B2 (en
Inventor
Yukinori Tsukamoto
征徳 塚本
Mitsuharu Sawamura
光治 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14570393A priority Critical patent/JP3320148B2/en
Publication of JPH06331809A publication Critical patent/JPH06331809A/en
Application granted granted Critical
Publication of JP3320148B2 publication Critical patent/JP3320148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide the inexpensive metallic mirror which has high reflectively and has no possibility of degrading the reflectivity with time. CONSTITUTION:The pressure in a vacuum chamber 1 is reduced. An under coat, a reflection film consisting of Al and a protective film consisting of an unsatd. silicon oxide having a film thickness ranging from 0.1 to 10nm are deposited by evaporation on the surface of a substrate W. The vapor deposition of the under coat and the protective film is executed by resistance heating the second evaporating source 4. The vapor deposition of the reflection film is executed by heating a first evaporating source 3 by an electron gun. The deposition speed of the protective film is so controlled that the packing density thereof attains 0.6 to 0.9. Oxygen is introduced from a reactive gas introducing line 1b to oxidize the surface of the reflection film by the oxygen permeating the protective film after the formation of the protective film and thereafter, the vacuum chamber 1 is opened to the atm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カメラ、複写機、プリ
ンタ等の光学機械に用いられる金属ミラーおよびその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal mirror used in an optical machine such as a camera, a copying machine and a printer, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、カメラ、複写機、プリンタ等の光
学機械に用いられる金属ミラーは、プラスチック等で作
られた基体の表面にAl,Cu,Au,Ag等の高反射
率を有する金属の反射膜を成膜し、その上に誘電体材料
の保護膜や増反射膜を設けたものが一般的である。特
に、Al等の腐蝕しやすい金属からなる反射膜は、時間
とともに反射率が低下する性質(以下、「経時的劣化特
性」という。)や膜強度および耐薬品性が低い点を補う
ために、酸化処理による酸化層の形成あるいはSiO2
やSiOの保護膜を積層するなどの工夫がなされてお
り、例えば以下の例が公知である。
2. Description of the Related Art Conventionally, a metal mirror used in an optical machine such as a camera, a copying machine or a printer is made of a metal such as Al, Cu, Au, Ag having a high reflectance on the surface of a substrate made of plastic or the like. Generally, a reflective film is formed, and a protective film of a dielectric material and a reflection increasing film are provided on the reflective film. In particular, a reflective film made of a metal such as Al that easily corrodes has a property of decreasing the reflectance with time (hereinafter referred to as “degradation property over time”), a film strength and a low chemical resistance. Formation of oxide layer by oxidation treatment or SiO 2
A device such as laminating a protective film of SiO 2 or SiO has been made, and the following examples are known.

【0003】1)プラスチック基体の表面に真空蒸着等
によってAl,Au,Ag,Ni,Cr等の反射膜を蒸
着し、その上に膜厚3〜8nmのSiOの保護膜を設け
る(特開昭56−110904号公報参照)。
1) A reflective film of Al, Au, Ag, Ni, Cr or the like is vapor-deposited on the surface of a plastic substrate by vacuum vapor deposition or the like, and a protective film of SiO having a thickness of 3 to 8 nm is provided thereon (Japanese Patent Laid-Open Publication No. Sho. 56-110904).

【0004】2)透明基体の表面にAlの反射膜を成膜
し、次いでSiO2 膜とTiO2 膜からなる増反射膜を
加熱することなく積層したうえで大気中で加熱してAl
の反射膜の表面を酸化させる(特開昭58−43402
号公報参照)。
2) An Al reflection film is formed on the surface of a transparent substrate, and then a reflection enhancing film consisting of a SiO 2 film and a TiO 2 film is laminated without heating and then heated in the atmosphere to form an Al film.
The surface of the reflective film of JP-A-58-43402
(See the official gazette).

【0005】3)基体の表面にAlの反射膜を成膜し、
酸素ガスの雰囲気中でAlの反射膜の表面を酸化させた
うえで、SiO2 膜と、TiO2 膜からなる増反射膜を
設ける(特開昭58−55901号公報参照)。
3) Form a reflective film of Al on the surface of the substrate,
The surface of the Al reflection film is oxidized in an atmosphere of oxygen gas, and then a reflection enhancing film composed of a SiO 2 film and a TiO 2 film is provided (see Japanese Patent Laid-Open No. 58-59001).

【0006】4)Alの反射膜の表面を酸化させて10
nm〜20nmのAl23 層を形成し、その上にSi
2 の保護膜を設ける(特開昭58−72106号公報
参照)。
4) 10 by oxidizing the surface of the Al reflection film
nm to 20 nm Al 2 O 3 layer is formed, and Si is formed thereon.
A protective film of O 2 is provided (see Japanese Patent Laid-Open No. 58-72106).

【0007】5)基体の表面にAlの反射膜を蒸着した
のち、光学膜厚0.03λ0 〜0.15λ0 (λ0 は設
計波長)の珪素酸化物あるいはフッ化マグネシウムの保
護膜を設ける(特開平2−50104号公報参照)。
5) After depositing a reflective film of Al on the surface of the substrate, a protective film of silicon oxide or magnesium fluoride having an optical film thickness of 0.03λ 0 to 0.15λ 00 is a design wavelength) is provided. (See Japanese Patent Application Laid-Open No. 2-50104).

【0008】6)合成樹脂の基体の表面にSiOの保護
膜を設け、その上に反射膜を蒸着したのち、さらに膜厚
0.05〜1.0μmのSiOの保護膜を設ける(特開
平4−235502号公報参照)。
6) An SiO protective film is provided on the surface of a synthetic resin substrate, a reflective film is vapor-deposited on the SiO protective film, and then an SiO protective film having a thickness of 0.05 to 1.0 μm is further provided (Japanese Patent Laid-Open Publication No. 4 (1999) -1999). -235502 gazette).

【0009】7)合成樹脂裏面反射鏡において、基板側
から珪素酸化物の保護膜、Al反射膜、膜厚10〜10
0nmのSiO2 の保護膜を積層する(特開平4−24
0802号公報参照)。
7) In a synthetic resin rear surface reflecting mirror, a silicon oxide protective film, an Al reflecting film, and a film thickness of 10 to 10 are provided from the substrate side.
A 0 nm SiO 2 protective film is laminated (JP-A-4-24).
0802).

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、SiO2 やSiO等を主成分とする保
護膜のみでは水分の透過を完全に防ぐことができないた
めに反射膜の経時的劣化特性の改善が充分ではない。ま
た、反射膜の表面を酸化する方法は、酸化する工程が複
雑であったり、反射膜の反射率が初めから低いという難
点があった。すなわち、1)の方法は単にSiOの保護
膜を設けただけであるため、水分の透過によるAlの反
射膜の経時的劣化特性を充分に改質できず、2)ないし
4)の方法は、Alの反射膜の表面に水分に対して高い
不透過性を有するAlの酸化膜を形成させることで経時
的劣化特性を改質するものであるが、Alの反射膜の表
面を酸化するために加熱またはプラズマ処理を必要とし
たり、あるいはAlの反射膜の表面を酸化するために酸
素を導入したのちに保護膜の成膜のために再び成膜室を
減圧する工程を要し、生産性が低いうえに、基体の材料
が限定されたり、プラズマ処理によるダメージや汚染等
のおそれもある。5)の方法は珪素酸化物やフッ化マグ
ネシウムの保護膜の膜厚を薄くすることによってAlの
反射膜との境界面にAlの酸化膜を形成させるものであ
り、2)ないし4)の方法と同じく経時的劣化特性の改
質は充分であるが、保護膜の膜厚が設計波長(650n
m)から算出すると13〜65nmであり、このために
反射率が初めから低いという難点がある。また、6)お
よび7)の方法は珪素酸化物の保護膜のみでは水分に対
する不透過性が充分ではないために、時間がたつとAl
の反射膜の腐蝕が進み反射率が低下する。
However, according to the above-mentioned conventional technique, the permeation of moisture cannot be completely prevented only by the protective film containing SiO 2 or SiO as a main component, so that the reflective film is deteriorated with time. The characteristics are not sufficiently improved. Further, the method of oxidizing the surface of the reflective film has a drawback that the oxidation process is complicated and the reflectance of the reflective film is low from the beginning. That is, since the method 1) is merely provided with a protective film of SiO, the deterioration characteristics of the Al reflective film over time due to the transmission of moisture cannot be sufficiently modified, and the methods 2) to 4) are The deterioration property over time is modified by forming an Al oxide film having a high impermeability to water on the surface of the Al reflection film. However, in order to oxidize the surface of the Al reflection film, Heat or plasma treatment is required, or oxygen is introduced to oxidize the surface of the Al reflection film, and then a step of depressurizing the film formation chamber again for film formation of the protective film is required. In addition to being low, the material of the substrate is limited, and there is a risk of damage and contamination due to plasma treatment. The method 5) is to form an Al oxide film on the interface with the Al reflection film by reducing the thickness of the protective film of silicon oxide or magnesium fluoride. As with the above, modification of the deterioration characteristics with time is sufficient, but the thickness of the protective film is set to the design wavelength (650 n
It is 13 to 65 nm when calculated from m), and therefore there is a drawback that the reflectance is low from the beginning. Further, in the methods 6) and 7), since the impermeability to moisture is not sufficient only with the protective film of silicon oxide, Al may be used with time.
Corrosion of the reflective film of 1) progresses and the reflectance decreases.

【0011】本発明は、上記従来の技術の有する問題点
に鑑みてなされたものであり、極めて高い反射率を有
し、該反射率が時間とともに低下するおそれがないうえ
に、製造工程が簡単で安価である金属ミラーおよびその
製造方法を提供することを目的とするものである。
The present invention has been made in view of the above problems of the prior art, has an extremely high reflectance, there is no fear that the reflectance will decrease with time, and the manufacturing process is simple. It is an object of the present invention to provide a metal mirror which is inexpensive and inexpensive and a method for manufacturing the same.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の金属ミラーは、基体の表面に成膜された金
属の反射膜と、該反射膜の表面に積層された膜厚0.1
から10nmの範囲の保護膜を有し、前記反射膜の表面
が酸化されていることを特徴とする。
In order to achieve the above object, the metal mirror of the present invention has a metal reflective film formed on the surface of a substrate and a film thickness of 0 laminated on the surface of the reflective film. .1
From 10 nm to 10 nm, and the surface of the reflection film is oxidized.

【0013】また本発明の方法は、減圧された成膜室で
基体の表面に金属の反射膜を成膜する工程と、前記反射
膜の表面に0.1から10nmの範囲の膜厚と所定のパ
ッキング密度を有する保護膜を成膜する工程と、成膜後
から前記成膜室に酸素を導入して前記反射膜の表面を酸
化させる工程からなることを特徴とする。
Further, the method of the present invention comprises the step of forming a metal reflection film on the surface of the substrate in a reduced pressure film formation chamber, and a film thickness in the range of 0.1 to 10 nm and a predetermined thickness on the surface of the reflection film. And a step of forming a protective film having a packing density of 1 and a step of oxidizing oxygen on the surface of the reflective film by introducing oxygen into the film forming chamber after the film formation.

【0014】[0014]

【作用】上記金属ミラーによれば、反射膜の表面が酸化
されて水分を透過しない酸化層が形成されているため、
反射膜の腐蝕を防ぐことができる。また、保護膜の膜厚
が0.1から10nmの範囲であるため、反射膜の表面
硬度を向上させるには充分であり、しかも反射膜の反射
率が保護膜によって大幅に損なわれるおそれがない。保
護膜の膜厚が0.1nmより小さい場合は強度が不十分
であり、保護膜の膜厚が10nmより大きい場合は反射
率が低下する。また、保護膜の膜厚が薄いため、これを
透過する酸素によって速やかに反射膜の表面を酸化させ
ることができ、従って、酸化層が形成される前に水分が
反射膜に侵入するのを防ぐことができる。その結果、酸
化膜が形成される前に水分が侵入し反射膜の腐蝕が進む
おそれもない。また、保護膜を成膜後に成膜室に酸素を
導入し、反射膜の表面を酸化させたうえでそのまま大気
に開放できるため、製造工程が簡単である。
According to the metal mirror described above, since the surface of the reflective film is oxidized to form an oxide layer that does not allow water to pass through,
Corrosion of the reflective film can be prevented. Further, since the thickness of the protective film is in the range of 0.1 to 10 nm, it is sufficient to improve the surface hardness of the reflective film, and the reflectance of the reflective film is not significantly impaired by the protective film. . If the thickness of the protective film is smaller than 0.1 nm, the strength is insufficient, and if the thickness of the protective film is larger than 10 nm, the reflectance decreases. Further, since the thickness of the protective film is thin, the surface of the reflective film can be quickly oxidized by oxygen that permeates the protective film, thus preventing moisture from entering the reflective film before the oxide layer is formed. be able to. As a result, there is no risk that moisture will enter before the oxide film is formed and the reflection film will be corroded. Further, after the protective film is formed, oxygen can be introduced into the film forming chamber to oxidize the surface of the reflective film and then directly open to the atmosphere, so that the manufacturing process is simple.

【0015】また、上記方法によれば、保護膜の成膜中
にパッキング密度が所定の値になるように堆積速度を制
御し、保護膜の成膜後に成膜室に酸素を導入する。パッ
キング密度を0.6ないし0.9に制御することで反射
膜の表面を極めて迅速に酸化することができる。この
後、成膜室をそのまま大気に解放し、製品を取りだすこ
とができる。
According to the above method, the deposition rate is controlled so that the packing density becomes a predetermined value during the formation of the protective film, and oxygen is introduced into the film forming chamber after the protective film is formed. By controlling the packing density to 0.6 to 0.9, the surface of the reflective film can be oxidized very quickly. After that, the film formation chamber can be directly opened to the atmosphere and the product can be taken out.

【0016】[0016]

【実施例】本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described with reference to the drawings.

【0017】第1実施例 図1は、第1実施例に用いる蒸着装置を示すもので、該
蒸着装置は、排気口1aを有する成膜室である真空槽1
と、これに酸素ガス等の反応ガスを導入するための反応
ガス導入ライン1bと、真空槽1内において図示しない
回転装置によって回転される傘形の基板ホルダ2と、こ
れに保持された基体である基板Wに向かってそれぞれ蒸
気を発生させる第1および第2の蒸発源3,4と、基板
Wに蒸着される薄膜の堆積速度をモニタする水晶センサ
からなる膜厚モニタ5を有する。なお、第1の蒸発源3
は電子銃によって加熱されてAlの蒸気を発生し、第2
の蒸発源4は抵抗加熱によって加熱されて珪素酸化物S
iOx (1<x<2)(以下、「不飽和珪素酸化物」と
いう。)の蒸気を発生する。また、排気口1aは図示し
ない真空ポンプおよび大気導入ライン1cに交互に接続
される。
First Embodiment FIG. 1 shows a vapor deposition apparatus used in the first embodiment. The vapor deposition apparatus is a vacuum chamber 1 which is a film forming chamber having an exhaust port 1a.
A reaction gas introduction line 1b for introducing a reaction gas such as oxygen gas, an umbrella-shaped substrate holder 2 rotated by a rotation device (not shown) in the vacuum chamber 1, and a substrate held by the substrate holder 2. It has first and second evaporation sources 3 and 4 for respectively generating vapor toward a certain substrate W, and a film thickness monitor 5 composed of a quartz sensor for monitoring a deposition rate of a thin film deposited on the substrate W. The first evaporation source 3
Is heated by an electron gun to generate Al vapor,
Of the silicon oxide S
The vapor of iO x (1 <x <2) (hereinafter referred to as “unsaturated silicon oxide”) is generated. Further, the exhaust ports 1a are alternately connected to a vacuum pump (not shown) and the air introduction line 1c.

【0018】第1実施例の金属ミラーは以下のように製
作される。
The metal mirror of the first embodiment is manufactured as follows.

【0019】ポリカーボネート製の基板Wを基板ホルダ
2へ装着して真空槽1を1×10-3Pa以下の圧力に排
気したのち、反応ガス導入ライン1bから酸素ガスを導
入して1×10-2Paの圧力に調整し、この真空度で第
2の蒸発源4を加熱して膜厚85nmの不飽和珪素酸化
物のアンダーコートを成膜し、次いで、1×10-3Pa
の真空度で第1の蒸発源3を加熱して膜厚100nmの
Alの反射膜を積層し、続いて、前述と同様に酸素ガス
を導入して1.5×10-2Paの真空度に調整し、この
真空度で第2の蒸発源4を加熱して膜厚5nmの不飽和
珪素酸化物の保護膜を積層した。これらのアンダーコー
ト、反射膜および保護膜の蒸着はすべて基板Wを加熱す
ることなく連続的に行われ、保護膜の堆積速度は膜厚モ
ニタ5でモニタし、ほぼ0.5nm/秒に制御された。
保護膜の成膜後、反応ガス導入ライン1bから酸素ガス
を導入し、真空槽1の圧力を約100Paまで上昇させ
たうえで大気導入ライン1cを開放し、空気を導入し
た。なお、前述の堆積速度で成膜された保護膜のパッキ
ング密度は0.88以下であり、また、屈折率は400
nmの波長でほぼ1.48であった。
After a substrate W made of polycarbonate is mounted on the substrate holder 2 and the vacuum chamber 1 is evacuated to a pressure of 1 × 10 −3 Pa or less, oxygen gas is introduced from the reaction gas introduction line 1b to 1 × 10 −. The pressure was adjusted to 2 Pa, the second evaporation source 4 was heated at this degree of vacuum to form an unsaturated silicon oxide undercoat having a film thickness of 85 nm, and then 1 × 10 −3 Pa
The first evaporation source 3 is heated at a vacuum degree of 1 to stack a reflective film of Al having a film thickness of 100 nm, and then oxygen gas is introduced in the same manner as described above to obtain a vacuum degree of 1.5 × 10 -2 Pa. Then, the second evaporation source 4 was heated at this degree of vacuum to stack a protective film of unsaturated silicon oxide having a film thickness of 5 nm. Deposition of these undercoat, reflection film and protective film is all performed continuously without heating the substrate W, and the deposition rate of the protective film is monitored by the film thickness monitor 5 and controlled to about 0.5 nm / sec. It was
After forming the protective film, oxygen gas was introduced from the reaction gas introduction line 1b, the pressure in the vacuum chamber 1 was increased to about 100 Pa, the atmosphere introduction line 1c was opened, and air was introduced. The packing density of the protective film formed at the above-described deposition rate is 0.88 or less, and the refractive index is 400.
It was approximately 1.48 at a wavelength of nm.

【0020】図2は本実施例の金属ミラーの入射角45
度における分光反射率を示すグラフである。この図から
解るように、本実施例の金属ミラーの製造直後の反射率
(以下、「初期反射率」という。)は波長400nmに
おいて極めて高くかつ広い波長領域において均一であ
る。また後述する製造直後の品質評価テスト(以下、
「初期評価テスト」という。)の結果、本実施例の金属
ミラーは、製造直後の状態において外観、耐薬品性、耐
環境性のすべてにおいて良好であり、また、外観および
反射率の経時的変化を評価する品質評価テスト(以下、
「経時評価テスト」という。)の結果、外観および反射
率のいずれも大きく変化するおそれがないことが判明し
た。
FIG. 2 shows the incident angle 45 of the metal mirror of this embodiment.
It is a graph which shows the spectral reflectance in degrees. As can be seen from this figure, the reflectance of the metal mirror of this example immediately after its production (hereinafter referred to as “initial reflectance”) is extremely high at a wavelength of 400 nm and uniform in a wide wavelength range. In addition, the quality evaluation test immediately after manufacturing (described below,
It is called "initial evaluation test". ), The metal mirror of this example has good appearance, chemical resistance, and environmental resistance in the state immediately after manufacturing, and a quality evaluation test for evaluating changes over time in appearance and reflectance ( Less than,
It is called "evaluation test over time". As a result, it was found that neither the appearance nor the reflectance is significantly changed.

【0021】なお、パッキング密度とは、真空槽で成膜
された薄膜の単位体積当りの質量とこれを大気中に取り
だしたときの同薄膜の質量との比で表わされるものであ
り、予め、真空槽の膜厚モニタによる堆積速度とパッキ
ング密度の関係を調べておき、前述のように、成膜中の
堆積速度を制御することでパッキング密度を所定の値に
制御するのが一般的である。
The packing density is represented by the ratio of the mass per unit volume of the thin film formed in the vacuum chamber to the mass of the thin film when it is taken out into the atmosphere, and is previously set. Generally, the relationship between the deposition rate and the packing density is checked by a film thickness monitor in a vacuum chamber, and as described above, the packing rate is generally controlled by controlling the deposition rate during film formation. .

【0022】次に実験によれば、保護膜の膜厚が0.1
から10nmの範囲でパッキング密度が0.6ないし
0.9であれば、酸素の浸透が極めて迅速に行われ、真
空槽の残留水分が保護膜を通って反射膜の表面に到達す
る前に、該表面が酸化されて水分に対して不透過性を有
する酸化層が形成されることが判明した。また、保護膜
が珪素の酸化物、窒化物あるいは炭化物で作られていれ
ば、これらは水分との親和性がよいために水分を吸収
し、水分が反射膜の表面に到達するのを防ぐのに役立
つ。なお、これらが不飽和化合物であればより一層水分
との親和性が増す。さらに、前記アンダーコート、反射
膜および保護膜の成膜はすべて基板を加熱することなく
行われるのが望ましい。その理由は、加熱によって真空
槽内の残留水分が活性化して反射膜と結合しやすくなる
からである。
Next, according to experiments, the thickness of the protective film was 0.1.
If the packing density is 0.6 to 0.9 in the range from 10 nm to 10 nm, the penetration of oxygen is extremely rapid, and the residual water in the vacuum chamber passes through the protective film and reaches the surface of the reflective film. It was found that the surface was oxidized to form an oxide layer impermeable to moisture. If the protective film is made of silicon oxide, nitride, or carbide, they have a good affinity with water and therefore absorb water, preventing water from reaching the surface of the reflective film. To help. If these are unsaturated compounds, the affinity for water is further increased. Further, it is desirable that the undercoat, the reflective film and the protective film are all formed without heating the substrate. The reason is that the residual water in the vacuum chamber is activated by heating and is easily bonded to the reflective film.

【0023】次に比較のために以下の金属ミラーを製作
した。
Next, the following metal mirrors were manufactured for comparison.

【0024】第1比較例 保護膜の膜厚をほぼ15nmにするとともに保護膜の成
膜後直ちに大気導入ライン1cを開放して空気を導入し
た以外は、すべて第1実施例と同様の方法でアンダーコ
ートと反射膜と保護膜を成膜した。初期評価テストの結
果、初期反射率がやや劣り、加えて、経時評価テストの
結果、反射率の低下が著しいうえに反射膜の腐蝕による
数μ程度の斑点が現れる等、外観の劣化もみられた。
First Comparative Example All were the same as in the first example except that the thickness of the protective film was set to about 15 nm and the air introduction line 1c was opened immediately after the protective film was formed to introduce air. An undercoat, a reflective film and a protective film were formed. As a result of the initial evaluation test, the initial reflectance was slightly inferior.In addition, the deterioration of the appearance such as a few μ spots due to the corrosion of the reflective film was observed in addition to the significant deterioration of the reflectance as a result of the evaluation test with time. .

【0025】第2比較例 保護膜の膜厚をほぼ5nmにするとともにその成膜中に
酸素ガスを導入することなく、真空槽内の圧力を1×1
-3Paに調整し、また成膜後直ちに空気を導入した以
外すべて第1実施例と同様の方法で金属ミラーを製作し
た。保護膜の屈折率はほぼ1.8、パッキング密度はほ
ぼ0.96であった。初期評価テストの結果は良好であ
ったが、経時評価テストの結果、Alの反射膜の腐蝕の
ために斑点状のクモリが発生し、外観および反射率の劣
化が著しいことが判明した。この理由は、保護膜のパッ
キング密度が高いために反射膜の酸化が遅く、水分が侵
入したためと推測される。
Second Comparative Example The thickness of the protective film was set to about 5 nm and the pressure in the vacuum chamber was set to 1 × 1 without introducing oxygen gas during the film formation.
A metal mirror was manufactured in the same manner as in Example 1 except that the pressure was adjusted to 0 -3 Pa and air was introduced immediately after the film formation. The protective film had a refractive index of about 1.8 and a packing density of about 0.96. The results of the initial evaluation test were good, but the results of the time-dependent evaluation test revealed that spot-like cloud was generated due to corrosion of the Al reflection film, and the appearance and reflectance were significantly deteriorated. It is presumed that the reason is that the protective film has a high packing density, so the oxidation of the reflective film is slow and the moisture invades.

【0026】第3比較例 保護膜の材料をSiO2 、膜厚を約5nmにするととも
にその成膜中に酸素ガスを導入することなく、真空槽内
の圧力を1×10-3Paに調整し、また成膜後直ちに空
気を導入した以外すべて第1実施例と同様の方法で金属
ミラーを製作した。保護膜の屈折率はほぼ1.45、パ
ッキング密度はほぼ0.94であった。初期評価テスト
の結果は良好であったが経時評価テストの結果、Alの
反射膜の腐蝕によるクモリが発生し、外観および反射率
の劣化が著しいことが判明した。この理由は、保護膜の
材料が飽和酸化物のSiO2 であるうえにパッキング密
度が高いために反射膜の酸化が遅く、水分が侵入したた
めと考えられる。
Third Comparative Example SiO 2 was used as the material for the protective film, the film thickness was set to about 5 nm, and the pressure in the vacuum chamber was adjusted to 1 × 10 −3 Pa without introducing oxygen gas during the film formation. In addition, a metal mirror was manufactured in the same manner as in Example 1 except that air was introduced immediately after the film formation. The protective film had a refractive index of about 1.45 and a packing density of about 0.94. The result of the initial evaluation test was good, but the result of the time-dependent evaluation test revealed that clouding occurred due to corrosion of the Al reflection film, and the appearance and reflectance were significantly deteriorated. It is considered that the reason for this is that the protective film is made of SiO 2 which is a saturated oxide, and the packing density is high, so that the oxidation of the reflective film is slow and moisture penetrates.

【0027】第4比較例 保護膜の膜厚の成膜中に真空槽の圧力を1×10-2Pa
に調整した以外は第1実施例と同様の方法で金属ミラー
を製作した。保護膜の屈折率は400nmの波長で約
1.55、パッキング密度は0.88以下であった。初
期評価テストおよび経時評価テストの結果は第1実施例
とほぼ同様であったが、反射率の経時的劣化がやや大き
いという欠点がある。保護膜の屈折率が1.50を越え
ていることが原因であると見られる。
Fourth Comparative Example The pressure in the vacuum chamber was set to 1 × 10 -2 Pa during the film formation of the protective film.
A metal mirror was manufactured in the same manner as in the first embodiment except that the adjustment was made to 1. The protective film had a refractive index of about 1.55 at a wavelength of 400 nm and a packing density of 0.88 or less. The results of the initial evaluation test and the evaluation test with time were almost the same as those of the first embodiment, but there was a drawback that the deterioration of the reflectance with time was rather large. It seems that the cause is that the refractive index of the protective film exceeds 1.50.

【0028】第2実施例 第1実施例の膜厚5nmの不飽和珪素酸化物の保護膜に
替えて、膜厚5nmの不飽和珪素窒化物SiNx の保護
膜を有する金属ミラーを製作した。アンダーコートと反
射膜の成膜方法は第1実施例と同様であり、保護膜は、
真空槽内に酸素ガスを導入して1.5×10-2Paの真
空度に調整し、蒸発材料を電子銃によって加熱気化させ
て成膜し、その後酸素ガスを導入して真空槽の圧力を1
2 Paまで上昇させたうえで大気開放を行った。保護
膜の屈折率は400nmの波長で約2.05、パッキン
グ密度は0.86以下であった。初期評価テストおよび
経時評価テストの結果はすべて第1実施例と同様に良好
であった。
Second Example A metal mirror having a 5 nm thick protective film of unsaturated silicon nitride SiN x was produced in place of the 5 nm thick protective film of unsaturated silicon oxide of the first example. The method of forming the undercoat and the reflective film is the same as in the first embodiment, and the protective film is
Oxygen gas was introduced into the vacuum chamber to adjust the degree of vacuum to 1.5 × 10 -2 Pa, the evaporation material was heated and vaporized by an electron gun to form a film, and then oxygen gas was introduced to the pressure of the vacuum chamber. 1
After raising the pressure to 0 2 Pa, the atmosphere was released. The refractive index of the protective film was about 2.05 at a wavelength of 400 nm, and the packing density was 0.86 or less. The results of the initial evaluation test and the aging evaluation test were all good as in the first embodiment.

【0029】第3実施例 第1実施例の膜厚5nmの不飽和珪素酸化物の保護膜に
替えて、膜厚5nmの不飽和珪素炭化物SiCの保護膜
を有する金属ミラーを製作した。アンダーコートと反射
膜の成膜方法は第1実施例と同様であり、保護膜は、真
空槽内に酸素ガスを導入して1.5×10-2Paの真空
度に調整し、蒸発材料を電子銃によって加熱気化させて
成膜し、その後酸素ガスを導入して102 Paまで昇圧
させたうえで大気開放を行った。保護膜の屈折率は40
0nmの波長で約2.07、パッキング密度は0.85
以下であった。初期評価テストおよび経時評価テストの
結果は良好であった。
Third Example A metal mirror having a 5 nm-thick unsaturated silicon carbide SiC protective film in place of the 5 nm-thick unsaturated silicon oxide protective film of the first example was manufactured. The method of forming the undercoat and the reflective film is the same as that of the first embodiment, and the protective film is prepared by introducing oxygen gas into the vacuum chamber to adjust the vacuum degree to 1.5 × 10 −2 Pa and evaporating material. Was heated and vaporized by an electron gun to form a film, after which oxygen gas was introduced to raise the pressure to 10 2 Pa and then the atmosphere was opened. Refractive index of protective film is 40
About 2.07 at 0 nm wavelength, packing density 0.85
It was below. The results of the initial evaluation test and the aging evaluation test were good.

【0030】次に、ポリカーボネート基板に替えて、B
K7光学用ガラスの基板、アクリル樹脂の基板、ポリオ
レフィン樹脂の基板を用いて第1実施例と同様の金属ミ
ラーを製作し、それぞれについて初期評価テストおよび
経時評価テストを行った。BK7光学用ガラスの基板を
用いた金属ミラーを第4実施例、アクリル樹脂の基板を
用いたものを第5実施例、ポリオレフィン樹脂の基板を
用いたものを第6実施例として、第1ないし第6実施例
の金属ミラーおよび第1ないし第4の比較例の金属ミラ
ーについて行った初期評価テストおよび経時評価テスト
の結果を表1に示す。
Next, in place of the polycarbonate substrate, B
Using the K7 optical glass substrate, the acrylic resin substrate, and the polyolefin resin substrate, the same metal mirrors as those in the first embodiment were manufactured, and the initial evaluation test and the time-dependent evaluation test were performed for each. The metal mirror using the BK7 optical glass substrate is the fourth embodiment, the one using the acrylic resin substrate is the fifth embodiment, and the one using the polyolefin resin substrate is the sixth embodiment. Table 1 shows the results of the initial evaluation test and the aging evaluation test performed on the metal mirrors of the sixth example and the metal mirrors of the first to fourth comparative examples.

【0031】[0031]

【表1】 なお、外観の評価は、目視によるクモリ、膜ワレ、膜ハ
ガレ等の異常の有無を調べることによって行い、耐薬品
性は、アルコールとフロンソルブの混合液に浸したシル
ボン紙を用いて500g/cm2 の荷重で10往復した
ときの外観の異常を調べたものであり、耐環境性は−3
0度から60度までの温度変化を10工程連続して繰返
したときの外観の異常を調べたものである。経時評価テ
ストは、温度60度、湿度90%の環境で500時間経
過後に外観の異常および反射率を調べたものである。
[Table 1] The appearance was evaluated by visually inspecting for abnormalities such as spiders, film cracks, and film peeling. The chemical resistance was 500 g / cm 2 using sillbon paper dipped in a mixture of alcohol and CFC. Was examined for abnormal appearance after 10 reciprocations under the load of, and the environmental resistance was -3.
This is an examination of abnormalities in appearance when the temperature change from 0 to 60 degrees was repeated 10 steps in succession. The aging evaluation test is to examine abnormalities in appearance and reflectance after 500 hours have passed in an environment of a temperature of 60 degrees and a humidity of 90%.

【0032】[0032]

【発明の効果】本発明は、上述のように構成されている
ので、以下に記載するような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0033】極めて高い反射率を有し、該反射率が時間
とともに低下するおそれがないうえに、製造工程が簡単
で安価である金属ミラーを実現できる。
It is possible to realize a metal mirror which has an extremely high reflectance, there is no fear that the reflectance will decrease with time, and the manufacturing process is simple and inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の金属ミラーを製作するための蒸着
装置を説明する説明図である。
FIG. 1 is an explanatory diagram illustrating a vapor deposition device for manufacturing a metal mirror according to a first embodiment.

【図2】第1実施例の金属ミラーの反射率特性を示すグ
ラフである。
FIG. 2 is a graph showing reflectance characteristics of the metal mirror of the first embodiment.

【符号の説明】[Explanation of symbols]

1 真空槽 1b 反応ガス導入ライン 2 基板ホルダ 3 第1の蒸発源 4 第2の蒸発源 5 膜厚モニタ 1 vacuum tank 1b reaction gas introduction line 2 substrate holder 3 first evaporation source 4 second evaporation source 5 film thickness monitor

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基体の表面に成膜された金属の反射膜
と、該反射膜の表面に積層された膜厚0.1から10n
mの範囲の保護膜を有し、前記反射膜の表面が酸化され
ていることを特徴とする金属ミラー。
1. A metal reflective film formed on the surface of a substrate, and a film thickness of 0.1 to 10 n laminated on the surface of the reflective film.
A metal mirror having a protective film in the range of m, wherein the surface of the reflective film is oxidized.
【請求項2】 金属がAlであることを特徴とする請求
項1記載の金属ミラー。
2. The metal mirror according to claim 1, wherein the metal is Al.
【請求項3】 保護膜が、不飽和珪素酸化物、不飽和珪
素窒化物、不飽和珪素炭化物およびこれらのうちの少く
とも2つからなる混合物のうちのいずれか1つで作られ
ていることを特徴とする請求項1または2記載の金属ミ
ラー。
3. The protective film is made of any one of unsaturated silicon oxides, unsaturated silicon nitrides, unsaturated silicon carbides and mixtures of at least two of these. The metal mirror according to claim 1 or 2, characterized in that.
【請求項4】 保護膜が、波長400nmの光に対する
屈折率が1.5以下の不飽和珪素酸化物で作られている
ことを特徴とする請求項1または2記載の金属ミラー。
4. The metal mirror according to claim 1, wherein the protective film is made of unsaturated silicon oxide having a refractive index of 1.5 or less for light having a wavelength of 400 nm.
【請求項5】 減圧された成膜室で基体の表面に金属の
反射膜を成膜する工程と、前記反射膜の表面に0.1か
ら10nmの範囲の膜厚と所定のパッキング密度を有す
る保護膜を成膜する工程と、成膜後から前記成膜室に酸
素を導入して前記反射膜の表面を酸化させる工程からな
る金属ミラーの製造方法。
5. A step of forming a metal reflective film on the surface of a substrate in a depressurized film forming chamber, and having a film thickness in the range of 0.1 to 10 nm and a predetermined packing density on the surface of the reflective film. A method for manufacturing a metal mirror, comprising a step of forming a protective film and a step of oxidizing the surface of the reflective film by introducing oxygen into the film forming chamber after the film is formed.
【請求項6】 パッキング密度が0.6ないし0.9で
あることを特徴とする請求項5記載の金属ミラーの製造
方法。
6. The method of manufacturing a metal mirror according to claim 5, wherein the packing density is 0.6 to 0.9.
【請求項7】 すべての工程が基体を加熱することなく
連続的に行われることを特徴とする請求項5または6記
載の金属ミラーの製造方法。
7. The method for producing a metal mirror according to claim 5, wherein all steps are continuously performed without heating the substrate.
JP14570393A 1993-05-25 1993-05-25 Manufacturing method of metal mirror Expired - Fee Related JP3320148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14570393A JP3320148B2 (en) 1993-05-25 1993-05-25 Manufacturing method of metal mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14570393A JP3320148B2 (en) 1993-05-25 1993-05-25 Manufacturing method of metal mirror

Publications (2)

Publication Number Publication Date
JPH06331809A true JPH06331809A (en) 1994-12-02
JP3320148B2 JP3320148B2 (en) 2002-09-03

Family

ID=15391167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14570393A Expired - Fee Related JP3320148B2 (en) 1993-05-25 1993-05-25 Manufacturing method of metal mirror

Country Status (1)

Country Link
JP (1) JP3320148B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112734A (en) * 1997-06-19 1999-01-19 Mitsui Chem Inc Thin metallic film, and optical recording medium using same
JP2007271312A (en) * 2006-03-30 2007-10-18 Nikon Corp Surface inspection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112734A (en) * 1997-06-19 1999-01-19 Mitsui Chem Inc Thin metallic film, and optical recording medium using same
JP2007271312A (en) * 2006-03-30 2007-10-18 Nikon Corp Surface inspection device
JP4635939B2 (en) * 2006-03-30 2011-02-23 株式会社ニコン Surface inspection device

Also Published As

Publication number Publication date
JP3320148B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
CA2630625C (en) Substrate which is equipped with a stack having thermal properties
JP5816281B2 (en) Self-passivating mechanically stable hermetic thin film
EP2027076B1 (en) Low-e glazing
WO1993008316A1 (en) Multi-layer material for anti-erosion and anti-abrasion coating
CN111679347A (en) High damage threshold laser film process technology method
JPH08254612A (en) Multilayer film optical component and manufacture thereof
JP5118999B2 (en) Temperable glass coating
JPH06331809A (en) Metallic mirror and its production
JP4351678B2 (en) Silver mirror and manufacturing method thereof
JP2011118251A (en) Method for manufacturing nd filter and nd filter
FR2719909A1 (en) Optical element and its manufacturing process
JPH08234004A (en) Metal mirror and production thereof
JP2906118B2 (en) Multilayer structure for soft X-ray optical element
JPH07248415A (en) Production of optical thin film
JP2000171622A (en) Internal reflection type optical element and its production
JP2005232565A (en) Method of producing thin film
CN112005131A (en) Optical film, optical member, and method for producing optical film
FR2569863A1 (en) Glass with a semireflecting surface portion, its method of manufacture and its application as a windscreen
JPH05129277A (en) Multilayer reflection preventive film
JPH0553001A (en) Multilayered antireflection film of optical parts made of synthetic resin
Saraf et al. Alternately stacked TiO2/Al2O3 multilayer based optical filter fabricated by electron beam evaporation technique
JP3689923B2 (en) Method for producing plastic film having antireflection film
JP2780174B2 (en) Manufacturing method of metal reflector
JPH0772306A (en) Optical thin film and its formation
JP3352172B2 (en) Optical thin film of plastic optical component and method of forming the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees