JPS63168602A - Preparation of thin optical dielectric film - Google Patents

Preparation of thin optical dielectric film

Info

Publication number
JPS63168602A
JPS63168602A JP62001508A JP150887A JPS63168602A JP S63168602 A JPS63168602 A JP S63168602A JP 62001508 A JP62001508 A JP 62001508A JP 150887 A JP150887 A JP 150887A JP S63168602 A JPS63168602 A JP S63168602A
Authority
JP
Japan
Prior art keywords
interference filter
treatment
refractive index
dielectric
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62001508A
Other languages
Japanese (ja)
Inventor
Noboru Otani
昇 大谷
Tetsushi Takegawa
竹川 哲史
Kazuhiko Inoguchi
和彦 猪口
Yoshio Okada
岡田 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62001508A priority Critical patent/JPS63168602A/en
Publication of JPS63168602A publication Critical patent/JPS63168602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To suppress change with lapse of time by forming thin dielectric films each consisting of single dielectric material or alternately laminated layers of a low-refractive index material and high-refractive index material by a vacuum deposition method, then subjecting the films to a treatment to impart a hydrophobicity thereto. CONSTITUTION:This film is a single half wave type interference filter (interference filter) consisting of 10 layers of lambda/4 films constituted of the alternate layers of SiO2 which is the low-refractive index material and TiO2 which is the high- refractive index material. The thin dielectric films are formed on a glass substrate in an atmosphere of 300 deg.C substrate temp. and 2X10<-6>Torr oxygen partial pressure by using an electron beam vapor deposition device. The interference filter is subjected 1hr of a deaeration treatment in <=1X10<3>Torr vacuum prior to execution of the treatment to impart the hydrophobicity in this case. The interference filter subjected to the deaeration treatment is then immersed in a trimethyl chlorosilane/chloroform soln., by which the treatment to impart the hydrophobicity to the interference filter is executed. The thin dielectric film which changes less with lapse of time is thereby obtd.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は、干渉フィルター等として使用されろ誘電体光
学薄膜の作製方法に関し、特に耐候性に優れ、経時変化
のない干渉フィルター等を得るf二めの誘1u体光学薄
膜の作製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for producing a dielectric optical thin film used as an interference filter, and particularly to a method for producing an interference filter that has excellent weather resistance and does not change over time. The present invention relates to a method for producing a diluent optical thin film.

〈従来技術〉 誘電体光学薄膜は、反射防止膜を初めとして色分離フィ
ルター、偏光フィルター、各種ミラー、光減衰4等多岐
にわたって利用されている。これら誘電体光学薄膜は、
真空蒸着法により容易に形成できるが、耐候性に乏しく
、特に吸湿による経時変化が素子性能を低下させる原因
となっており、その改存が強く望まれている。
<Prior Art> Dielectric optical thin films are used in a wide variety of applications, including antireflection films, color separation filters, polarizing filters, various mirrors, and light attenuation films. These dielectric optical thin films are
Although it can be easily formed using a vacuum evaporation method, it has poor weather resistance, and changes over time, especially due to moisture absorption, are a cause of deteriorating device performance, and its modification is strongly desired.

従来行なわれている吸湿性改善の代表的な試みには、以
下の(イ)(ロ)があるが、素子の経時変化を解決する
ことには成功していない。
Typical attempts to improve hygroscopicity that have been made in the past include the following (a) and (b), but they have not succeeded in solving the aging problem of the element.

(イ)第1の方法は、誘電体薄膜を形成した後、該誘′
1体薄膜上に保護膜を形成するものであり、誘電体薄膜
と外部環境との接触を防ぐことを目的としている。
(a) The first method is to form a dielectric thin film and then
A protective film is formed on a single thin film, and its purpose is to prevent contact between the dielectric thin film and the external environment.

上記保護膜としては、SiO等単−誘眉体物質、又はT
 a OsとAIO,等の混合誘電体物質から成るm層
薄膜、又はSiO,5iOz等異種誘電体物質の交互の
積層膜から成る多層薄膜、あるいはエボキン等透明高分
子薄膜等が試みられているが、いずれもピンホール等の
欠陥を避けることはてきないため、経時変化を抑えるこ
とは困難である。
The above-mentioned protective film may be made of a monodioxide material such as SiO, or T
M-layer thin films made of mixed dielectric materials such as aOs and AIO, multilayer thin films made of alternately laminated films of different dielectric materials such as SiO and 5iOz, and transparent polymer thin films such as Evokin have been attempted. In both cases, defects such as pinholes cannot be avoided, so it is difficult to suppress changes over time.

(ロ)第2の方法は、誘電体薄膜形成時に、酸素イオン
、アルゴンイオン等のイオンビームを照射ずろことによ
り薄膜の高充填密度化を図り、吸湿を抑えようとするも
のである(イオンビームアシスト蒸着法=IAD法)。
(b) The second method is to increase the packing density of the thin film by staggered irradiation with ion beams such as oxygen ions and argon ions when forming the dielectric thin film, and to suppress moisture absorption (ion beam Assisted vapor deposition method = IAD method).

 この方法では薄膜内の吸着点を不活化し、経時変化速
度を遅くすることはできるが、水分子の吸着は避けられ
ないため、本質的な経時変化の改善は望めない。
Although this method can inactivate the adsorption points within the thin film and slow down the rate of change over time, it cannot be expected to substantially improve the change over time because adsorption of water molecules is unavoidable.

〈発明の目的〉 本発明は、上記従来技術の欠点を解決すること、具体的
には経時変化を抑止すると共に、低価格、大量処理を可
能にする誘電体光学薄膜の作製方法を堤供するものであ
る。
<Objective of the Invention> The present invention aims to solve the above-mentioned drawbacks of the prior art, and specifically provides a method for producing a dielectric optical thin film that suppresses deterioration over time and enables mass processing at low cost. It is.

〈発明の構成〉 上記目的を達成するため、本発明に係る誘電体光学薄膜
の作製方法は真空蒸着法等により、単一誘電体物質から
成る誘電体薄膜、あるいは低屈折率誘電体物質と高屈折
率誘電体物質の交互の積層膜から成る誘電体薄膜を形成
した後、該誘電体薄膜に対し疎水化処理を行なうことを
特徴としている。
<Structure of the Invention> In order to achieve the above object, the method for producing a dielectric optical thin film according to the present invention uses a vacuum evaporation method or the like to produce a dielectric thin film made of a single dielectric material, or a dielectric thin film made of a low refractive index dielectric material and a high refractive index dielectric material. The method is characterized in that after forming a dielectric thin film consisting of alternating laminated films of refractive index dielectric materials, the dielectric thin film is subjected to hydrophobization treatment.

〈発明の実施例〉 以下、本発明を実施例に基づき図面を参照して詳細に説
明する。
<Embodiments of the Invention> The present invention will now be described in detail based on embodiments with reference to the drawings.

本実施例により作製した誘電体薄膜は、第1図に示すご
とく低屈折率物質である5iot、及び高屈折率物質で
あるTi1tの交互積層により構成されるλ/4膜1膜
層0層ングルハーフウェーブ型(SHW型)干渉フィル
タ(以下干渉フィルタと呼ぶ)である。誘電体薄膜は電
子ビーム蒸着装置を用い、基盤温度300℃、酸素分圧
2×10ノT orrの雰囲気中でガラス基板上に形成
した。
As shown in Fig. 1, the dielectric thin film produced in this example is a λ/4 film, 1 layer, and 0 layers consisting of alternating layers of 5iot, a low refractive index material, and Ti1t, a high refractive index material. This is a half-wave type (SHW type) interference filter (hereinafter referred to as an interference filter). The dielectric thin film was formed on a glass substrate using an electron beam evaporation apparatus in an atmosphere with a substrate temperature of 300° C. and an oxygen partial pressure of 2×10 Torr.

この干渉フィルターは、第2図に示すような形成直後の
分光特性を有し、600〜I000nmの波長範囲で1
つの透過ピーク(以下メインピークと呼ぶ)をもつもの
である。
This interference filter has the spectral characteristics immediately after formation as shown in Figure 2, and has a wavelength range of 100 nm to 1000 nm.
It has two transmission peaks (hereinafter referred to as main peaks).

第3図は、干渉フィルタを大気中に取り出した後のメイ
ンピーク波長(透過ピーク最大透過率を与える波長)の
経時変化を示している。干渉フィルタを大気中に取り出
した直後にピーク位置が大きく変化し、その後時間と共
に緩やかにピーク位置が変化している。干渉フィルタを
大気中に取り出した直後に起こる大きなピークシフトの
原因は、主に構成膜表面への水酸基(−OH)の結合に
よるものであり、その後に起こる緩やかなピークシフト
は結合した水酸基(−0H)に大気中の水(H,O)E
が水素結合により吸着することによって起こるものと考
えられる。
FIG. 3 shows the change over time in the main peak wavelength (the wavelength that gives the maximum transmittance at the transmission peak) after the interference filter is taken out into the atmosphere. The peak position changes significantly immediately after the interference filter is taken out into the atmosphere, and then changes gradually over time. The cause of the large peak shift that occurs immediately after the interference filter is taken out into the atmosphere is mainly due to the bonding of hydroxyl groups (-OH) to the surface of the constituent membranes, and the gradual peak shift that occurs thereafter is due to the bonding of the hydroxyl groups (-OH) to the surface of the constituent membranes. 0H) in the atmosphere (H,O)E
This is thought to be caused by the adsorption of hydrogen bonds through hydrogen bonding.

本発明ではこのような経時変化を防止するために疎水化
処理を施すものであるが、疎水化処理を行なうに先立ち
、上記干渉フィルタを、lXl03Torr以下の真空
中で460℃で1時間の脱気処理を行なった。この脱気
処理を行なうことにより、干渉フィルタに吸着した水(
H,O)をほぼ完全に取り除くことができる。
In the present invention, hydrophobization treatment is performed to prevent such changes over time. Prior to hydrophobization treatment, the interference filter is degassed at 460° C. for 1 hour in a vacuum of 1X103 Torr or less. processed. By performing this deaeration process, the water (
H, O) can be almost completely removed.

第4図は、脱気処理のみを行なった誘電体多層膜のピー
クシフトの様子を時間軸に対して示したものである。ピ
ーク位置か時間に対して緩やかに変化しており、脱気処
理後の表面に再び水が吸着する過程を表わしている。
FIG. 4 shows the peak shift of a dielectric multilayer film subjected to only degassing treatment with respect to the time axis. The peak position changes slowly over time, indicating the process in which water is adsorbed again to the surface after degassing.

次に、脱気処理を施した干渉フィルタを4%トリメチル
クロロシラン((CH3)3S iCl)−クロロホル
ム溶液に18.5時間浸す事により干渉フィルタの疎水
化処理を行なった。
Next, the interference filter subjected to the deaeration treatment was immersed in a 4% trimethylchlorosilane ((CH3)3SiCl)-chloroform solution for 18.5 hours to perform hydrophobization treatment on the interference filter.

嘲 =Si−011+  (CH3)、5iCI−4=Si
−0−3i−CI3+  MCICH3 疎水化処理は、上式に従って反応か起こり、干渉フィル
タに結合した水酸基(−0I−1)のI]が疎水性基(
(c H3)3 S i−)に置換される。
Mockery=Si-011+ (CH3), 5iCI-4=Si
-0-3i-CI3+ MCICH3 In the hydrophobization treatment, a reaction occurs according to the above formula, and the hydroxyl group (-0I-1) bound to the interference filter is converted into a hydrophobic group (
(cH3)3S i-).

第5図に脱気処理を施した後、疎水化処理を施した干渉
フィルタのピーク位置の変化の様子を示す。形成直後に
比べて大きく変化していたピーク位置が、上記処理を行
なうことにより、形成直後のピークとほぼ等しい位置に
戻り、処理後は全くピークの移動が生じなかった。
FIG. 5 shows how the peak position of the interference filter changes after being subjected to deaeration treatment and hydrophobization treatment. The peak position, which had changed significantly compared to immediately after formation, returned to a position approximately equal to the peak immediately after formation by performing the above treatment, and no peak movement occurred after the treatment.

なお、誘電体薄膜が水と接しない状態、例えば窒素雰囲
気中等で疎水化処理を行う場合には脱気処理を行わなく
とも同様な効果を得ることができる。又、脱気処理は誘
電体層表面の吸着水を除去する為のものであり、その方
法は真空加熱に限らず不活性ガス雰囲気中での加熱等吸
着水を除去できる方法であればいずれの方法でもよい。
Note that when the hydrophobization treatment is performed in a state where the dielectric thin film does not come into contact with water, for example in a nitrogen atmosphere, the same effect can be obtained without performing the degassing treatment. In addition, degassing treatment is to remove adsorbed water on the surface of the dielectric layer, and the method is not limited to vacuum heating, but any method that can remove adsorbed water, such as heating in an inert gas atmosphere, can be used. It may be a method.

疎水性基は、実施例で述べたトリメチルシラン基に限ら
ず (R)m−+ −M−の構造の化合物基であればよい。
The hydrophobic group is not limited to the trimethylsilane group described in the examples, but may be any compound group having the structure (R)m-+-M-.

ここで、RはCH3−、C2H4−等CnHtn+l−
で表される飽和炭化水素基であり、MはSi、Ti、S
n等の3価または4価の元素である。ここでmはMの価
数を表わしている。又、(R)m−、−は同一飽和炭化
水素基からなる場合でも、異種飽和炭化水素基からなる
場合でら実施例と同様の効果を得ることができる。
Here, R is CH3-, C2H4-, etc.CnHtn+l-
is a saturated hydrocarbon group represented by, M is Si, Ti, S
It is a trivalent or tetravalent element such as n. Here, m represents the valence of M. Furthermore, even when (R)m- and - are composed of the same saturated hydrocarbon group, the same effects as in the examples can be obtained whether they are composed of different saturated hydrocarbon groups.

〈発明の効果〉 以上のように、本発明の誘電体光学薄膜の作製方法を用
いれば、設計値通りの光学的特性をもち、経時変化のな
い、誘電体光学薄膜を得ることができる。
<Effects of the Invention> As described above, by using the method for producing a dielectric optical thin film of the present invention, it is possible to obtain a dielectric optical thin film that has optical properties as designed and does not change over time.

さらに、イオンビームアシスト蒸着(IAD)法のよう
に高価なイオンΔ1スを用いろ必要がなく、又、蒸着中
に特別な処理を施す必要がないため、誘電体薄膜形成は
従来法により行なうことができる。
Furthermore, since there is no need to use expensive ion Δ1 as in the ion beam assisted deposition (IAD) method, and there is no need for special treatment during deposition, the dielectric thin film can be formed using conventional methods. I can do it.

更に、脱気処理、及び疎水化処理は一度に人里に行なえ
るため、誘電体光学薄膜作製の低コスト化を図ることが
できる。
Further, since the degassing treatment and the hydrophobization treatment can be performed in a remote location at the same time, it is possible to reduce the cost of producing the dielectric optical thin film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本実施例に使用した10層の誘電体多層膜S
HW型干渉フィルターの構成図、第2図は、第1図に示
した10層の誘電体多層膜SHW型干渉フィルターの形
成直後の分光特性図、第3図は、10層の誘電体多層膜
SHW型干渉フィルターを大気中に取り出した後のピー
ク位置の変化の様子を、時間軸に対して示した特性図、
第4図は、形成した10層の誘電体多層膜SHW型干渉
フィルターを脱気処理した後、再び大気中に放置した際
のピーク位置の変化の様子を、時間軸に対して示した特
性図、第5図は、脱気処理した10層の誘電体多層膜S
HW型干渉フィルターに疎水化処理を施したものを、再
び大気中に放置した際のピーク位置の変化の様子を、時
間軸に対して示した特性図である。 代理人 弁理士 杉 山 毅 至(他1名)96ft1
 図 第2図 中心ピークの長波長側へのシフト量(nm+)経過時間
(firs) 第4,1ヌ1 経過時間(1+rs) 第5図
Figure 1 shows the 10-layer dielectric multilayer film S used in this example.
A block diagram of the HW type interference filter. Figure 2 is a spectral characteristic diagram of the 10-layer dielectric multilayer film SHW type interference filter shown in Figure 1 immediately after formation. Figure 3 is a diagram of the 10-layer dielectric multilayer film shown in Figure 3. A characteristic diagram showing the change in peak position against the time axis after the SHW type interference filter is taken out into the atmosphere.
Figure 4 is a characteristic diagram showing how the peak position changes over time when the formed 10-layer dielectric multilayer SHW interference filter is left in the atmosphere again after degassing. , FIG. 5 shows a 10-layer dielectric multilayer film S that has been deaerated.
FIG. 2 is a characteristic diagram showing how the peak position changes with respect to the time axis when a HW type interference filter subjected to hydrophobic treatment is left in the atmosphere again. Agent Patent attorney Takeshi Sugiyama (1 other person) 96ft1
Figure 2 Amount of shift of center peak to longer wavelength side (nm+) Elapsed time (firs) 4.1 Nu1 Elapsed time (1+rs) Figure 5

Claims (1)

【特許請求の範囲】 1、真空蒸着法等により単一誘電体物質から成る誘電体
薄膜、あるいは低屈折率誘電体物質と高屈折率誘電体物
質の交互の積層膜からなる誘電体薄膜を形成した後、該
誘電体薄膜に対し疎水化処理を行なうことを特徴とする
誘電体光学薄膜の作製方法。 2、前記誘電体薄膜に対し疎水化処理を行なうに先立ち
、脱気処理を行なうことを特徴とする特許請求の範囲第
1項記載の誘電体光学薄膜の作製方法。
[Claims] 1. Forming a dielectric thin film made of a single dielectric material or a dielectric thin film made of alternating laminated films of a low refractive index dielectric material and a high refractive index dielectric material by a vacuum evaporation method or the like. 1. A method for producing a dielectric optical thin film, which comprises performing hydrophobization treatment on the dielectric thin film. 2. The method for producing a dielectric optical thin film according to claim 1, wherein the dielectric thin film is subjected to deaeration treatment before being subjected to hydrophobization treatment.
JP62001508A 1987-01-06 1987-01-06 Preparation of thin optical dielectric film Pending JPS63168602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62001508A JPS63168602A (en) 1987-01-06 1987-01-06 Preparation of thin optical dielectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62001508A JPS63168602A (en) 1987-01-06 1987-01-06 Preparation of thin optical dielectric film

Publications (1)

Publication Number Publication Date
JPS63168602A true JPS63168602A (en) 1988-07-12

Family

ID=11503420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62001508A Pending JPS63168602A (en) 1987-01-06 1987-01-06 Preparation of thin optical dielectric film

Country Status (1)

Country Link
JP (1) JPS63168602A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240504A (en) * 1987-03-27 1988-10-06 Sharp Corp Preparation of thin dielectric optical film
JPH03233501A (en) * 1990-02-09 1991-10-17 Copal Co Ltd Optical multilayered film filter element and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240504A (en) * 1987-03-27 1988-10-06 Sharp Corp Preparation of thin dielectric optical film
JPH0529083B2 (en) * 1987-03-27 1993-04-28 Sharp Kk
JPH03233501A (en) * 1990-02-09 1991-10-17 Copal Co Ltd Optical multilayered film filter element and production thereof

Similar Documents

Publication Publication Date Title
AU737747B2 (en) An inorganic polymer material based on tantalum oxide, notably with a high refractive index, mechanically resistant to abrasion, its method of manufacture, and optical material including this material
AU748748B2 (en) Method for preparing a multilayer optical material with crosslinking-densifying by ultraviolet radiation and resulting optical material
EP0266214A2 (en) Interference film filters, optical waveguides and methods for producing them
JP2012256024A (en) Phase difference element
JPS63168602A (en) Preparation of thin optical dielectric film
Wang et al. Design and experimental approach of optical reflection filters with graded refractive index profiles
JPS63240504A (en) Preparation of thin dielectric optical film
JP3979814B2 (en) Optical thin film manufacturing method
US3744870A (en) Optical filter comprising a substrate of metal fluoride having deposited thereon a film of strontium or barium fluoride
CN112327390B (en) Flat-plate type laser beam splitting film based on composite material and design method thereof
JPH10115711A (en) Production of optical thin film
JPH08115912A (en) Manufacture of silicon nitride film
JPWO2020244223A5 (en)
CN113219574A (en) Polarizing plate, optical device, and method for manufacturing polarizing plate
Allam et al. The structure of evaporated silicon oxide films and its effect on the electrical and optical properties
JPH10268107A (en) Synthetic resin lens with antireflection film
JP2007102111A (en) Optical multilayer film and method for manufacturing optical multilayer film
JP3213619B2 (en) Method for manufacturing optical waveguide device and optical waveguide device
US20230103350A1 (en) Optical filter
US20050008775A1 (en) Method of forming dielectric optical thin film
CN110927853A (en) Infrared broadband cut-off filter, optical filter and camera
JPH04256904A (en) Polarizing element
WO2023112940A1 (en) Optical filter and sterilization device
JPH06250016A (en) Production of dichroic filter
US20210373208A1 (en) Optical Layer Having A Low Refractive Index and Methods of Fabrication