JPH0529083B2 - - Google Patents

Info

Publication number
JPH0529083B2
JPH0529083B2 JP62075547A JP7554787A JPH0529083B2 JP H0529083 B2 JPH0529083 B2 JP H0529083B2 JP 62075547 A JP62075547 A JP 62075547A JP 7554787 A JP7554787 A JP 7554787A JP H0529083 B2 JPH0529083 B2 JP H0529083B2
Authority
JP
Japan
Prior art keywords
dielectric
thin film
treatment
interference filter
over time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62075547A
Other languages
Japanese (ja)
Other versions
JPS63240504A (en
Inventor
Noboru Ootani
Kazuhiko Inoguchi
Tetsushi Takegawa
Yoshio Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP7554787A priority Critical patent/JPS63240504A/en
Publication of JPS63240504A publication Critical patent/JPS63240504A/en
Publication of JPH0529083B2 publication Critical patent/JPH0529083B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)

Description

【発明の詳細な説明】 〈技術分野〉 本発明は、干渉フイルター等として使用される
誘電体光学薄膜の作製方法に関し、特に耐候性に
優れ、経時変化のない干渉フイルター等を得るた
めの誘電体光学薄膜の作製方法に関するものであ
る。
[Detailed Description of the Invention] <Technical Field> The present invention relates to a method for producing a dielectric optical thin film used as an interference filter, etc., and in particular to a dielectric material for obtaining an interference filter etc. that has excellent weather resistance and does not change over time. The present invention relates to a method for producing an optical thin film.

〈従来技術〉 誘電体光学薄膜は、反射防止膜を初めとして色
分離フイルター、偏光フイルター、各種ミラー、
光減衰器等、多岐にわたつて利用されている。こ
れら誘電体薄膜は、真空蒸着法により容易に形成
できるが、耐候性に乏しく、特に吸湿による経時
変化が素子性能を低下させる原因となつており、
その改善が強く望まれている。
<Prior art> Dielectric optical thin films are used in antireflection films, color separation filters, polarizing filters, various mirrors,
It is used in a wide variety of applications, including optical attenuators. These dielectric thin films can be easily formed by vacuum evaporation, but they have poor weather resistance, and changes over time, especially due to moisture absorption, cause deterioration in device performance.
Improvement is strongly desired.

従来行なわれている吸湿性改善の代表的な試み
には、以下の(イ)、(ロ)があるが、素子の経時変化を
解決することには成功していない。
Typical attempts to improve hygroscopicity that have been made in the past include the following (a) and (b), but they have not succeeded in solving the problem of changes in the element over time.

(イ) 第1の方法は、誘電体薄膜を形成した後、該
誘電体薄膜上に保護膜を形成するものであり、
誘電体薄膜と外部環境との接触を防ぐことを目
的としている。
(B) The first method is to form a dielectric thin film and then form a protective film on the dielectric thin film,
The purpose is to prevent contact between the dielectric thin film and the external environment.

保護膜としては、SiO等単一誘電体物質、又
はTa2O5,Al2O3等の混合誘電体物質から成る
単層薄膜、又はSiO,SiO2等異種誘電体物質の
交互積層から成る多層薄膜、あるいはエポキシ
等透明高分子薄膜等が試みられているが、いず
れもピンホール等の欠陥を避けることはできな
いため、経時変化を抑えることは困難である。
The protective film may be a single-layer thin film made of a single dielectric material such as SiO, or a mixed dielectric material such as Ta 2 O 5 or Al 2 O 3 , or an alternate stack of different dielectric materials such as SiO and SiO 2 . Multilayer thin films or transparent polymer thin films such as epoxy have been tried, but these methods cannot avoid defects such as pinholes, making it difficult to suppress changes over time.

(ロ) 第2の方法は、誘電体薄膜形成時に、酸素イ
オン、アルゴンイオン等のイオンビームを照射
することにより薄膜の高充填密度化を図り、吸
湿を抑えようとするものである(イオンビーム
アシスト蒸着法=IAD法)。この方法では薄膜
内の吸着点を不活性化し、経時変化速度を遅く
することはできるが、水分子の吸着は避けられ
ないため、本質的な経時変化の改善は望めな
い。
(b) The second method is to increase the packing density of the thin film by irradiating it with an ion beam of oxygen ions, argon ions, etc. when forming the dielectric thin film, and to suppress moisture absorption (ion beam Assisted vapor deposition method = IAD method). Although this method can inactivate the adsorption points within the thin film and slow down the rate of change over time, it cannot be expected to substantially improve the change over time because adsorption of water molecules is unavoidable.

〈発明の目的〉 本発明は、上記従来技術の欠点を解決するこ
と、具体的には経時変化を抑止すると共に、低価
格、大量処理を可能にする誘電体光学薄膜の作製
方法を提供することを目的とするものである。
<Objective of the Invention> The present invention aims to solve the above-mentioned drawbacks of the prior art, and specifically to provide a method for producing a dielectric optical thin film that suppresses deterioration over time and enables mass processing at low cost. The purpose is to

〈発明の構成〉 上記目的を達成するため、本発明が採用する誘
電体光学薄膜の作製方法は真空蒸着法等により、
単一誘電体物質から成る誘電体薄膜、あるいは低
屈折率誘電体物質と高屈折率誘電体物質の交互積
層から成る誘電体薄膜を形成した後、該誘電体薄
膜に対し疎水化処理を行なうことを特徴としてい
る。
<Structure of the Invention> In order to achieve the above object, the method for producing a dielectric optical thin film adopted in the present invention includes a method such as a vacuum evaporation method.
After forming a dielectric thin film made of a single dielectric material or a dielectric thin film made of alternating layers of a low refractive index dielectric material and a high refractive index dielectric material, the dielectric thin film is subjected to hydrophobization treatment. It is characterized by

〈発明の実施例〉 以下、本発明を実施例に基づき図面を参照して
詳細に説明する。
<Embodiments of the Invention> The present invention will now be described in detail based on embodiments with reference to the drawings.

本実施例により作製した誘電体薄膜は、第1図
に示すごとく低屈折率物質であるSiO2、及び高
屈折率物質であるTiO2の交互積層により構成さ
れるλ/4膜10層のシングルハーフウエーブ型
(SHW型)干渉フイルタ(以下干渉フイルタと呼
ぶ)である。この誘電体薄膜は電子ビーム蒸着装
置を用い、基盤温度300℃、酸素分圧2×10-6
Torrの雰囲気中でガラス基板上に形成した。
As shown in Figure 1, the dielectric thin film produced in this example is a single layer of 10 λ/4 films composed of alternating layers of SiO 2 , a low refractive index material, and TiO 2 , a high refractive index material. This is a half-wave type (SHW type) interference filter (hereinafter referred to as an interference filter). This dielectric thin film was produced using an electron beam evaporator at a substrate temperature of 300°C and an oxygen partial pressure of 2×10 -6
Formed on a glass substrate in a Torr atmosphere.

この干渉フイルターは、第2図に示すような形
成直後の分光特性を有し、600〜1000nmの波長範
囲で1つの透過ピーク(以下メインピークと呼
ぶ)をもつものである。
This interference filter has spectral characteristics immediately after formation as shown in FIG. 2, and has one transmission peak (hereinafter referred to as the main peak) in the wavelength range of 600 to 1000 nm.

第3図は、干渉フイルタを大気中に取り出した
後のメインピーク波長(透過ピーク最大透過率を
与える波長)の経時変化を示している。干渉フイ
ルタを大気中に取り出した直後にピーク位置が大
きく変化し、その後時間と共に緩やかにピーク位
置が変化している。干渉フイルタを大気中に取り
出した直後に起こる大きなピークシフトの原因
は、主に構成膜表面への水酸基(−OH)の結合
によるものであり、その後に起こる緩やかなピー
クシフトは結合した水酸基(−OH)に大気中の
水(H2O)が水素結合により吸着することによ
つて起こるものと考えられる。
FIG. 3 shows the change over time in the main peak wavelength (the wavelength that gives the maximum transmittance at the transmission peak) after the interference filter is taken out into the atmosphere. The peak position changes significantly immediately after the interference filter is taken out into the atmosphere, and then changes gradually over time. The cause of the large peak shift that occurs immediately after the interference filter is taken out into the atmosphere is mainly due to the bonding of hydroxyl groups (-OH) to the surface of the constituent membranes, and the gradual peak shift that occurs thereafter is due to the bonding of the hydroxyl groups (-OH) to the surface of the constituent membranes. This is thought to occur when atmospheric water (H 2 O) is adsorbed by hydrogen bonds (OH).

疎水化処理を行なうに先立ち、上記干渉フイル
タを1wt%水酸化ナトリウム(NaOH)水溶液中
に超音波を印加した状態で15分間浸し、続いてエ
タノール(C2H5OH)中で10分間の超音波洗浄を
行なつた後、1×10-3Torr以下の真空中で460℃
1時間脱気処理を行なつた。上記処理を行なうこ
とにより、干渉フイルタに吸着した水(H2O)
をほぼ完全に取り除くことができる。
Prior to the hydrophobization treatment, the above interference filter was immersed in a 1wt% sodium hydroxide (NaOH) aqueous solution for 15 minutes with ultrasound applied, and then soaked in ethanol (C 2 H 5 OH) for 10 minutes. After sonic cleaning, heat at 460℃ in a vacuum below 1×10 -3 Torr.
Deaeration treatment was performed for 1 hour. By performing the above treatment, water (H 2 O) adsorbed on the interference filter
can be almost completely removed.

第4図は、脱気処理までを行なつた誘電体多層
膜のピークシフトの様子を時間軸に対して示した
ものである。ピーク位置が時間に対して緩やかに
変化しており、脱気処理後の表面に再び水が吸着
する過程を表わしている。
FIG. 4 shows the peak shift of the dielectric multilayer film that has been subjected to degassing treatment with respect to the time axis. The peak position changes slowly over time, indicating the process in which water is adsorbed again on the surface after degassing.

次に、脱気処理を施した干渉フイルタを4%ト
リメチルクロロシラン((CH33SiCl)−クロロホ
ルム溶液に一昼夜浸す事により干渉フイルタの疎
水化処理を行なつた。
Next, the interference filter that had been deaerated was immersed in a 4% trimethylchlorosilane ((CH 3 ) 3 SiCl)-chloroform solution overnight to make it hydrophobic.

疎水化処理は、上式に従つて反応が起こり、干
渉フイルタに結合した水酸基(−OH)のHが疎
水性基((CH33Si−)に置換される。
In the hydrophobization treatment, a reaction occurs according to the above formula, and H of the hydroxyl group (-OH) bonded to the interference filter is replaced with a hydrophobic group ((CH 3 ) 3 Si-).

第5図に水酸化ナトリウム処理、及び脱気処理
を施した後、疎水化処理を施した干渉フイルタの
ピーク位置の変化の様子を示す。形成直後に比べ
て大きく変化していたピーク位置が、上記処理を
行なうことにより、形成直後のピークとほぼ等し
い位置に戻り、処理後は全くピークの移動が生じ
なかつた。
FIG. 5 shows how the peak position of an interference filter changes after being subjected to sodium hydroxide treatment, degassing treatment, and hydrophobization treatment. The peak position, which had changed significantly compared to immediately after formation, returned to a position approximately equal to the peak immediately after formation by performing the above treatment, and no peak movement occurred after the treatment.

なお、誘電体薄膜が水と接しない状態、例えば
窒素雰囲気中等で疎水化処理を行う場合には脱気
処理等を行わなくとも同様な効果を得ることがで
きる。又、脱気処理は誘電体層表面の吸着水を除
去する為のものであり、その方法は真空加熱に限
らず不活性ガス雰囲気中での加熱等吸着水を除去
できる方法であればいずれの方法でもよい。又、
脱気処理に先立つ水酸化ナトリウム水溶液による
処理は、脱気処理後の試料への水分の吸着を遅ら
せる効果があり、脱気処理後疎水化処理までの間
に試料が大気と接する環境では、上記処理を行な
うことが望ましい。又、水酸化ナトリウム水溶液
の濃度、及び処理時間は本実施例における条件に
限らず、膜特性に影響を与えない範囲で任意に選
べば良い。
Note that when the dielectric thin film is subjected to hydrophobization treatment in a state where it does not come into contact with water, for example in a nitrogen atmosphere, the same effect can be obtained without performing degassing treatment or the like. In addition, degassing treatment is to remove adsorbed water on the surface of the dielectric layer, and the method is not limited to vacuum heating, but any method that can remove adsorbed water, such as heating in an inert gas atmosphere, can be used. It may be a method. or,
Treatment with an aqueous sodium hydroxide solution prior to degassing has the effect of delaying the adsorption of moisture onto the sample after degassing. It is desirable to carry out treatment. Further, the concentration of the aqueous sodium hydroxide solution and the treatment time are not limited to the conditions in this example, and may be arbitrarily selected within a range that does not affect the film properties.

疎水性基は、実施例で述べたトリメチルシラン
基に限らず (R)n-1−M−の構造の化合物基であればよい。
ここで、RはCH3−,C2H5−等のCoH2o-1−で表
される飽和炭化水素基であり、MはSi,Ti,Sn
等3価または4価の元素である。ここでmはMの
価数を表わしている。又、(R)n-1−は同一飽和
炭化水素基からなる場合でも、異種飽和炭化水素
基からなる場合でも実施例と同様の効果を得るこ
とができる。
The hydrophobic group is not limited to the trimethylsilane group described in the examples, but may be any compound group having the structure (R) n-1 -M-.
Here, R is a saturated hydrocarbon group represented by C o H 2o-1 - such as CH 3 -, C 2 H 5 -, and M is Si, Ti, Sn
It is an equally trivalent or tetravalent element. Here, m represents the valence of M. Further, the same effects as in the examples can be obtained even when (R) n-1 - is composed of the same saturated hydrocarbon group or different saturated hydrocarbon groups.

尚、以上の実施例では水酸化ナトリウム処理を
行つたものであるが、これに代えて水酸化カリウ
ム処理を行つてもよい。
In the above examples, sodium hydroxide treatment was performed, but potassium hydroxide treatment may be performed instead.

〈発明の効果〉 以上のように、本発明の誘電体光学薄膜の作製
方法を用いれば、設計値通りの光学的特性をも
ち、経時変化のない、誘電体光学薄膜を得ること
ができる。
<Effects of the Invention> As described above, by using the method for producing a dielectric optical thin film of the present invention, it is possible to obtain a dielectric optical thin film that has optical properties as designed and does not change over time.

さらに、イオンビームアシスト蒸着(IAD)法
のように高価なイオン源を用いる必要がなく、
又、蒸着中に特別な処理を施す必要がないため、
誘電体薄膜形成は従来法により行なうことができ
る。更に、脱気処理、及び疎水化処理は一度に大
量に行なえるため、誘電体光学薄膜作製の低コス
ト化を図ることができる。
Furthermore, there is no need to use an expensive ion source like in ion beam assisted deposition (IAD),
Also, since there is no need for special treatment during vapor deposition,
The dielectric thin film can be formed by conventional methods. Furthermore, since the degassing treatment and the hydrophobization treatment can be performed in large quantities at once, it is possible to reduce the cost of producing the dielectric optical thin film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は10層の誘電体多層膜SHW型干渉フイ
ルターの模式図、第2図は第1図に示した10層の
誘電体多層膜SHW型干渉フイルターの形成直後
の分光特性図、第3図は10層の誘電体多層膜
SHW型干渉フイルターを大気中に取り出した後
のピーク位置の変化の様子を示すグラフ図、第4
図は10層の誘電体多層膜SHW型干渉フイルター
を脱気処理した後、再び大気中に放置した際のピ
ーク位置の変化の様子を示すグラフ図、第5図は
脱気処理した10層の誘電体多層膜SHW型干渉フ
イルターに疎水化処理を施したものを、再び大気
中に放置した際のピーク位置の変化の様子を示す
グラフ図である。
Figure 1 is a schematic diagram of a 10-layer dielectric multilayer SHW interference filter, Figure 2 is a spectral characteristic diagram of the 10-layer dielectric multilayer SHW interference filter shown in Figure 1 immediately after formation, and Figure 3 is a schematic diagram of a 10-layer dielectric multilayer SHW interference filter. The figure shows a 10-layer dielectric multilayer film.
Graph showing the change in peak position after the SHW interference filter is taken out into the atmosphere, No. 4
The figure is a graph showing how the peak position changes when a 10-layer dielectric multilayer SHW interference filter is left in the atmosphere again after being degassed. FIG. 3 is a graph showing how the peak position changes when a dielectric multilayer film SHW type interference filter subjected to hydrophobic treatment is left in the atmosphere again.

【特許請求の範囲】[Claims]

1 両端面に光学的基準面1a,1bを形成して
通過光を固定減衰させるフエルール1と、 当該フエルール1が整合する中心孔2−1を有
した円筒の片側端面を垂直に成形して機械的基準
面2aを設けたプラグ側および、反対側端面より
前記結合用孔2−2と当該結合用孔2−2より小
さい径で前記中心孔2−1と同心の摺動部2−3
を穿設して、外周端縁に雄ねじ部2−4を有する
ジヤツク側とを設けたハウジング2と、 上記フエルール1が整合する中心孔2−1を穿
設した円筒の片側端面に機械的基準面2bを有
し、上記摺動部2−3内を移動することにより前
記機械的基準面2aとの寸法を微調整する調整手
段3とから構成してなることを特徴とする光固定
減衰器。
1 A ferrule 1 with optical reference surfaces 1a and 1b formed on both end faces to fixedly attenuate passing light, and a center hole 2-1 with which the ferrule 1 is aligned, one end face of a cylinder is vertically formed and machined. On the plug side where the reference surface 2a is provided, and from the opposite end face, the coupling hole 2-2 and the sliding portion 2-3 having a smaller diameter than the coupling hole 2-2 and concentric with the center hole 2-1.
A housing 2 is provided with a jack side having a male threaded portion 2-4 on the outer peripheral edge thereof, and a mechanical reference is provided on one end surface of a cylinder in which a center hole 2-1 is formed with which the ferrule 1 is aligned. An optical fixed attenuator comprising: an adjusting means 3 having a surface 2b and finely adjusting the dimension with respect to the mechanical reference surface 2a by moving within the sliding portion 2-3. .

JP7554787A 1987-03-27 1987-03-27 Preparation of thin dielectric optical film Granted JPS63240504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7554787A JPS63240504A (en) 1987-03-27 1987-03-27 Preparation of thin dielectric optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7554787A JPS63240504A (en) 1987-03-27 1987-03-27 Preparation of thin dielectric optical film

Publications (2)

Publication Number Publication Date
JPS63240504A JPS63240504A (en) 1988-10-06
JPH0529083B2 true JPH0529083B2 (en) 1993-04-28

Family

ID=13579331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7554787A Granted JPS63240504A (en) 1987-03-27 1987-03-27 Preparation of thin dielectric optical film

Country Status (1)

Country Link
JP (1) JPS63240504A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233501A (en) * 1990-02-09 1991-10-17 Copal Co Ltd Optical multilayered film filter element and production thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226237A (en) * 1975-08-25 1977-02-26 Ulvac Corp Process for treating the surface of a lens made of synthesized plastics
JPS5695201A (en) * 1979-05-16 1981-08-01 Satis Vacuum Ag Method and device for vacuum treatment of optical object* particularly for plastic eye glasses and lens
JPS62169102A (en) * 1986-01-21 1987-07-25 Seiko Epson Corp Method for modifying surface of inorganic coating film
JPS63168602A (en) * 1987-01-06 1988-07-12 Sharp Corp Preparation of thin optical dielectric film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226237A (en) * 1975-08-25 1977-02-26 Ulvac Corp Process for treating the surface of a lens made of synthesized plastics
JPS5695201A (en) * 1979-05-16 1981-08-01 Satis Vacuum Ag Method and device for vacuum treatment of optical object* particularly for plastic eye glasses and lens
JPS62169102A (en) * 1986-01-21 1987-07-25 Seiko Epson Corp Method for modifying surface of inorganic coating film
JPS63168602A (en) * 1987-01-06 1988-07-12 Sharp Corp Preparation of thin optical dielectric film

Also Published As

Publication number Publication date
JPS63240504A (en) 1988-10-06

Similar Documents

Publication Publication Date Title
EP0708929B1 (en) Composite material having a high refractive index, method of producing same and optically active material containing said composite material
EP1232407B1 (en) Heat-absorbing filter and method for making same
EP0219401A1 (en) Differential-absorption polarizer, and method and device for its manufacture
EP0129463A1 (en) Integrated optical polarising device and process for its manufacture
EP0693186B1 (en) Method for producing thin films having optical and abrasion resistance properties
CN110133783A (en) A kind of infrared narrow band filter manufacturing method
Hass et al. On the structure and properties of some metal and metal oxide films
JPH0529083B2 (en)
JP2023181285A (en) Polarizer, optical apparatus, and method for manufacturing polarizer
JP3355786B2 (en) Manufacturing method of optical components for infrared
JPS63168602A (en) Preparation of thin optical dielectric film
JP2007156321A (en) Method for manufacturing optical multilayer filter
JP2015025207A (en) Hafnium oxide-coating or zirconium oxide-coating
FR2712396A1 (en) Method for manufacturing an integrated optical device and device thus manufactured.
JP3320148B2 (en) Manufacturing method of metal mirror
JPH10139474A (en) Optical glass element and its production
JPH10115711A (en) Production of optical thin film
JPH10268107A (en) Synthetic resin lens with antireflection film
JP4022657B2 (en) Method for manufacturing dielectric optical thin film
CN115494565B (en) Laser-protected infrared antireflection film, preparation method and application
EP2643270B1 (en) Preparation of stable metal oxide sols, of use in particular for the manufacture of thin films having optical and abrasion-resistant properties
JP2001249370A (en) Nonlinear optical element and method of manufacture
JPH04256904A (en) Polarizing element
CN116699749A (en) Sensor cover and sensor module
CN115877494A (en) Optical filter