JPS6280206A - Production of nickel powder - Google Patents

Production of nickel powder

Info

Publication number
JPS6280206A
JPS6280206A JP22104385A JP22104385A JPS6280206A JP S6280206 A JPS6280206 A JP S6280206A JP 22104385 A JP22104385 A JP 22104385A JP 22104385 A JP22104385 A JP 22104385A JP S6280206 A JPS6280206 A JP S6280206A
Authority
JP
Japan
Prior art keywords
powder
nickel
liquid
solution
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22104385A
Other languages
Japanese (ja)
Other versions
JPH0699143B2 (en
Inventor
Haruhiko Kano
狩野 東彦
Kiyoshi Nakano
清 中野
Tatsuya Yamada
達也 山田
Yoshimasa Azuma
東 吉正
Toru Kasatsugu
笠次 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP22104385A priority Critical patent/JPH0699143B2/en
Publication of JPS6280206A publication Critical patent/JPS6280206A/en
Publication of JPH0699143B2 publication Critical patent/JPH0699143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce nickel powder having the crystal structure of Ni3B by subjecting the soln. of a nickel salt to a liquid phase reduction with a reducing liquid of boron hydride and subjecting the resultant Ni-B coprecipitation powder to a heat treatment. CONSTITUTION:Nickel sulfate, etc. dissolved in pure water, sodium pyrophosphate and aq. ammonia dissolved in pure water, etc., are mixed to prepare the soln. contg. the complex salt of nickel. The above-mentioned soln. of the nickel salt is heated and the reducing liquid prepd. by dissolving borohydride such as sodium borohydride in pure water is gradually added thereto and the soln. is subjected to the liquid phase reduction. The Ni-B coprecipitation powder obtd. by such reduction stage is heat-treated to obtain the nickel powder consisting of Ni3B. The above-mentioned heat treatment is adequately executed in an oxidizing atmosphere of 550-900 deg.C, more preferably 580-700 deg.C or in an inert atmosphere of 300-1,000 deg.C, more preferably 300-800 deg.C. The grain size of the resultant Ni-B coprecipitation powder can be controlled by controlling the alkali concn. or reduction reaction temp. of the above-mentioned reducing liquid or the addition rate, etc. of the reducing liquid.

Description

【発明の詳細な説明】 (産業上の利用分e) この発明は、酸化性雰囲気で焼付けoJ′能なニッケル
ペーストに含有されるニッケル粉末の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application e) The present invention relates to a method for producing nickel powder contained in a nickel paste that can be baked in an oxidizing atmosphere.

(従来の技術) 近年、厚膜焼付は用の導電材料とし′〔、ム9゜ム9−
Pi、 P(1などの貴金属を用いる代わシに・安価な
Ni、Cu、Znなどの卑金属系の導電材料が出現しC
いるっ この中で、酸化性雰囲気で焼付は可能なニッケルペース
トドし〔、ニッケル(Ni)−[1(B)系。
(Prior art) In recent years, thick film baking has been used as a conductive material for
Instead of using noble metals such as Pi and P(1), inexpensive conductive materials based on base metals such as Ni, Cu, and Zn have appeared.
Nickel paste [, nickel (Ni)-[1(B) system] which can be baked in an oxidizing atmosphere in a vacuum cleaner.

ものが知られCいる。たとえば、ニッケルと5ill素
との混合粉末を含むペーストは特公昭60−16041
号公報に開示されCいる。また、(Hi*B)a(Ni
、81)bの粉末をビヒクルに分散させたペーストはり
、B、P 3.943.168に開示されC込る。
Something is known. For example, a paste containing a mixed powder of nickel and 5ill element is
It is disclosed in the publication No. C. Also, (Hi*B)a(Ni
, 81) b), disclosed in P 3.943.168 and included in C.

(発明が解決しようとする問題) 上記した各ニッケルペーストのうち、前者のものは、酸
化性4囲気での焼付は時におけるニッケルの酸化防止が
硼素の粒径や混合量に大きく左右されると(^う欠点が
見られる。また硼素粉末は硼素化合物や硼素酸化物と比
較し′〔かなシ高価であシ、シかも硬度が高く、ロール
ミルでニッケル粉末と混練すると、ロールミルの表面を
傷つけやすいという難点がある。
(Problem to be Solved by the Invention) Among the above-mentioned nickel pastes, the former has the effect that the prevention of nickel oxidation during baking in an oxidizing atmosphere is greatly affected by the particle size and amount of boron mixed. Also, compared to boron compounds and boron oxides, boron powder is expensive and hard, and when kneaded with nickel powder in a roll mill, it tends to damage the surface of the roll mill. There is a drawback.

また、後者のものは、酸化に対し”C非常に安定である
が、原料であるN工、B、 Ni3Siを不活性雰囲気
中で溶融混合し、そののちインゴットを粉砕し′〔粉末
を得るこいう工程を経るものであるため、粉砕工程が必
要となシ、得られるニッケルー硼素系粉末のコストアッ
プの要因となるものであった。
The latter is very stable against oxidation, but it is difficult to obtain powder by melting and mixing the raw materials N, B, and Ni3Si in an inert atmosphere, and then crushing the ingot. This process requires a pulverization process, which increases the cost of the resulting nickel-boron powder.

(発明の目的) したがつC1この発明は液相反応によりNi、 Bの結
晶構造を有するニッケル粉末を容易に得られる製造方法
を提供することを目的とする。
(Objective of the Invention) Therefore, the object of the present invention is to provide a manufacturing method that can easily obtain a nickel powder having a crystal structure of Ni and B by a liquid phase reaction.

(発明の構成) つまシ、この発明の要旨とするところは、ニッケル塩の
溶液を水素化硼化物の還元液にて液相還元し、該還元工
程で得られたnl−B共沈粉末を熱処理することにより
、Ni、Bかうなるニッケル粉末を尋ることを特徴とす
るニッケル粉末の製造方法である。
(Structure of the Invention) The gist of this invention is to reduce a nickel salt solution in a liquid phase using a boron hydride reducing solution, and to reduce the nl-B coprecipitated powder obtained in the reduction process. This is a method for producing nickel powder, which is characterized in that nickel powder containing Ni and B is obtained by heat treatment.

上記した工程に訃い°(ニッケル塩の溶液とし°Cは、
たとえば硫酸ニッケル、硝酸ニッケル、塩化ニッケルを
純水に溶解したものなど(以後、第1液という)がある
。実際には、たとえばピロリン酸ナトリウムとアンモニ
ア水を純水に溶解したものなど(以後、第2液という)
と第1液と混合し、ニッケルの錯塩としたものを用いる
Due to the above process (as a solution of nickel salt, °C is
For example, there are solutions in which nickel sulfate, nickel nitrate, and nickel chloride are dissolved in pure water (hereinafter referred to as the first solution). In reality, for example, sodium pyrophosphate and aqueous ammonia are dissolved in pure water (hereinafter referred to as the second solution).
and the first liquid to form a nickel complex salt.

また、水素化硼化物からなる還元液とし′Cは、たとえ
ば水素化硼素ナトリウム、水気化11fiカリウム、水
素化硼素リチウムなどを水酸化ナトリウム、水酸化カリ
ウムなどを純水に溶解した溶液に溶かしたもの(以後、
第3液という)がある。
In addition, the reducing liquid consisting of boron hydride 'C' is obtained by dissolving, for example, sodium borohydride, vaporized potassium 11fi, lithium borohydride, etc. in a solution of sodium hydroxide, potassium hydroxide, etc. dissolved in pure water. things (hereafter,
There is a third liquid).

(作用) まず、第1液と第2液を混合し−Cニッケルの錯塩を準
備する。このニッケルの錯塩を加温しCおき1.$3液
を分岐ロートやマイクロチューブボングを用い′C徐々
に滴下する。このとき第3液が還元剤の役割を果たし、
Ni−Bの共沈粉末の沈#!物が得られることになる。
(Operation) First, the first liquid and the second liquid are mixed to prepare a -C nickel complex salt. This nickel complex salt was heated to a temperature of 1. Gradually drip the $3 solution using a branched funnel or microtube bong. At this time, the third liquid plays the role of a reducing agent,
Precipitation # of Ni-B co-precipitated powder! You will get something.

この沈R物は洗浄、濾過され(Mi−Bの共沈粉末とし
゛〔得られる。
This precipitate is washed and filtered to obtain a coprecipitated powder of Mi-B.

得られたNi−B共沈粉末は酸化性雰囲気または不活性
雰囲気で熱処理される。この熱処理によシNi−B共沈
粉末はNi3Bの結晶構造からなる粉末が得られること
になる。ここで、前者、つまシネ活性雰囲気での熱処理
による場合、550〜900℃、望ましくは580〜7
00Cの温度で熱処理する。これは550c未満での熱
処理では十分な熱処理が行われず、Ni、Bの結晶構造
で有する粉末が得られなくなるからであり、一方%90
0Cを越えるとjJ i Oが生じることになり、比抵
抗の高hニッケル粉末が得られるからである。また、後
者つまシネ活性雰囲気での熱処理による場合、300〜
1000c、望ましくは300〜800Cの温度で熱処
理する。不活性雰囲気での熱処理は酸化性雰囲気での熱
処理と異なり% 30orからNi、Bの結晶構造か:
らなL粉末が得られる。一方熱処理温度の上昇に伴Lr
h比抵抗が上昇するため、比抵抗の上昇を抑制するため
の温度は1000cが限度である。
The obtained Ni-B co-precipitated powder is heat treated in an oxidizing atmosphere or an inert atmosphere. Through this heat treatment, a Ni--B co-precipitated powder having a crystal structure of Ni3B is obtained. Here, in the case of the former, when heat treatment is performed in an active atmosphere, the temperature is 550 to 900°C, preferably 580 to 7°C.
Heat treatment at a temperature of 00C. This is because heat treatment at less than 550c does not provide sufficient heat treatment and powder having a crystal structure of Ni and B cannot be obtained.
This is because if the temperature exceeds 0C, jJ i O will be generated, and a high-h nickel powder with specific resistance will be obtained. In addition, when the latter is heat treated in an active atmosphere, 300~
Heat treatment is carried out at a temperature of 1000C, preferably 300-800C. Heat treatment in an inert atmosphere differs from heat treatment in an oxidizing atmosphere because the crystal structure of Ni and B changes from 30or:
A fine L powder is obtained. On the other hand, as the heat treatment temperature increases, Lr
h Since the specific resistance increases, the temperature for suppressing the increase in specific resistance is limited to 1000C.

このようにし′C得られたNi、Bの粉末は粒径が0.
2μ〜1.5μmの範囲のものである。Ni、B粉末は
ガラス7リツト、有機質ビヒクルとともに混練され゛C
ペースト状とされ、アルミナ、シルコニ乙コージェライ
トのセラミック基板あるbは板物コンデンサ、積層コン
デンサに塗布、印刷などの手段で付与され、酸化性雰囲
気で焼付けられることにより、導電体とし〔の役割分乗
たす。使用されるガラス7リツトとしCはホウケイ酸系
のものが用いられる。また有機質ビヒクルとしCは、た
とエバエチルセルロースをテルヒネオール、エステル類
、アルコール類、アセトラなどで希釈したものが用いら
れる。
The Ni and B powders obtained in this way have a particle size of 0.
It is in the range of 2 μm to 1.5 μm. Ni and B powders were kneaded with 7 liters of glass and an organic vehicle.
It is made into a paste and is applied to plate capacitors and multilayer capacitors by means such as coating or printing, and is baked in an oxidizing atmosphere to transform it into a conductor. Tasu. The glass used is 7 liters, and C is a borosilicate type glass. Further, as the organic vehicle C, a diluted ethyl cellulose with tercineol, esters, alcohols, acetra, etc. is used.

この発明にかかるニッケルθ末の製造方法の好ましい実
施、態様とし′〔は次のようなものがある。
Preferred implementations and embodiments of the method for producing nickel θ powder according to the present invention are as follows.

■ ニッケル塩の溶液を水素化硼化物の還元液にて液相
還元するに際し、水素化硼化物の還元液のアルカリ濃度
を1別却することにより、還元工程か得られるNi−B
共沈粉末の粒径を制御するニッケル粉末の製造方法。
■ When a solution of nickel salt is subjected to liquid-phase reduction with a reducing solution of boron hydride, the alkaline concentration of the reducing solution of boron hydride is reduced by 1 to reduce the Ni-B obtained from the reduction process.
A method for producing nickel powder that controls the particle size of coprecipitated powder.

■ ニッケル塩の溶液を水素化硼化物の還元液にて液相
還元するに際し、反応時における温度を制御することに
より、還元工程が得られるNi−B共沈粉末の粒径を制
御するニッケル粉末の製造方法。
■ Nickel powder that controls the particle size of the Ni-B co-precipitated powder obtained in the reduction process by controlling the temperature during the reaction when a nickel salt solution is reduced in a liquid phase using a boron hydride reducing solution. manufacturing method.

(りニッケル塩の溶液を水素化硼化物の還元液にて液相
還元するに際し、ニッケル塩の溶液に水素化硼化物の還
元液を/JQえる速度を制御することにより、還元1穆
で得られるNi−B共沈粉末の粒径を制御するニッケル
粉末の製造方法。
(When performing liquid phase reduction of a nickel salt solution with a boron hydride reducing solution, by controlling the rate at which the boron hydride reducing solution is added to the nickel salt solution, it is possible to obtain A method for producing nickel powder that controls the particle size of Ni-B co-precipitated powder.

(効 果) この発明によれば、ニッケル塩の溶液を水素化硼化物の
還元液にて液相還元し、得られた旧−B共沈粉末を熱処
理することにより、Ni、Bからなるニッケル粉末を得
るというものであシ、比較的容易な方法でNi5Bの結
晶構造を有するニッケル粉末が得られるものである。
(Effects) According to the present invention, a solution of nickel salt is reduced in a liquid phase with a reducing solution of boron hydride, and the obtained prior-B coprecipitated powder is heat-treated to reduce the amount of nickel made of Ni and B. It is a method to obtain a powder, and a nickel powder having a crystal structure of Ni5B can be obtained by a relatively easy method.

また、得られたML、B粉末は酸化に対しC安定であf
i、700を以下での酸化性雰囲気で熱処理を繰シ返し
′Cも酸化されない。通線Niは350Cから酸化され
るが、特に酸化の著し一420〜550Cでも、このN
iJBf!&末は酸化されずに安定な状態にある。
In addition, the obtained ML and B powders are stable against oxidation and f
The heat treatment was repeated in an oxidizing atmosphere at a temperature of 700° C. C was not oxidized. Conductive Ni is oxidized from 350C, but even at 420 to 550C, where the oxidation is particularly severe, this N
iJBf! The & end is not oxidized and is in a stable state.

さらに、0.2〜1.5μmの範囲のニッケル粉末を得
ようとするにあたりC1還元剤のアルカリ濃度の操作で
粒径の制御ができるという利点を有し〔1ハる。
Furthermore, when attempting to obtain nickel powder in the range of 0.2 to 1.5 μm, there is an advantage that the particle size can be controlled by controlling the alkali concentration of the C1 reducing agent.

(実施例) 以下、この発明を実施例に従つ′C詳細に説明する。(Example) Hereinafter, this invention will be explained in detail according to embodiments.

実施列1゜ 100gの硫酸ニッケルを純水500m1K溶解したも
のを第1液とした。
Example 1: A first solution was prepared by dissolving 100 g of nickel sulfate in 500 ml of pure water.

また、509のピクリン酸ナトリウムと140mJの2
8チアンモニア水を700 mt’の純水に溶解しC第
2液とした。
Also, 509 sodium picrate and 140 mJ of 2
8 Thiammonia water was dissolved in 700 mt' of pure water to prepare C second liquid.

さらに、159の水素化i4素ナトリウムを、あらかじ
め109の水酸化ナトリウムを純水に溶解した溶・灰に
溶かしC第5液とした。
Furthermore, 159 sodium hydride i4 was dissolved in a solution/ash prepared by dissolving sodium hydroxide 109 in pure water in advance to obtain a fifth liquid C.

久Iへで、第1液と第2液を混合し゛〔ニッケルの44
を作り、55〜60Cの!度になるまで加温した。この
ときのpHは10.5前麦で6りた。液温か55〜60
Cに達したとき第5液を分液ロートを用1へC第1液と
第2液の混合液に滴下した。反応液が背色から無色透明
になった時点で第5液の滴下を止めた。沈澱物を50〜
bocの温水で洗浄、−過し、100C以下で加熱、乾
燥し、Ni−B共沈粉末ムを得た。このNi−B共沈粉
末ムについCX線回折を行い、その結果を第1図に示し
た。
Mix the first and second liquids at
Make 55~60C! It was heated until it reached ℃. The pH at this time was 10.5 and 6 for Maemugi. Liquid temperature 55-60
When the liquid C was reached, the fifth liquid was dropped into the liquid mixture of the first liquid C and the second liquid using a separating funnel. The dropping of the fifth liquid was stopped when the reaction liquid changed from a dark color to colorless and transparent. 50~
The mixture was washed with BOC warm water, filtered, heated at 100C or less, and dried to obtain a Ni-B coprecipitated powder. This Ni--B co-precipitated powder was subjected to CX-ray diffraction, and the results are shown in FIG.

次いで、Ni−B共沈粉求人を酸化性雰囲気(空気中)
で650℃に加熱した石英管中に通しC急熱処理を行い
、Ni、Bの粉末Bを得た。
Next, the Ni-B co-precipitated powder was placed in an oxidizing atmosphere (in air).
The powder was passed through a quartz tube heated to 650° C. and subjected to rapid heat treatment to obtain powder B of Ni and B.

また、Ni−B共沈粉末ムを窒素雰囲気の石英管中で6
50′cまでの温度に徐々に加熱し、Ni、Hの粉末C
を得た。このNi、Bの粉末Cについ゛(X線回折を行
い、その結果を第2図に示した。
In addition, Ni-B co-precipitated powder was placed in a quartz tube in a nitrogen atmosphere for 6 hours.
By gradually heating to a temperature of up to 50'C, Ni and H powder C
I got it. This Ni, B powder C was subjected to X-ray diffraction, and the results are shown in FIG.

ここで、第1図のNi−に3共沈粉末A、l!:第2図
のNi、Hの粉末Bの各X線tgI祈図を比較しC明ら
かなように、Ni−B共沈粉末を熱処理することによつ
゛(NijB粉末が得られることが理解できる。
Here, the three coprecipitated powders A, l! : Comparing the X-ray tgI diagrams of Ni and H powder B in Figure 2, it is clear that by heat-treating the Ni-B coprecipitated powder, NijB powder can be obtained. .

これら各粉末A、BおよびCについC1ペーストにする
ための成分である有機質ビヒクルとの濡れ性を向上させ
るためにまたとえばステアリン酸などの高級脂肪酸で表
面処理をしたつこののち第1表に示す割合でガラスフリ
ツiとともに有機質ビヒクルに分散させ゛Cペースト状
とした。このペーストをステンレススクリーンを用hC
アルミナ基板の上に所定のパターンに印刷し、ベルト炉
で最高温度600t:%維持時間10分の条件によシ空
気中で焼付けを行った。得られた導電パターンについ゛
C比抵抗を測定し、その結果を第1表に併せC示した。
Each of these powders A, B, and C was surface-treated with a higher fatty acid such as stearic acid to improve wettability with an organic vehicle, which is a component for forming C1 paste, and the results are shown in Table 1. It was dispersed in an organic vehicle together with glass frit I to form a paste. Apply this paste using a stainless steel screen.
A predetermined pattern was printed on an alumina substrate and baked in air using a belt furnace at a maximum temperature of 600 t and a maintenance time of 10 minutes. The specific resistance of the obtained conductive pattern was measured, and the results are shown in Table 1.

なお、ガラスフリットには作業温度が550〜790″
Cのホウケイ酸鉛亜鉛系のものを用すた。
In addition, the working temperature for glass frit is 550~790''.
A lead-zinc borosilicate type material of C was used.

また、有機質ビヒクルにはテルピネオールに10慢のエ
チルセルロースを溶解させたものを用−た。
The organic vehicle used was a solution of 100% ethyl cellulose in terpineol.

実験41のMi−B共沈粉末ムを用りたペーストはこの
粉末ムの吸油量が高いため、実験轟2.実験&3と同じ
混合割合で調製することができなかった。また粉末ムは
経時変化が大きく、調合した3日後にゲル化した。実験
遥2.実験黒3は第1表から明らかなように、良好な導
電性を示す比抵抗が得られた。特に、窒素雰囲気で熱処
理した実験&3のものは空気中で熱処理した実験A2と
比較し〔よシ低い比抵抗を示し〔いる。
The paste using the Mi-B co-precipitated powder in Experiment 41 had a high oil absorption capacity, so it was used in Experiment 2. It was not possible to prepare at the same mixing ratio as in Experiment &3. In addition, the powdered product changed significantly over time, and gelled three days after it was prepared. Experiment Haruka 2. As is clear from Table 1, Experimental Black 3 had a specific resistance showing good conductivity. In particular, Experiment &3, which was heat-treated in a nitrogen atmosphere, showed a much lower resistivity than Experiment A2, which was heat-treated in air.

実施例Z 実施例1におい“C得られたNi−B共沈粉末Aについ
C1酸化性算囲気(空気中)での熱処理温度を変化させ
[Ni5Bl&末を得た。熱処理の方法は実施例1でl
ii、B粉末Bを得たと同様に、各温度に加熱した石英
j中に通しC急熱逃理を行い、NijB粉末を得た。
Example Z The heat treatment temperature of the Ni-B co-precipitated powder A obtained in Example 1 in C1 oxidizing atmosphere (in air) was varied to obtain Ni5Bl powder.The heat treatment method was the same as in Example 1. De l
ii. B In the same manner as in obtaining powder B, NijB powder was obtained by passing it through quartz j heated to various temperatures and performing rapid heat release.

各NiJB#末を実施列1の実験)に2と同様にしCペ
ースト状とし、七の後も同様にしC4tパタ〜−ンを作
成し、比抵抗を測定した。
Each NiJB# powder was made into a C paste in the same manner as in Experiment 2 in Example 1, and a C4t pattern was prepared in the same manner after Example 7, and the specific resistance was measured.

第2表には1ii−B共沈粉末の熱処理温度と」j定し
た各比抵抗を示した。
Table 2 shows the specific resistance determined by the heat treatment temperature of the 1ii-B coprecipitated powder.

第2表においC1実験ムロ〜実験ム11が面積抵抗に換
算し゛(1n/口/mid以下の範囲に入るものである
。熱処理温度が550c未満では十分な熱処理が行えず
、iii、Hの結晶構造にすることができない。一方、
900r:を越えると、NiOが生成されるため比抵抗
の上昇が認められる。したがり′〔、酸化性雰囲気の熱
処理温度は550C=9.OQr:、望ましくは580
〜70(1’の温度範囲で選択すればよい。
In Table 2, C1 Experiment Muro to Experiment M11 are converted into sheet resistance (are within the range of 1n/mouth/mid or less.If the heat treatment temperature is less than 550c, sufficient heat treatment cannot be performed, and iii. cannot be made into a structure.On the other hand,
When the temperature exceeds 900r, an increase in specific resistance is observed because NiO is generated. The heat treatment temperature in the oxidizing atmosphere is 550C=9. OQr:, preferably 580
It may be selected within the temperature range of ~70 (1').

実施例3゜ 実施例1にお−〔得られたNi−B共沈粉末Aについ〔
、不活性雰囲気である窒素雰囲気での熱処理温度を変化
させ(NijB粉末を得た。熱処理の方法は実施例1で
Ni、B粉末Cを得たと同様に、Ni−B共沈粉末ムを
窒素雰囲気の石英管中で各熱l!511理温度にまで徐
々に加熱し、Ni、B粉末を得た各Ni5B粉末を実施
例1の実験&3と同様にしCペースト状とし、その後も
同様にしC4亀パターンを作成し、比抵抗を測定した。
Example 3゜In Example 1-[About the obtained Ni-B co-precipitated powder A]
The heat treatment temperature was changed in an inert nitrogen atmosphere (NijB powder was obtained. The heat treatment method was the same as in Example 1 to obtain Ni, B powder C. Each Ni5B powder was heated gradually to a temperature of 1511 in a quartz tube in an atmosphere to obtain Ni and B powders, and was made into a C paste in the same manner as in Experiment &3 of Example 1. A turtle pattern was created and the specific resistance was measured.

第6表にはNi−B共沈粉末の熱処理温度と測定した各
比抵抗を示した。
Table 6 shows the heat treatment temperature of the Ni-B co-precipitated powder and the measured specific resistance.

不活性雰囲気での熱処理では徐々に加熱するため、酸化
性雰囲気での熱処理に異なシ、300t:からNi5B
の結晶構造からなる粉末が得られる。
Since heat treatment in an inert atmosphere involves gradual heating, heat treatment in an oxidizing atmosphere differs from 300t: to Ni5B.
A powder consisting of the crystal structure is obtained.

熱処理温度の上昇とともに比抵抗が上昇するが、多少の
酸素が含まれるため、NiOの存在量が多くなシその結
果比抵抗の上昇が見られる。
The specific resistance increases as the heat treatment temperature increases, but since some oxygen is included, the amount of NiO present is large, and as a result, the specific resistance increases.

実施例4 実施例1におい〔、還元液である水素化硼化物としC1
15gの水素化硼素ナトリウムを、あらかじめ109の
水酸化す) IJウムを純水に溶解した溶液に溶かしC
第5液とし′C作成した。。
Example 4 In Example 1 [C1
Dissolve 15g of sodium borohydride in a solution of IJium (109 hydroxide) dissolved in pure water.
The fifth solution was prepared as 'C'. .

この実施列では、水素化硼化物からなる還元液のアルカ
リ濃度を変えるため、水酸化ナトリウム(Na0H)の
量を変化させ、この還元工程で得られるNi−B共沈粉
末の粒径に与える影響を調べた。
In this example, in order to change the alkaline concentration of the reducing solution made of boron hydride, the amount of sodium hydroxide (NaOH) was changed, and the effect on the particle size of the Ni-B co-precipitated powder obtained in this reduction process was I looked into it.

第4表は水酸化ナトリウム量を変化させたときのタップ
密度とNi−B共沈粉末の粒径を示したものである。
Table 4 shows the tap density and the particle size of the Ni-B co-precipitated powder when the amount of sodium hydroxide was changed.

実験71L20は水素化硼素ナトリウム量ζよる還元反
応で反応速度を1ljnLうる水酸化ナトリウム量の限
界で、水酸化す) IJウムがこれより少ない盪になる
とNi−Bの共沈粉末が得られず、Ni単独の沈澱が生
じる。また実験&27は水酸化す) リクム量が多く、
アルカリ過多となつ°(Ni(OJ雪の白色沈澱を生じ
、Ni−B共沈粉末の生成ができなくなる。なお、実験
ム22は実施例1における第3液に相当する0 第4表から明らかなように、アルカリ量を変化させるこ
とによfi、1fi−B共沈粉末の粒径制御に有効であ
る。また、還元剤である水素化硼素化合物の櫨類によつ
〔アルカリ量の上限、下限があることを付記しCおく。
In Experiment 71L20, hydration is carried out at the limit of the amount of sodium hydroxide that increases the reaction rate by 1 ljnL in a reduction reaction based on the amount of sodium boron hydride.) If the amount of IJ is less than this, Ni-B coprecipitated powder cannot be obtained. , Ni alone precipitates. In addition, experiment & 27 is hydroxylated) The amount of recum is large,
Excessive alkali content causes a white precipitate (Ni (OJ) and makes it impossible to produce Ni-B co-precipitated powder. Experiment 22 corresponds to the third solution in Example 1. It is clear from Table 4. As shown, it is effective to control the particle size of fi, 1fi-B co-precipitated powder by changing the amount of alkali.Also, it is effective to control the particle size of fi, 1fi-B coprecipitated powder by changing the amount of alkali. , please note that there is a lower limit.

実施例5 この実施列では、ニッケル塩の溶fLt−水素化硼化物
の還元液で液相還元する場合、反応時における@度を制
御することにより、得られるNi−B共沈粉末の粒径を
制御する例を明らかにしたものであろう 1001Fの硫酸ニッケルを純水300m1に溶解した
ものを第」液とした。
Example 5 In this example, when liquid-phase reduction is carried out using a reducing solution of nickel salt solution fLt-hydroboride, the particle size of the obtained Ni-B co-precipitated powder can be adjusted by controlling the degree of reaction during the reaction. The first liquid was prepared by dissolving 1001F nickel sulfate in 300 ml of pure water.

また、50gのピロリン酸ナトリウムと140ff14
の28チアンモニア水を700mA’の純水に溶解しC
第2液とした。
Also, 50g of sodium pyrophosphate and 140ff14
Dissolve 28 thiammonia water in 700 mA' pure water and
This was used as the second liquid.

さらに、j5flの水素化硼素ナトリウムを、あらかじ
め30すの水酸化ナトリウムe!水500mgに溶解し
た溶液に溶かしC第3液とした。
Furthermore, add 5 fl of sodium borohydride to 30 fl of sodium hydroxide in advance! It was dissolved in a solution of 500 mg of water to obtain a third solution.

次いで、第1液と第2液を混合しCニッケルの錯塩を作
り、40t、50tl’および60 ”Cの温度条件に
それぞれ加温し、マイクロチューブポンプを用(^C第
3液を徐々に滴下した。滴下速度は650〜350mt
l/ムrとしたつ反応液が青色から無色透明になった時
点で第3液の滴下を止めた。反応液を室温まで冷却し、
沈澱物を純水で洗浄、−過し120Cで乾燥し゛〔各N
i−B共沈粉末を得た。
Next, the first and second liquids were mixed to form a complex salt of C nickel, heated to 40t, 50tl' and 60''C, respectively, and using a microtube pump (the third liquid was gradually added to the mixture). The dropping speed was 650 to 350 mt.
The dropping of the third liquid was stopped when the reaction liquid changed from blue to colorless and transparent. Cool the reaction solution to room temperature,
The precipitate was washed with pure water, filtered and dried at 120C.
An i-B coprecipitated powder was obtained.

これら各1f i −B共沈粉末につIQ(、タップ密
度Ni−B共沈粉末の粒径を測定し、その結果を第5表
に示した。
The IQ (and tap density) of each of these 1f i -B coprecipitated powders were measured, and the particle size of the Ni-B coprecipitated powders was measured, and the results are shown in Table 5.

上記した実施例では反応温度の下退値を40Cとしたが
、これより低い!度では)ri−B共沈粉末は得られず
、Ni!とし・〔析出することが確認できた。
In the above example, the reaction temperature drop value was set at 40C, but it is lower than this! ) ri-B co-precipitated powder was not obtained, and Ni! It was confirmed that the mixture was precipitated.

また、実験&28〜50の各Ni−B共沈扮末につい〔
、走査型屈子顕4L境写真でその生成状態をそれぞれ第
6図〜第5図に示したつ 実施列に の実施例では、ニッケル塩の溶液を水素化硼化物の還元
液で液相還元する場合、ニッケル塩の溶液に水素化硼化
物の還元液を加える速度を制御することにより、得られ
るNi−B共沈粉末の粒径を制御する例を明らかにした
ものである。
In addition, regarding each Ni-B coprecipitation powder of experiments &28 to 50 [
In the example shown in FIGS. 6 to 5, the formation state is shown in 4L scanning electron microscopy photographs, a solution of nickel salt is reduced in liquid phase with a reducing solution of boron hydride. In this case, an example is clarified in which the particle size of the obtained Ni-B co-precipitated powder is controlled by controlling the rate at which a boron hydride reducing solution is added to a nickel salt solution.

1509の流酸ニッケルを純水600mt’に溶博した
ものを第1液とした。
The first liquid was prepared by dissolving nickel fluoride No. 1509 in 600 mt' of pure water.

また、75gのどロリン酸ナトリウムと210m1の2
8%アンモニア水を10105O’の純水に溶、弄しご
第2液とした。
Also, 75 g of sodium phlophosphate and 210 ml of 2
8% ammonia water was dissolved in 10105 O' pure water and stirred to obtain a second solution.

さらに、22.5fFの水素化1dll!素ナトリウム
を、あらかじめ459の水酸化ナトリウムを純水750
m1に88!液に婆かし〔第6液とした。
In addition, 1 dll hydrogenated at 22.5 fF! Add 459 parts of sodium hydroxide to 750 parts of pure water in advance.
88 on m1! Add the liquid to the liquid (set as the 6th liquid).

次かで、第1液と第2液を混合しごニッケルの錯塩を作
シ、55〜60Cに加温する。■温しC−る混合液を攪
拌しながら、第3液を360 m1fir、150m1
!/hr、 1000mt!/hr%および600mら
/klrの各滴下速度で滴下した。反応液が背色から無
色透明になった時点で第5液の滴下を止めた。反応液を
室温にまで冷却し、沈澱物を純水で洗浄、−過し、12
0Cで乾燥し〔各Ni−B共沈粉末を得たこれら各Ni
−B共沈粉末につい乙タップ密度Ni−B共沈粉末の粒
径を測定し、その結果を第6表に示した。
Next, the first liquid and the second liquid are mixed to form a nickel complex salt, and heated to 55 to 60C. ■While stirring the heated C-mixture, add the third liquid to 360 ml, 150 ml
! /hr, 1000mt! /hr% and 600m/klr, respectively. The dropping of the fifth liquid was stopped when the reaction liquid changed from a dark color to colorless and transparent. The reaction solution was cooled to room temperature, and the precipitate was washed with pure water and filtered.
These Ni-B co-precipitated powders were dried at 0C.
-B coprecipitated powder - Tap density The particle size of the Ni-B coprecipitated powder was measured, and the results are shown in Table 6.

第6表 得られた実験&61〜34の各IJi−B 共沈粉末に
ついC1走査型電子顕微鏡写真でその生成状態をそれぞ
れ第6図〜第9図に示した。
Table 6 The formation state of each of the IJi-B coprecipitated powders obtained in experiments &61 to 34 is shown in FIGS. 6 to 9 using C1 scanning electron micrographs, respectively.

第6図〜第9図から明らかなように、第3液の滴下速度
を制御することにより、得られる旧−B共沈粉末の結晶
粒径を制御できることが理解できるO
As is clear from FIGS. 6 to 9, it can be seen that by controlling the dropping speed of the third liquid, the crystal grain size of the obtained former-B coprecipitated powder can be controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は実施列1にンい〔得られたN↓−B共
沈粉末のX線回折図である。 第6図〜第5図は実施列5におい〔得られたNi−B共
沈粉末の走査ELK子g@鏡写真である0第6図〜第9
図は実施例乙におい°C得られた5Ji−B共沈粉末の
走査型電子a微鏡写真である。
FIGS. 1 and 2 are X-ray diffraction patterns of the N↓-B coprecipitated powder obtained in Example 1. Figures 6 to 5 are scanned ELK photographs of the obtained Ni-B co-precipitated powder in Example 5.
The figure is a scanning electron-a micrograph of the 5Ji-B coprecipitated powder obtained at °C in Example B.

Claims (6)

【特許請求の範囲】[Claims] (1)ニッケル塩の溶液を水素化硼化物の還元液にて液
相還元し、該還元工程で得られたNi−B共沈粉末を熱
処理することにより、Ni_3Bからなるニッケル粉末
を得ることを特徴とするニッケル粉末の製造方法。
(1) A nickel powder consisting of Ni_3B is obtained by reducing a nickel salt solution in a liquid phase with a boron hydride reducing solution and heat-treating the Ni-B coprecipitated powder obtained in the reduction process. Characteristic method for producing nickel powder.
(2)前記Ni−B共沈粉末の熱処理は550〜900
℃望ましくは580〜700℃の酸化性雰囲気で熱処理
する、特許請求の範囲第(1)項記載のニッケル粉末の
製造方法。
(2) The heat treatment of the Ni-B co-precipitated powder is 550 to 900
The method for producing nickel powder according to claim 1, wherein the nickel powder is heat-treated in an oxidizing atmosphere at a temperature of preferably 580 to 700°C.
(3)前記Ni−B共沈粉末の熱処理は300〜100
0℃、望ましくは300〜800℃の不活性雰囲気で熱
処理する、特許請求の範囲第(1)項記載のニッケル粉
末の製造方法。
(3) The heat treatment of the Ni-B co-precipitated powder is 300 to 100
The method for producing nickel powder according to claim 1, wherein the nickel powder is heat-treated in an inert atmosphere at 0°C, preferably 300 to 800°C.
(4)ニッケル塩の溶液を水素化硼化物の還元液にて液
相還元するに際し、水素化硼化物の還元液のアルカリ濃
度を制御することにより、還元工程で得られるNi−B
共沈粉末の粒径を制御する、特許請求の範囲第(1)項
記載のニッケル粉末の製造方法。
(4) When a nickel salt solution is subjected to liquid phase reduction using a boron hydride reducing solution, by controlling the alkali concentration of the boron hydride reducing solution, the Ni-B obtained in the reduction process can be reduced.
The method for producing nickel powder according to claim (1), wherein the particle size of the coprecipitated powder is controlled.
(5)ニッケル塩の溶液を水素化硼化物の還元液にて液
相還元するに際し、反応時における温度を制御すること
により、還元工程で得られるNi−B共沈粉末の粒径を
制御する、特許請求の範囲第(1)項記載のニッケル粉
末の製造方法。
(5) When reducing a nickel salt solution in a liquid phase using a boron hydride reducing solution, the particle size of the Ni-B co-precipitated powder obtained in the reduction process is controlled by controlling the temperature during the reaction. , a method for producing nickel powder according to claim (1).
(6)ニッケル塩の溶液を水素化硼化物の還元液にて液
相還元するに際し、ニッケル塩の溶液に水素化硼化物の
還元液を加える速度を制御することにより、還元工程で
得られるNi−B共沈粉末の粒径を制御する、特許請求
の範囲第(1)項記載のニッケル粉末の製造方法。
(6) When a nickel salt solution is subjected to liquid phase reduction with a boron hydride reducing solution, by controlling the rate of adding the boron hydride reducing solution to the nickel salt solution, the Ni obtained in the reduction process can be reduced. -B The method for producing nickel powder according to claim (1), wherein the particle size of the co-precipitated powder is controlled.
JP22104385A 1985-10-02 1985-10-02 Nickel powder manufacturing method Expired - Lifetime JPH0699143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22104385A JPH0699143B2 (en) 1985-10-02 1985-10-02 Nickel powder manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22104385A JPH0699143B2 (en) 1985-10-02 1985-10-02 Nickel powder manufacturing method

Publications (2)

Publication Number Publication Date
JPS6280206A true JPS6280206A (en) 1987-04-13
JPH0699143B2 JPH0699143B2 (en) 1994-12-07

Family

ID=16760593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22104385A Expired - Lifetime JPH0699143B2 (en) 1985-10-02 1985-10-02 Nickel powder manufacturing method

Country Status (1)

Country Link
JP (1) JPH0699143B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585796B2 (en) 2000-05-30 2003-07-01 Murata Manufacturing Co., Ltd. Metal powder, method for producing the same, conductive paste using the same, and monolithic ceramic electronic component
JP2003183703A (en) * 2001-12-11 2003-07-03 Murata Mfg Co Ltd Production method for conductive powder, conductive powder, conductive paste, and laminated ceramic electronic part
JP2009013482A (en) * 2007-07-06 2009-01-22 Ist Corp Nickel powder or nickel alloy powder, and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585796B2 (en) 2000-05-30 2003-07-01 Murata Manufacturing Co., Ltd. Metal powder, method for producing the same, conductive paste using the same, and monolithic ceramic electronic component
JP2003183703A (en) * 2001-12-11 2003-07-03 Murata Mfg Co Ltd Production method for conductive powder, conductive powder, conductive paste, and laminated ceramic electronic part
JP2009013482A (en) * 2007-07-06 2009-01-22 Ist Corp Nickel powder or nickel alloy powder, and production method therefor

Also Published As

Publication number Publication date
JPH0699143B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
EP2026924B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
EP0985474B1 (en) Method for producing metal powder by reduction of metallic salt.
JP4687599B2 (en) Copper fine powder, method for producing the same, and conductive paste
EP0363552B1 (en) Process for preparing metal particles
CN113579246B (en) Preparation method of nano high-entropy alloy powder
JP2638271B2 (en) Production method of copper fine powder
CN111804905B (en) Micron-sized spherical hollow gold powder and preparation method thereof
CN107900373B (en) Superfine W-Cu composite powder and preparation method thereof
JPS6155562B2 (en)
JP5141983B2 (en) Nickel fine powder and method for producing the same
JPS6280206A (en) Production of nickel powder
JPS6299406A (en) Production of copper powder
JP2550586B2 (en) Method for producing fine silver alloy powder
JP2013035738A (en) Nickel oxide powder, and method for producing the same
JPH05311212A (en) Production of fine powder of ag-pd alloy powder
KR20020026019A (en) Method for making super-fine metal powders
CN117102479B (en) Preparation process of modified silver tin oxide and prepared modified silver tin oxide
CN107021521A (en) A kind of preparation method of indium gallium zinc composite powder
TWI241227B (en) Nickel powder coated with titanium compound and conductive paste containing the nickel powder
CN111455191B (en) High-purity spongy platinum and preparation method and application thereof
CN116441528B (en) Superfine spherical nickel powder and preparation method thereof
JPH04321523A (en) Production of tricobalt tetroxide
JP2005281030A (en) Method for manufacturing fine particle
JP2001220137A (en) Tin-doped indium oxide powder and its manufacturing method
JPH032302A (en) Manufacture of high purity copper fine powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term