JPS6155562B2 - - Google Patents

Info

Publication number
JPS6155562B2
JPS6155562B2 JP22556882A JP22556882A JPS6155562B2 JP S6155562 B2 JPS6155562 B2 JP S6155562B2 JP 22556882 A JP22556882 A JP 22556882A JP 22556882 A JP22556882 A JP 22556882A JP S6155562 B2 JPS6155562 B2 JP S6155562B2
Authority
JP
Japan
Prior art keywords
copper
particle size
hydrazine
powder
copper powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22556882A
Other languages
Japanese (ja)
Other versions
JPS59116303A (en
Inventor
Eiichi Asada
Toshio Iguma
Michio Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP22556882A priority Critical patent/JPS59116303A/en
Publication of JPS59116303A publication Critical patent/JPS59116303A/en
Publication of JPS6155562B2 publication Critical patent/JPS6155562B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はカサの小さい、球状の銅微粉末を製造
する方法に関する。 銅粉末は種々の用途に用いられるが、例えば電
子回路の厚膜導体を形成するための銅塗料などに
使用される場合、塗料化が容易で印刷性も良く、
かつ塗料を焼付けたとき緻密な銅波膜を得るため
には微細で、かつカサの小さい即ち吸油量の小さ
い粉末が望まれる。 従来銅粉末の製造方法としては、電解法、アト
マイズ法、機械的粉砕法、真空中あるいは不活性
ガス中蒸発法などが知られている。しかし電解法
やアトマイズ法、機械的粉砕法で製造した銅粉末
は粗く、微細な粉末が得られない。一方、真空中
又は不活性ガス中蒸発法によつて得られた粉末は
非常に微細ではあるが、形状が不規則で凝集して
いるためカサが大きく、吸油量が大きい欠点があ
る。 その他、銅微粉末の製造方法として硫酸銅、硝
酸銅などの水溶性の銅化合物の水溶液をヒドラジ
ン等の還元剤で還元したり、特開昭57―155302号
公報に記載されているように炭酸銅の水溶液をヒ
ドラジン等で還元する方法がある。これらの方法
によると微細な銅粉末は得られるが、やはりカサ
高で形状も不規則形となり、又粒度分布が広く一
定品質の銅粉末を製造することが困難である。更
に還元反応の速度が速いため、粒度コントロール
が難しい。銅化合物や還元剤の濃度を調整した
り、添加方法や反応温度を変えたりしても所望の
粒度、カサを有する均一な銅粉末は得られなかつ
た。 本発明者等はこのような問題点を解決すべく研
究を行つた結果、本発明を完成したものである。 本発明の目的はカサが小さく粒度の揃つた微細
な銅粉末を得ることであり、かつ粒度コントロー
ルの容易な製造方法を提供することである。 本発明は、酸化銅を保護コロイドを含む水性媒
体中でヒドラジン及び/又はヒドラジン化合物で
還元することを特徴とする銅微粉末の製造方法で
ある。 本発明の特徴は難溶性の酸化銅を、保護コロイ
ドの存在下、ヒドラジン系の還元剤で還元するこ
とにある。 より具体的な一実施態様においては、銅酸化物
を保護コロイド水溶液中に分散、懸濁させ次いで
ヒドラジン及び/又はヒドラジン化合物を加える
ことにより銅酸化物は還元されて微細な銅粉末が
析出する。試薬の添加順は逆でもよく、特に結果
には影響しない。 本法によつて製造された銅粉末は、微細な球状
の単一粒子即ち凝集のない一次粒子であつて、カ
サが小さく粒度も揃つている。又本発明の方法で
は粒度のコントロールも容易である。 還元反応のプロセスは明確には解明されてはい
ないが、本発明者等は酸化銅が直接金属銅に還元
されるのではなく、酸化銅がヒドラジン及び/又
はヒドラジン化合物と反応して配位化合物を作つ
て溶出し、これが金属銅に還元されるものと推測
している。そしてこの中間体の形成が律速段階で
あり、水溶性の塩や炭酸銅の水溶液のようにはじ
めから銅イオンとして存在する場合と比べて反応
がかなり遅く、そのため形状、粒度の揃つた粉末
が得られると考えられる。従つてまたこの中間体
形成・溶出の反応の速度に影響する諸要因をコン
トロールすることにより析出する銅粉末の粒径を
制御することができる。 反応速度に影響を与える要因としては酸化銅の
粒度、還元剤の添加量、反応温度などがあり、そ
れぞれ適切に選定することにより所望粒度の銅粉
末を得ることができる。 酸化銅としては酸化第一銅、酸化第二銅にいず
れも使用でき、ほとんど同じ結果を与える。又形
状には特に限定はないが、粉末状のものを使用す
るのが好ましい。酸化銅粉末の粒径は析出する銅
粉末の粒径に影響し、他の反応条件にもよるが一
般的に酸化銅が大きいと比較的大きな銅粉末が生
成し、粒径の小さい酸化銅粉末を還元すると細か
い銅粉末が作り易い。これは酸化銅の粒子が大き
いと比表面積が小さくなるため反応速度が遅くな
り、従つて粒径の大きい銅粉末が生成するものと
思われる。 還元剤としてはヒドラジンのほか抱水ヒドラジ
ン、硫酸ヒドラジン、塩酸ヒドラジン、硫酸ヒド
ラゾニウム、塩酸ヒドラゾニウム等のヒドラジン
化合物が使用できる。ヒドラジン及び/又はヒド
ラジン化合物の添加量が多くなると析出する銅粉
末の粒度が小さくなる傾向を示す。ヒドラジンや
ヒドラジン化合物は多量に添加しても差支えない
が、酸化銅1モルに対して5モル程度以上になる
と、ほとんど粒径が一定となるので粒度コントロ
ールの点では効果がなく経済的でない。 本発明において、保護コロイドとしてはアラビ
アゴム、ゼラチン、デキストリン、ポリビニルア
ルコールなど一般に使用される水溶性高分子化合
物が有効である。これらは還元析出した銅の微粒
子同士がくつつきあうことを防止する。保護コロ
イドの添加量は還元析出する銅粉末の一次粒子の
粒径には影響を与えないが、粒子の凝集状態及び
カサ密度に影響を与える。例えばアラビアゴムの
場合、0.5g/以上の添加によりタツプカサ密
度約2〜4g/c.c.程度の凝集の少ない粉末が得ら
れる。 反応の温度は室温から媒体の沸点まで可能であ
るが、高温になるほど析出粒子は微細になるの
で、例えば比較的小さい酸化銅粉末を用いた場
合、反応温度が高すぎるとコロイド状となり、濾
過しにくくなる。又室温での反応は非常に遅く、
長時間反応させても未反応物が残留し易いため、
はじめ室温で酸化銅と還元剤とを混合し、その後
徐々に加熱して反応を行わせることができる。こ
の方法では酸化銅と還元剤とが均一に混合してか
ら反応が進行するため、析出する銅粉末の粒度分
布が非常に狭くなるので好ましい。この場合混合
時の温度及び昇温速度が銅粉末の粒径に影響を与
える。 反応時間は特に限定されないが、反応温度60℃
でほぼ1時間、又室温で混合して後昇温する場合
は4〜6時間で反応は終了する。 本発明の方法で得られた銅粉末はいかなる用途
にも使用できるが、特に銅塗料に用いた場合、カ
サが小さく微細かつ均一であるためビヒクルへの
分散が容易で又焼付けた時緻密で均一な銅被膜を
形成することができるので極めて好適である。 以下実施例を挙げて本発明を具体的に説明す
る。実施例中、酸化銅粉末及び銅粉末の平均粒径
は光透過法で測つた値である。銅粉末の形状は走
査型電子顕微鏡で調べた。なお実施例では還元剤
として抱水ヒドラジン、保護コロイドとしてはア
ラビアゴムを用いたが、本発明はこれに限定され
るものではない。 実施例 1 アラビアゴム2gを温水100mlに溶解し、水
2900mlを加えて液温25℃とした。これに撹拌しな
がら平均粒径10μmの酸化第二銅125gを分散懸
濁させた。更に撹拌しながら25℃の80%抱水ヒド
ラジン水溶液360mlを添加し、その後加熱昇温を
開始した。3時間で60℃まで昇温し、その後60℃
で2時間撹拌した。室温まで冷却した後濾紙によ
り沈澱を濾別し、純水で分散洗浄を行い、更にメ
タノールで洗浄し、40℃で乾燥した。得られた銅
粉末は粒径がほぼ揃つた球状粉末であり、平均粒
径32μm、タツプ密度は4.3g/c.c.であつた。 実施例 2 酸化第二銅分散液の温度を30℃に設定し、抱水
ヒドラジン水溶液を加えた後60℃まで2.5時間か
けて昇温する以外は実施例1と同様にして銅粉末
を得た。得られた粉末は平均粒径2.1μmの球状
粉末であり、タツプ密度は4.2g/c.c.であつた。 実施例 3 酸化第二銅分散液の温度を40℃に設定し、抱水
ヒドラジン水溶液を加えた後60℃まで2時間かけ
て昇温する以外は実施例1と同様にして銅粉末を
得た。得られた粉末は平均粒径1.7μmの球状粉
末であり、タツプ密度は、4.0g/c.c.であつた。 実施例 4 酸化第二銅分散液の温度を50℃に設定し、抱水
ヒドラジン水溶液を加えた後60℃まで1.5時間か
けて昇温する以外は実施例1と同様にして銅粉末
を得た。得られた粉末は平均粒径1.5μmの球状
粉末であり、タツプ密度は3.9g/c.c.であつた。 実施例 5 平均粒径0.2μmの酸化第二銅125gを使用し、
80%抱水ヒドラジン水溶液の添加量を120mlとす
る以外は実施例1と同様にした。得られた銅粉末
の平均粒径は1.1μm、タツプ密度は3.4g/c.c.で
あつた。 実施例 6 平均粒径0.2μmの酸化第二銅125gを使用し、
80%抱水ヒドラジン水溶液の添加量を160mlとす
る以外は実施例1と同様にした。得られた銅粉末
の平均粒径は0.8μm、タツプ密度は、3.1g/c.c.
であつた。 実施例 7 平均粒径0.2μmの酸化第二銅125gを使用し、
80%抱水ヒドラジン水溶液の添加量を200mlとす
る以外は実施例1と同様にした。得られた銅粉末
の平均粒径は0.6μm、タツプ密度は、2.9g/c.c.
であつた。 実施例 8 平均粒径0.2μmの酸化第二銅125gを使用し、
80%抱水ヒドラジン水溶液の添加量を300mlとす
る以外は実施例1と同様にした。得られた銅粉末
の平均粒径は0.4μm、タツプ密度は2.0g/c.c.で
あつた。 実施例 9 アラビアゴム2gを60℃の温水3000mlに溶解
し、更に撹拌しながら平均粒径10μmの酸化第二
銅125gを分散懸濁させた。これに60℃の40%抱
水ヒドラジン水溶液720mlを添加し、60℃に保温
しながら1時間撹拌し、その後室温まで冷却し
た。沈澱を濾別し、純水で分散洗浄を行い、更に
メタノールで洗浄し、40℃で乾燥した。得られた
銅粉末は球状であり、平均粒径1.1μm、タツプ
密度は2.3g/c.c.であつた。 実施例 10 アラビアゴム2gを温水100mlに溶解し、水
2900mlを加えて液温35℃とした。これに撹拌しな
がら平均粒径2μmの酸化第一銅110gを分散懸
濁させた。更に撹拌しながら35℃の80%抱水ヒド
ラジン水溶液160mlを添加し、その後加熱昇温を
開始した。3時間で60℃まで昇温し、その後60℃
で2時間撹拌した。室温まで冷却した後沈澱を濾
別し、水洗を行い、更にメタノールで洗浄し、40
℃で乾燥した。得られた銅粉末は球状であり、平
均粒径0.8μm、タツプ密度は2.3g/c.c.であつ
た。 実施例 11 保護コロイドの量の銅粉末の粒径及びタツプ密
度に与える影響を調べるため、アラビアゴムの添
加量を表1のように変化させ、それぞれ25℃の水
6000mlに溶解し、平均粒径0.2μmの酸化第二銅
250gを分散懸濁させ、撹拌しながら80%抱水ヒ
ドラジン水溶液320mlを添加した。その後3時間
で60℃まで昇温し、更に60℃で2時間撹拌した。
室温まで冷却した後沈澱を濾別し、水洗を行い、
更にメタノールで洗浄し、40℃で乾燥した。得ら
れた銅粉末は球状であつた。走査型電子顕微鏡観
察による一次粒子の平均粒径及びタツプ密度を表
1に示す。
The present invention relates to a method for producing fine spherical copper powder with small bulk. Copper powder is used for various purposes, but for example, when used in copper paint for forming thick film conductors in electronic circuits, it is easy to make into a paint and has good printability.
In addition, in order to obtain a dense copper wave film when the paint is baked, a powder that is fine and has a small bulk, that is, a small amount of oil absorption is desired. Conventional methods for producing copper powder include electrolysis, atomization, mechanical pulverization, and evaporation in vacuum or inert gas. However, copper powder produced by electrolysis, atomization, or mechanical pulverization is coarse, and fine powder cannot be obtained. On the other hand, although the powder obtained by evaporation in vacuum or in an inert gas is very fine, it has irregular shapes and aggregates, so it is bulky and has the disadvantage of high oil absorption. Other methods for producing fine copper powder include reducing an aqueous solution of water-soluble copper compounds such as copper sulfate and copper nitrate with a reducing agent such as hydrazine, and using carbon dioxide as described in Japanese Patent Application Laid-Open No. 155302/1983. There is a method of reducing an aqueous copper solution with hydrazine or the like. Although fine copper powder can be obtained by these methods, it is bulky and irregular in shape, and has a wide particle size distribution, making it difficult to produce copper powder of constant quality. Furthermore, since the speed of the reduction reaction is fast, particle size control is difficult. Even if the concentration of the copper compound or reducing agent was adjusted, or the addition method or reaction temperature was changed, a uniform copper powder having the desired particle size and bulk could not be obtained. The present inventors completed the present invention as a result of research to solve these problems. An object of the present invention is to obtain a fine copper powder having a small bulk and a uniform particle size, and to provide a manufacturing method that allows easy control of the particle size. The present invention is a method for producing fine copper powder, which is characterized by reducing copper oxide with hydrazine and/or a hydrazine compound in an aqueous medium containing a protective colloid. The feature of the present invention is that sparingly soluble copper oxide is reduced with a hydrazine-based reducing agent in the presence of a protective colloid. In a more specific embodiment, copper oxide is dispersed or suspended in an aqueous protective colloid solution, and then hydrazine and/or a hydrazine compound is added to reduce the copper oxide and precipitate fine copper powder. The order of addition of the reagents may be reversed and does not particularly affect the results. The copper powder produced by this method is a fine spherical single particle, that is, a primary particle without agglomeration, and has a small bulk and a uniform particle size. Furthermore, the method of the present invention allows easy control of particle size. Although the process of the reduction reaction has not been clearly elucidated, the present inventors believe that copper oxide is not directly reduced to metallic copper, but that copper oxide reacts with hydrazine and/or hydrazine compounds to form a coordination compound. It is assumed that this is produced and eluted, and this is reduced to metallic copper. The formation of this intermediate is the rate-determining step, and the reaction is much slower than when copper ions are present from the beginning, such as in water-soluble salts or aqueous solutions of copper carbonate.As a result, powder with uniform shape and particle size can be obtained. It is thought that it will be possible. Therefore, the particle size of the precipitated copper powder can be controlled by controlling various factors that affect the rate of the intermediate formation and elution reaction. Factors that influence the reaction rate include the particle size of copper oxide, the amount of reducing agent added, and the reaction temperature, and by appropriately selecting each, copper powder with a desired particle size can be obtained. As the copper oxide, either cuprous oxide or cupric oxide can be used, giving almost the same results. Although there are no particular limitations on the shape, it is preferable to use a powdered one. The particle size of the copper oxide powder affects the particle size of the precipitated copper powder, and it depends on other reaction conditions, but in general, if the copper oxide is large, a relatively large copper powder will be produced, and if the particle size is small, the copper oxide powder will be produced. It is easy to make fine copper powder by reducing . This is thought to be because when the particles of copper oxide are large, the specific surface area becomes small and the reaction rate becomes slow, thus producing copper powder with a large particle size. As the reducing agent, in addition to hydrazine, hydrazine compounds such as hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazonium sulfate, and hydrazonium hydrochloride can be used. As the amount of hydrazine and/or hydrazine compound added increases, the particle size of the precipitated copper powder tends to become smaller. Although it is acceptable to add a large amount of hydrazine or a hydrazine compound, if the amount exceeds about 5 mol per 1 mol of copper oxide, the particle size becomes almost constant, which is ineffective and uneconomical in terms of particle size control. In the present invention, commonly used water-soluble polymer compounds such as gum arabic, gelatin, dextrin, and polyvinyl alcohol are effective as protective colloids. These prevent the reduced and precipitated fine copper particles from sticking to each other. The amount of protective colloid added does not affect the particle size of the primary particles of the copper powder that is reduced and precipitated, but it does affect the agglomeration state and bulk density of the particles. For example, in the case of gum arabic, by adding 0.5 g/cc or more, a powder with a tap density of about 2 to 4 g/cc and less agglomeration can be obtained. The reaction temperature can range from room temperature to the boiling point of the medium, but the higher the temperature, the finer the precipitated particles become. For example, if relatively small copper oxide powder is used, if the reaction temperature is too high, it will become colloidal and cannot be filtered. It becomes difficult. Also, the reaction at room temperature is very slow;
Even if the reaction is carried out for a long time, unreacted substances tend to remain.
The reaction can be carried out by first mixing the copper oxide and the reducing agent at room temperature and then gradually heating the mixture. This method is preferable because the reaction proceeds after the copper oxide and the reducing agent are uniformly mixed, so that the particle size distribution of the precipitated copper powder becomes very narrow. In this case, the temperature during mixing and the rate of temperature increase affect the particle size of the copper powder. Reaction time is not particularly limited, but reaction temperature is 60℃
The reaction is completed in approximately 1 hour, or in 4 to 6 hours if the mixture is mixed at room temperature and then heated. The copper powder obtained by the method of the present invention can be used for any purpose, but especially when used in copper paints, it is easy to disperse in a vehicle because the bulk is small, fine and uniform, and it is dense and uniform when baked. This method is extremely suitable because it can form a copper film with a high quality. The present invention will be specifically explained below with reference to Examples. In the Examples, the average particle diameters of copper oxide powder and copper powder are values measured by a light transmission method. The shape of the copper powder was examined using a scanning electron microscope. In the examples, hydrazine hydrate was used as the reducing agent and gum arabic was used as the protective colloid, but the present invention is not limited thereto. Example 1 Dissolve 2g of gum arabic in 100ml of warm water,
2900 ml was added to bring the liquid temperature to 25°C. 125 g of cupric oxide having an average particle size of 10 μm was dispersed and suspended in this while stirring. Further, while stirring, 360 ml of an 80% hydrazine hydrate aqueous solution at 25°C was added, and then heating was started. Raise the temperature to 60℃ in 3 hours, then 60℃
The mixture was stirred for 2 hours. After cooling to room temperature, the precipitate was filtered off using a filter paper, dispersion-washed with pure water, further washed with methanol, and dried at 40°C. The obtained copper powder was a spherical powder with almost uniform particle size, an average particle size of 32 μm, and a tap density of 4.3 g/cc. Example 2 Copper powder was obtained in the same manner as in Example 1, except that the temperature of the cupric oxide dispersion was set at 30°C, and after adding the hydrazine hydrate aqueous solution, the temperature was raised to 60°C over 2.5 hours. . The obtained powder was a spherical powder with an average particle size of 2.1 μm and a tap density of 4.2 g/cc. Example 3 Copper powder was obtained in the same manner as in Example 1, except that the temperature of the cupric oxide dispersion was set at 40°C, and after adding the hydrazine hydrate aqueous solution, the temperature was raised to 60°C over 2 hours. . The obtained powder was a spherical powder with an average particle size of 1.7 μm and a tap density of 4.0 g/cc. Example 4 Copper powder was obtained in the same manner as in Example 1, except that the temperature of the cupric oxide dispersion was set at 50°C, and after adding the hydrazine hydrate aqueous solution, the temperature was raised to 60°C over 1.5 hours. . The obtained powder was a spherical powder with an average particle size of 1.5 μm and a tap density of 3.9 g/cc. Example 5 Using 125 g of cupric oxide with an average particle size of 0.2 μm,
The same procedure as in Example 1 was carried out except that the amount of the 80% hydrazine hydrate aqueous solution added was 120 ml. The average particle size of the obtained copper powder was 1.1 μm, and the tap density was 3.4 g/cc. Example 6 Using 125 g of cupric oxide with an average particle size of 0.2 μm,
The same procedure as in Example 1 was carried out except that the amount of the 80% hydrazine hydrate aqueous solution added was 160 ml. The average particle size of the obtained copper powder was 0.8 μm, and the tap density was 3.1 g/cc.
It was hot. Example 7 Using 125 g of cupric oxide with an average particle size of 0.2 μm,
The same procedure as in Example 1 was carried out except that the amount of the 80% hydrazine hydrate aqueous solution added was 200 ml. The average particle size of the obtained copper powder was 0.6 μm, and the tap density was 2.9 g/cc.
It was hot. Example 8 Using 125 g of cupric oxide with an average particle size of 0.2 μm,
The same procedure as in Example 1 was carried out except that the amount of the 80% hydrazine hydrate aqueous solution added was 300 ml. The average particle size of the obtained copper powder was 0.4 μm, and the tap density was 2.0 g/cc. Example 9 2 g of gum arabic was dissolved in 3000 ml of warm water at 60° C., and 125 g of cupric oxide having an average particle size of 10 μm was dispersed and suspended while stirring. To this was added 720 ml of a 40% hydrazine hydrate aqueous solution at 60°C, stirred for 1 hour while keeping the temperature at 60°C, and then cooled to room temperature. The precipitate was separated by filtration, dispersion-washed with pure water, further washed with methanol, and dried at 40°C. The obtained copper powder was spherical, had an average particle size of 1.1 μm, and a tap density of 2.3 g/cc. Example 10 Dissolve 2g of gum arabic in 100ml of warm water,
2900 ml was added to bring the liquid temperature to 35°C. 110 g of cuprous oxide having an average particle size of 2 μm was dispersed and suspended in this while stirring. Further, while stirring, 160 ml of an 80% hydrazine hydrate aqueous solution at 35° C. was added, and then heating was started. Raise the temperature to 60℃ in 3 hours, then 60℃
The mixture was stirred for 2 hours. After cooling to room temperature, the precipitate was filtered, washed with water, and further washed with methanol.
Dry at °C. The obtained copper powder was spherical, had an average particle size of 0.8 μm, and a tap density of 2.3 g/cc. Example 11 In order to investigate the effect of the amount of protective colloid on the particle size and tap density of copper powder, the amount of gum arabic added was varied as shown in Table 1, and each sample was added to water at 25°C.
Cupric oxide dissolved in 6000ml, average particle size 0.2μm
250 g was dispersed and suspended, and 320 ml of an 80% hydrazine hydrate aqueous solution was added while stirring. Thereafter, the temperature was raised to 60°C over 3 hours, and the mixture was further stirred at 60°C for 2 hours.
After cooling to room temperature, the precipitate was filtered and washed with water.
It was further washed with methanol and dried at 40°C. The obtained copper powder was spherical. Table 1 shows the average particle diameter and tap density of the primary particles as determined by scanning electron microscopy.

【表】 比較例 1 硝酸銅100gを水3000mlに溶解し液温40℃に設
定した。これに24%抱水ヒドラジン水溶液500ml
を撹拌しながら添加し、更に2時間撹拌した。生
じた沈澱を濾別し、水洗を行い、更にメタノール
で洗浄し、40℃で乾燥した。得られた銅粉末は一
次粒子の粒径0.1〜2μm程度の不揃いな粉末の
混合物であり、形状は不規則、タツプ密度1.2
g/c.c.のカサ高な粉末であつた。 比較例 2 硝酸銅400gを水5000mlに溶解し、濃アンモニ
ア水640mlを加えて液温25℃に設定した。これに
アラビアゴム0.6gを100mlの温水に溶解した溶液
を加え、80%抱水ヒドラジン水溶液200mlを撹拌
しながら添加した。1.5時間後更にアラビアゴム
2gを100mlの温水に溶解した溶液と80%抱水ヒ
ドラジン水溶液200mlを添加し2時間撹拌した。
生じた沈澱を濾別し、水洗を行い、更にメタノー
ルで洗浄し、40℃で乾燥した。得られた銅粉末は
粒径0.3〜1μm程度のほぼ球状の粉末の混合物
であり、タツプ密度1.7g/c.c.のカサ高な粉末で
あつた。 比較例 3 炭酸銅100gを水2000mlに溶解し、これに80%
抱水ヒドラジン水溶液300mlを撹拌しながら加
え、100℃で8時間加熱した。生じた沈澱を濾別
し、水洗を行い、更にメタノールで洗浄し、40℃
で乾燥した。得られた銅粉末は粒径0.1〜2μm
程度の不揃いな不規則形状の粉末の混合物であ
り、タツプ密度1.4g/c.c.のカサ高な粉末であつ
た。
[Table] Comparative Example 1 100g of copper nitrate was dissolved in 3000ml of water and the liquid temperature was set at 40°C. Add this to 500ml of 24% hydrazine hydrate solution.
was added with stirring, and further stirred for 2 hours. The resulting precipitate was filtered, washed with water, further washed with methanol, and dried at 40°C. The obtained copper powder is a mixture of irregular powders with a primary particle size of about 0.1 to 2 μm, an irregular shape, and a tap density of 1.2.
It was a bulky powder of g/cc. Comparative Example 2 400 g of copper nitrate was dissolved in 5000 ml of water, 640 ml of concentrated ammonia water was added, and the solution temperature was set at 25°C. A solution of 0.6 g of gum arabic dissolved in 100 ml of warm water was added to this, and 200 ml of an 80% hydrazine hydrate aqueous solution was added with stirring. After 1.5 hours, a solution of 2 g of gum arabic dissolved in 100 ml of warm water and 200 ml of an 80% hydrazine hydrate aqueous solution were added and stirred for 2 hours.
The resulting precipitate was filtered, washed with water, further washed with methanol, and dried at 40°C. The obtained copper powder was a mixture of approximately spherical powders with a particle size of about 0.3 to 1 μm, and was a bulky powder with a tap density of 1.7 g/cc. Comparative Example 3 Dissolve 100g of copper carbonate in 2000ml of water and add 80%
300 ml of an aqueous hydrazine hydrate solution was added with stirring, and the mixture was heated at 100°C for 8 hours. The formed precipitate was separated by filtration, washed with water, further washed with methanol, and heated at 40°C.
It was dried. The obtained copper powder has a particle size of 0.1 to 2 μm.
It was a mixture of irregularly shaped powders of varying degrees, and was a bulky powder with a tap density of 1.4 g/cc.

Claims (1)

【特許請求の範囲】 1 酸化銅を保護コロイドを含む水性媒体中でヒ
ドラジン及び/又はヒドラジン化合物で還元する
ことを特徴とする銅微粉末の製造方法。 2 酸化銅粒子を保護コロイドを含む水性媒体中
に懸濁させ、次いでヒドラジン及び/又はヒドラ
ジン化合物を添加して還元を行うことを特徴とす
る特許請求の範囲第1項記載の銅微粉末の製造方
法。 3 酸化銅粒子を保護コロイドを含む水性媒体中
でヒドラジン及び/又はヒドラジン化合物と予め
混合し、次いで反応温度まで徐々に加温して銅を
還元析出させることを特徴とする特許請求の範囲
第1項又は第2項記載の銅微粉末の製造方法。
[Claims] 1. A method for producing fine copper powder, which comprises reducing copper oxide with hydrazine and/or a hydrazine compound in an aqueous medium containing a protective colloid. 2. Production of copper fine powder according to claim 1, characterized in that copper oxide particles are suspended in an aqueous medium containing a protective colloid, and then hydrazine and/or a hydrazine compound is added to perform reduction. Method. 3. Claim 1, characterized in that copper oxide particles are mixed in advance with hydrazine and/or a hydrazine compound in an aqueous medium containing a protective colloid, and then gradually heated to a reaction temperature to reduce and precipitate copper. A method for producing fine copper powder according to item 1 or 2.
JP22556882A 1982-12-22 1982-12-22 Manufacture of fine copper powder Granted JPS59116303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22556882A JPS59116303A (en) 1982-12-22 1982-12-22 Manufacture of fine copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22556882A JPS59116303A (en) 1982-12-22 1982-12-22 Manufacture of fine copper powder

Publications (2)

Publication Number Publication Date
JPS59116303A JPS59116303A (en) 1984-07-05
JPS6155562B2 true JPS6155562B2 (en) 1986-11-28

Family

ID=16831340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22556882A Granted JPS59116303A (en) 1982-12-22 1982-12-22 Manufacture of fine copper powder

Country Status (1)

Country Link
JP (1) JPS59116303A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620964U (en) * 1992-07-08 1994-03-18 カミマル株式会社 High pressure gas valve
WO2006019144A1 (en) * 2004-08-20 2006-02-23 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
US7651782B2 (en) 2006-07-11 2010-01-26 Fujifilm Corporation Method for producing metallic nanoparticles, metallic nanoparticles, and dispersion of the same
WO2010024385A1 (en) * 2008-08-29 2010-03-04 石原産業株式会社 Metallic copper dispersion, process for producing the metallic copper dispersion, electrode, wiring pattern, and coating film formed using the metallic copper dispersion, decorative article and antimicrobial article with the coating film formed thereon, and processes for producing the decorative article and the antimicrobial article
JP2010222706A (en) * 2010-05-10 2010-10-07 Jx Nippon Mining & Metals Corp Production method for fine copper powder
TWI647082B (en) * 2017-12-19 2019-01-11 康豪奈米應用材料有限公司 Manufacturing method of copper antibacterial masterbatches

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227508A (en) * 1985-07-26 1987-02-05 Tanaka Kikinzoku Kogyo Kk Production of fine copper particle
JPS6240302A (en) * 1985-08-16 1987-02-21 Tanaka Kikinzoku Kogyo Kk Production of pulverous copper particle
JPS6277408A (en) * 1985-09-28 1987-04-09 Tanaka Kikinzoku Kogyo Kk Production of fine copper particles
JPS6277407A (en) * 1985-09-28 1987-04-09 Tanaka Kikinzoku Kogyo Kk Production of fine copper particles
JPS6277406A (en) * 1985-09-28 1987-04-09 Tanaka Kikinzoku Kogyo Kk Production of fine copper particle
JPH0774364B2 (en) * 1988-07-21 1995-08-09 福田金属箔粉工業株式会社 Method for producing fine copper powder
JP3570591B2 (en) * 1996-03-22 2004-09-29 株式会社村田製作所 Production method of copper powder
JP6004034B1 (en) * 2015-04-21 2016-10-05 住友金属鉱山株式会社 Copper powder
JP6099160B2 (en) * 2015-09-18 2017-03-22 国立大学法人山形大学 Complex compounds and suspensions
JP6914999B2 (en) * 2019-07-16 2021-08-04 Jx金属株式会社 Surface treatment copper powder
JP7026173B2 (en) * 2020-07-15 2022-02-25 Dowaエレクトロニクス株式会社 Copper powder and conductive paste

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620964U (en) * 1992-07-08 1994-03-18 カミマル株式会社 High pressure gas valve
JP2012162807A (en) * 2004-08-20 2012-08-30 Ishihara Sangyo Kaisha Ltd Copper microparticle and method for producing the same
JPWO2006019144A1 (en) * 2004-08-20 2008-05-08 石原産業株式会社 Copper fine particles and method for producing the same
US7828872B2 (en) 2004-08-20 2010-11-09 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
JP2012052240A (en) * 2004-08-20 2012-03-15 Ishihara Sangyo Kaisha Ltd Copper microparticle and process for producing the same
EP2452767A1 (en) 2004-08-20 2012-05-16 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
WO2006019144A1 (en) * 2004-08-20 2006-02-23 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
JP5164379B2 (en) * 2004-08-20 2013-03-21 石原産業株式会社 Copper fine particles and method for producing the same
US7651782B2 (en) 2006-07-11 2010-01-26 Fujifilm Corporation Method for producing metallic nanoparticles, metallic nanoparticles, and dispersion of the same
WO2010024385A1 (en) * 2008-08-29 2010-03-04 石原産業株式会社 Metallic copper dispersion, process for producing the metallic copper dispersion, electrode, wiring pattern, and coating film formed using the metallic copper dispersion, decorative article and antimicrobial article with the coating film formed thereon, and processes for producing the decorative article and the antimicrobial article
US10071419B2 (en) 2008-08-29 2018-09-11 Ishihara Sangyo Kaisha, Ltd. Metallic copper dispersion, process for producing the metallic copper dispersion, electrode, wiring pattern, and coating film formed using the metallic copper dispersion, decorative article and antimicrobial article with the coating film formed thereon, and processes for producing the decorative article and the antimicrobial article
JP2010222706A (en) * 2010-05-10 2010-10-07 Jx Nippon Mining & Metals Corp Production method for fine copper powder
TWI647082B (en) * 2017-12-19 2019-01-11 康豪奈米應用材料有限公司 Manufacturing method of copper antibacterial masterbatches

Also Published As

Publication number Publication date
JPS59116303A (en) 1984-07-05

Similar Documents

Publication Publication Date Title
JPS6155562B2 (en)
Ducamp-Sanguesa et al. Synthesis and characterization of fine and monodisperse silver particles of uniform shape
KR101193762B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
Silvert et al. Synthesis of monodisperse submicronic gold particles by the polyol process
EP2208559A1 (en) Silver microparticle-containing composition, process for production of the composition, process for production of the silver microparticle, and paste containing the silver microparticle
JP2001107101A (en) High dispersibility spherical silver powder and its producing method
CN108975378B (en) Preparation method of dysprosium oxide powder
JPH1088206A (en) Silver powder and manufacture of silver powder
US4089676A (en) Method for producing nickel metal powder
US5188660A (en) Process for making finely divided particles of silver metals
JP3751154B2 (en) Silver powder manufacturing method
JP4012960B2 (en) Silver powder manufacturing method
JPH09241709A (en) Production of copper powder
IE910373A1 (en) Process for making finely divided particles of silver metal
JP2900650B2 (en) Method for producing nickel fine powder
JPH0557324B2 (en)
JPH0920903A (en) Production of monodisperse gold grain powder
JP3973236B2 (en) Method for producing monodisperse noble metal powder
US3717481A (en) Gold metallizing compositions
JPS622003B2 (en)
JPS5855204B2 (en) Method for producing platinum powder for printing paste
JPH0784605B2 (en) Method for producing fine copper powder
JP2004084069A (en) Inorganic oxide coated metal powder and its manufacturing method
TW202030033A (en) Method for producing monodispersed ag powder
JP3399970B2 (en) Method for producing copper monodisperse particles