JP2003183703A - Production method for conductive powder, conductive powder, conductive paste, and laminated ceramic electronic part - Google Patents

Production method for conductive powder, conductive powder, conductive paste, and laminated ceramic electronic part

Info

Publication number
JP2003183703A
JP2003183703A JP2001377455A JP2001377455A JP2003183703A JP 2003183703 A JP2003183703 A JP 2003183703A JP 2001377455 A JP2001377455 A JP 2001377455A JP 2001377455 A JP2001377455 A JP 2001377455A JP 2003183703 A JP2003183703 A JP 2003183703A
Authority
JP
Japan
Prior art keywords
powder
base metal
conductive
metal powder
conductive powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001377455A
Other languages
Japanese (ja)
Other versions
JP3698098B2 (en
Inventor
Hisamitsu Hongo
央光 本郷
Masayoshi Maeda
昌禎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001377455A priority Critical patent/JP3698098B2/en
Publication of JP2003183703A publication Critical patent/JP2003183703A/en
Application granted granted Critical
Publication of JP3698098B2 publication Critical patent/JP3698098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method for a conductive powder used for a conductive paste and having oxidation resistance; a conductive powder; a conductive paste; and a laminated ceramic electronic part. <P>SOLUTION: A reducing agent solution containing a hydrogenated boride is mixed into a metal salt solution containing an Ni salt and at least one base metal powder selected from among an Ni powder, a Cu powder, and alloy powders containing at least either Ni or Cu as a main component; thereby a conductive powder 1 formed by precipitating an Ni-B alloy powder 3a on the surface of a base metal powder 2 can be obtained. The concentration of the base metal powder in the metal salt solution is 400 g/L. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐酸化性を有する
導電粉末の製造方法、上述の製造方法によって得られる
導電粉末、上述の導電粉末を含有してなる導電性ペース
ト、および上述の導電性ペーストを用いて内部電極が形
成された積層セラミック電子部品に関するものであり、
特に、積層セラミックコンデンサの内部電極形成に好適
な導電性ペーストに用いられる耐酸化性を有する導電粉
末の製造方法、導電粉末、導電性ペーストおよび積層セ
ラミック電子部品に関する。
TECHNICAL FIELD The present invention relates to a method for producing a conductive powder having oxidation resistance, a conductive powder obtained by the above-mentioned production method, a conductive paste containing the above-mentioned conductive powder, and the above-mentioned conductive powder. The present invention relates to a laminated ceramic electronic component in which internal electrodes are formed using a paste,
In particular, the present invention relates to a method for producing an electrically conductive powder having oxidation resistance, which is used as an electrically conductive paste suitable for forming an internal electrode of a laminated ceramic capacitor, an electrically conductive powder, an electrically conductive paste, and a laminated ceramic electronic component.

【0002】[0002]

【従来の技術】従来、積層セラミック電子部品、例えば
積層セラミックコンデンサのように、生のセラミック積
層体とペースト塗布膜を同時焼成して焼結させる場合に
用いられる、内部電極形成用の導電性ペーストとして
は、高温下でも酸化に対して安定で、かつ素体セラミッ
ク焼成温度より融点の高いPd、Ag−Pd、Pt等の
貴金属粉末と、有機ビヒクルと、を含有してなる導電性
ペーストが用いられてきた。しかし、これら貴金属粉末
は高価であり、かつ価格が安定しないことから、近年で
はNi粉末、Cu粉末、またはこれらを主成分として含
有する粉末等の卑金属粉末を含有してなる導電性ペース
トを用いて内部電極を形成した、低コストな積層セラミ
ックコンデンサや多層セラミック基板等の積層セラミッ
ク電子部品が生産されている。
2. Description of the Related Art Conventionally, a conductive paste for forming internal electrodes, which is used when a raw ceramic laminate and a paste coating film are simultaneously fired and sintered, such as a monolithic ceramic electronic component such as a monolithic ceramic capacitor. As the conductive paste, a noble metal powder such as Pd, Ag-Pd, or Pt having a melting point higher than the firing temperature of the elemental ceramic and an organic vehicle, which is stable to oxidation even at high temperature, is used. Has been. However, since these precious metal powders are expensive and the price is not stable, in recent years, Ni powder, Cu powder, or a conductive paste containing a base metal powder such as a powder containing these as the main component is used. Multilayer ceramic electronic components such as low-cost monolithic ceramic capacitors and multilayer ceramic substrates on which internal electrodes are formed are produced.

【0003】上述のような積層セラミック電子部品の製
造工程においては、Ni粉末やCu粉末の酸化を防止す
るため、脱バインダー工程および本焼成工程における雰
囲気制御が非常に重要となる。このうち、脱バインダー
工程においては、これら卑金属粉末の酸化を防止するた
め、窒素気流等の中性雰囲気か、もしくはこれら卑金属
粉末が酸化しない程度のごく低温の酸化雰囲気により、
有機物の分解を目的とした熱処理が行われている。
In the manufacturing process of the above-mentioned monolithic ceramic electronic component, in order to prevent the oxidation of Ni powder and Cu powder, the atmosphere control in the debinding process and the main firing process is very important. Among these, in the binder removal step, in order to prevent the oxidation of these base metal powders, a neutral atmosphere such as a nitrogen stream, or an extremely low temperature oxidizing atmosphere such that these base metal powders are not oxidized,
Heat treatment for the purpose of decomposing organic substances is performed.

【0004】[0004]

【発明が解決しようとする課題】有機物の熱分解のため
には、その燃焼のために必要な十分な酸素と温度が要求
される。しかしながら、従来の卑金属粉末を含有してな
る導電性ペーストを用いる場合には、上述したように、
窒素気流中等の中性雰囲気か、もしくはこれら卑金属粉
末が酸化しない程度のごく低温の酸化雰囲気中で脱バイ
ンダーを行わなければならなかった。この脱バインダー
工程における雰囲気にバラツキが生じ、有機物の分解や
除去が不十分となると、残留したカーボン成分が本焼成
時にセラミックの焼結を阻害し、セラミックが焼結不足
となってしまう。そのため、十分な静電容量や絶縁抵抗
が得られないという問題が発生する。
For the thermal decomposition of organic matter, sufficient oxygen and temperature necessary for its combustion are required. However, when using a conventional conductive paste containing a base metal powder, as described above,
It has been necessary to perform the binder removal in a neutral atmosphere such as a nitrogen stream or in an oxidizing atmosphere at a very low temperature at which these base metal powders are not oxidized. If the atmosphere in the debinding step varies and the decomposition and removal of the organic matter becomes insufficient, the residual carbon component hinders the sintering of the ceramic during the main firing, resulting in insufficient sintering of the ceramic. Therefore, there arises a problem that sufficient capacitance and insulation resistance cannot be obtained.

【0005】また、逆に、脱バインダー工程時に卑金属
が酸化してしまうと、卑金属粉末の酸化膨張による脱バ
インダー時の層剥がれといった構造不良や、酸化による
卑金属粉末の焼結不足による取得容量の低下や、等価直
列抵抗ならびにtanδの増加等の不具合が発生する。
したがって、脱バインダー時において微妙な雰囲気管理
が必要となり、工程管理が煩雑となり、工程不良の原因
となる問題がある。
On the contrary, if the base metal is oxidized during the debinding process, the structural capacity such as layer peeling during debinding due to the oxidative expansion of the base metal powder and the decrease in the acquired capacity due to insufficient sintering of the base metal powder due to oxidation will occur. And problems such as an increase in equivalent series resistance and tan δ occur.
Therefore, there is a problem that delicate atmosphere management is required at the time of binder removal, process management becomes complicated, and process defects occur.

【0006】このような問題を解決する方法として、特
開平1−258306号公報、特開平1−265406
号公報及び特開平1−80008号公報において、卑金
属粉末の酸化防止のため、Ni粉末にB粉末またはB化
合物粉末の1種または1種以上を含ませるとともに、無
機質フィラーおよび有機ビヒクルを含有させた導電性ペ
ーストが開示されている。しかしながら、この方法で
は、ペースト混錬が不十分である場合、B粉末またはB
化合物粉末の分散状態が不十分となり、卑金属粉末の耐
酸化性にバラツキが生じるという問題がある。
As a method for solving such a problem, Japanese Patent Laid-Open Nos. 1-258306 and 1-265406 are available.
In Japanese Patent Laid-Open Publication No. 1-80008 and Japanese Patent Application Laid-Open No. 1-80008, Ni powder contains one or more kinds of B powder or B compound powder and an inorganic filler and an organic vehicle in order to prevent oxidation of the base metal powder. A conductive paste is disclosed. However, in this method, when the paste kneading is insufficient, B powder or B powder
There is a problem that the dispersion state of the compound powder becomes insufficient and the base metal powder varies in oxidation resistance.

【0007】また、無電解めっき反応によって、Ag粉
末あるいはCu粉末表面にNi−B合金を析出させる技
術が特開昭63−27567号公報に開示されている。
しかし、この公報において開示されている従来の無電解
めっきの方法である、金属塩、還元剤、錯化剤、pH調
整剤などで調整された1液の無電解めっき液に被めっき
物である粉末を浸漬する方法では、板のような被めっき
物と比べて被面積が大きいため、めっき反応速度が異常
に速く、所望の金属析出量の制御が困難である。また、
通常の無電解めっき液は、金属塩濃度が希薄であり、粉
末のような比表面積が大きな被めっき物では、粉末投入
時にめっき液の分解が急速に進み、粉末表面への金属の
析出が不十分になるといった問題があった。
Further, Japanese Unexamined Patent Publication (Kokai) No. 63-27567 discloses a technique for depositing a Ni-B alloy on the surface of Ag powder or Cu powder by electroless plating reaction.
However, a conventional electroless plating method disclosed in this publication, which is a one-electroless plating solution adjusted with a metal salt, a reducing agent, a complexing agent, a pH adjusting agent, etc., is an object to be plated. In the method of immersing the powder, since the area to be plated is larger than that of the object to be plated such as a plate, the plating reaction rate is abnormally fast, and it is difficult to control the desired metal deposition amount. Also,
Ordinary electroless plating solution has a low metal salt concentration, and for an object to be plated having a large specific surface area such as powder, decomposition of the plating solution progresses rapidly when the powder is charged, and metal deposition on the powder surface does not occur. There was a problem that it would be enough.

【0008】本発明は、上記従来の問題に鑑みなされた
ものであり、その目的は、導電性ペーストに用いられる
耐酸化性を有する導電粉末の製造方法、導電粉末、導電
性ペーストおよび積層セラミック電子部品を提供するこ
とにある。
The present invention has been made in view of the above conventional problems, and an object thereof is a method for producing an electrically conductive powder having oxidation resistance used in an electrically conductive paste, an electrically conductive powder, an electrically conductive paste and a laminated ceramic electronic. It is to provide parts.

【0009】[0009]

【課題を解決するための手段】こうした粉末への金属無
電解めっきの問題を解決する方法として、本発明者は、
被めっき物である卑金属粉末と、金属塩とを混合した溶
液に、還元剤溶液を添加して、卑金属粉末表面にNi−
B合金を析出させる方法を見出した。これにより、耐酸
化性を有する導電粉末を得ることができる。この導電粉
末を用いた導電性ペーストは、高温下でも酸化に対して
安定であるため、焼成工程を経る積層セラミック電子部
品の内部電極の形成等に好適に用いることができる。
As a method of solving the problem of metal electroless plating on such powder, the present inventor has
A reducing agent solution is added to a solution in which a base metal powder that is an object to be plated and a metal salt are mixed, and Ni- is added to the surface of the base metal powder.
The method of precipitating B alloy was discovered. Thereby, a conductive powder having oxidation resistance can be obtained. Since the conductive paste using this conductive powder is stable against oxidation even at high temperatures, it can be suitably used for forming internal electrodes of a laminated ceramic electronic component that undergoes a firing process.

【0010】さらに、本発明者は、耐酸化性を有する卑
金属粉末を作製するのに、好適な卑金属粉末の溶液濃度
や反応温度などの反応条件を見出した。
Further, the present inventor has found suitable reaction conditions such as a solution concentration of the base metal powder and a reaction temperature for producing the base metal powder having oxidation resistance.

【0011】すなわち、本発明の耐酸化性を備える導電
粉末の製造方法は、Ni粉末、Cu粉末、Niまたは/
およびCuを主成分とする合金粉末からなる群から選ば
れる少なくとも1種の卑金属粉末と、Ni塩とを含む金
属塩溶液に、水素化硼化物を含む還元剤溶液を混合し、
前記卑金属粉末の表面にNi−B合金粉末を析出させる
析出工程を備える。析出工程では、前記Ni塩が還元剤
溶液により液相還元されることにより、Ni−B合金粉
末が卑金属粉末の表面に析出する。また、金属塩溶液に
おける卑金属粉末の溶液濃度が400g/L以上である
ことを特徴としている。Lとは103cm3を示す。
That is, the method for producing an electrically conductive powder having oxidation resistance according to the present invention is applied to Ni powder, Cu powder, Ni or /
And a reducing agent solution containing a borohydride is mixed with a metal salt solution containing at least one base metal powder selected from the group consisting of alloy powders containing Cu as a main component and a Ni salt,
A deposition step of depositing the Ni-B alloy powder on the surface of the base metal powder is provided. In the precipitation step, the Ni salt is liquid-phase reduced by the reducing agent solution, so that the Ni-B alloy powder is deposited on the surface of the base metal powder. In addition, the solution concentration of the base metal powder in the metal salt solution is 400 g / L or more. L means 10 3 cm 3 .

【0012】上記の方法によれば、金属塩溶液と卑金属
粉末とを混合することにより、還元剤溶液の投入時に還
元剤が卑金属粉末表面の触媒作用により分解し電子を放
出し、卑金属粉末近傍には金属イオンが高濃度で存在す
るため、金属イオンの還元がすぐに起こり、卑金属粉末
表面に金属が析出する。そのため、卑金属粉末溶液に金
属塩溶液と還元剤溶液とを同時に添加する方法や、卑金
属粉末を混合した還元剤溶液に金属塩溶液を添加する方
法に比べて、卑金属粉末表面で金属が析出しやすく、N
i−B合金粉末を析出させる場合は、卑金属粉末の耐酸
化性を高くすることができる。
According to the above method, by mixing the metal salt solution and the base metal powder, the reducing agent is decomposed by the catalytic action of the surface of the base metal powder to release electrons when the reducing agent solution is charged, and electrons are emitted in the vicinity of the base metal powder. Since the metal ions are present at a high concentration, the reduction of the metal ions occurs immediately and the metal is deposited on the base metal powder surface. Therefore, compared with the method of adding the metal salt solution and the reducing agent solution to the base metal powder solution at the same time, or the method of adding the metal salt solution to the reducing agent solution in which the base metal powder is mixed, the metal is more likely to precipitate on the base metal powder surface. , N
When depositing the i-B alloy powder, the oxidation resistance of the base metal powder can be increased.

【0013】なお、上述の製造方法は、析出工程の反応
温度が、0℃以上、50℃以下であることが好ましい。
In the above manufacturing method, the reaction temperature in the precipitation step is preferably 0 ° C. or higher and 50 ° C. or lower.

【0014】また、上述の製造方法は、析出工程の後
に、Ni−B合金粉末が表面に析出した卑金属粉末を1
00℃以上で熱処理する熱処理工程をさらに備えること
が好ましい。
Further, in the above-mentioned manufacturing method, after the precipitation step, the base metal powder having the Ni-B alloy powder deposited on the surface is
It is preferable to further include a heat treatment step of heat treatment at 00 ° C. or higher.

【0015】また、上述の製造方法は、前記析出工程の
後に、前記Ni−B合金粉末が表面に析出した前記卑金
属粉末を粉砕処理する粉砕処理工程をさらに備えること
が好ましい。
Further, it is preferable that the above-mentioned manufacturing method further comprises, after the precipitation step, a crushing step of crushing the base metal powder having the Ni-B alloy powder deposited on its surface.

【0016】また、上述の製造方法は、前記卑金属粉末
の平均粒径より小さく、かつ、前記卑金属粉末100重
量部に対して50重量部以下の量のNi−B合金粉末を
析出させることが好ましい。
Further, in the above-mentioned manufacturing method, it is preferable that the Ni-B alloy powder is deposited in an amount smaller than the average particle size of the base metal powder and 50 parts by weight or less with respect to 100 parts by weight of the base metal powder. .

【0017】また、上述の製造方法は、前記卑金属粉末
の平均粒径が、1.0μm以下であることが好ましい。
In the above manufacturing method, it is preferable that the base metal powder has an average particle size of 1.0 μm or less.

【0018】また、上述の製造方法は、前記Ni−B合
金粉末の平均粒径は、0.1μm以下であり、かつ、前
記卑金属粉末の平均粒径の1/2以下であることが好ま
しい。
Further, in the above-mentioned manufacturing method, it is preferable that the Ni-B alloy powder has an average particle diameter of 0.1 μm or less and 1/2 or less of the average particle diameter of the base metal powder.

【0019】本発明の導電粉末は、上述の本発明の導電
粉末の製造方法によって得られたことを特徴としてい
る。これにより、耐酸化性を有する導電粉末を得ること
ができる。
The conductive powder of the present invention is characterized by being obtained by the above-mentioned method for producing a conductive powder of the present invention. Thereby, a conductive powder having oxidation resistance can be obtained.

【0020】本発明の導電性ペーストは、上述の本発明
の導電粉末と、有機ビヒクルと、を含有してなることを
特徴としている。
The conductive paste of the present invention is characterized by containing the above-mentioned conductive powder of the present invention and an organic vehicle.

【0021】本発明の積層セラミック電子部品は、複数
のセラミック層が積層されてなるセラミック積層体と、
前記セラミック層間に形成された複数の内部電極とを備
える積層セラミック電子部品であって、前記内部電極
は、上記導電性ペーストを用いて形成されていることを
特徴としている。
The laminated ceramic electronic component of the present invention comprises a ceramic laminated body formed by laminating a plurality of ceramic layers,
A multilayer ceramic electronic component including a plurality of internal electrodes formed between the ceramic layers, wherein the internal electrodes are formed using the conductive paste.

【0022】[0022]

【発明の実施の形態】本発明の一実施の形態について図
1および図2に基づいて説明すれば、以下の通りであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

【0023】本実施の形態にかかる導電粉末について、
図1(a)および図1(b)に基づいて詳細に説明す
る。図1(a)に示すように、導電粉末1は、卑金属粉
末2と、Ni−B合金粉末3aとからなる。
Regarding the conductive powder according to the present embodiment,
A detailed description will be given based on FIGS. 1A and 1B. As shown in FIG. 1A, the conductive powder 1 is composed of a base metal powder 2 and a Ni-B alloy powder 3a.

【0024】卑金属粉末2は、例えば、Ni粉末、Cu
粉末、Ni−P合金粉末、Ni−Cr合金粉末、Cu−
Zn合金粉末、Pd粉末が付着したNi粉末、Ag粉末
が付着したNi粉末、Pd−Ag合金粉末が付着したN
i粉末、Pt粉末が付着したNi粉末、Pd粉末が付着
したCu粉末、Ag粉末が付着したCu粉末、Pd−A
g合金粉末が付着したCu粉末、Pt粉末が付着したC
u粉末等が挙げられ、積層セラミック電子部品のセラミ
ック特性に合わせて適宜選択される。
The base metal powder 2 is, for example, Ni powder or Cu.
Powder, Ni-P alloy powder, Ni-Cr alloy powder, Cu-
Zn alloy powder, Ni powder with Pd powder attached, Ni powder with Ag powder attached, N with Pd-Ag alloy powder attached
i powder, Ni powder with Pt powder attached, Cu powder with Pd powder attached, Cu powder with Ag powder attached, Pd-A
Cu powder to which g alloy powder adheres, C to which Pt powder adheres
u powder or the like may be used and is appropriately selected according to the ceramic characteristics of the multilayer ceramic electronic component.

【0025】Ni−B合金粉末3aは、卑金属粉末2の
表面に析出している。Ni−B合金粉末3aを卑金属粉
末2表面に析出させる方法は、被めっき物である卑金属
粉末2とNi塩とを混合した溶液に、水素化硼化物を含
む還元剤溶液を添加する方法である。本発明では、卑金
属粉末2とNi塩とを混合した溶液に、上記還元剤溶液
を添加する条件を詳細に検討し、卑金属粉末2の溶液濃
度及び反応温度を制御することによって、同じ析出量の
Ni−B合金粉末3aで耐酸化性を向上させる条件を見
出した。Ni−B合金粉末3aの析出時における溶液中
の卑金属粉末2濃度が高いほど、卑金属粉末2表面でN
i−B合金粉末3aが析出する割合が高くなり、卑金属
粉末2の耐酸化性が向上する。卑金属粉末2の溶液濃度
は400g/L以上が必要であり、これより濃度が低い
場合はNi−B合金粉末が卑金属粉末表面以外において
単独で析出するため、耐酸化性が低下する。また、卑金
属粉末2の溶液濃度の上限値は、特に限定されるもので
はないが、1000g/L以下が好ましく、800g/
L以下がより好ましい。
The Ni-B alloy powder 3a is deposited on the surface of the base metal powder 2. The method of depositing the Ni-B alloy powder 3a on the surface of the base metal powder 2 is a method of adding a reducing agent solution containing a borohydride to a solution in which the base metal powder 2 as the object to be plated and a Ni salt are mixed. . In the present invention, the conditions under which the reducing agent solution is added to the solution in which the base metal powder 2 and the Ni salt are mixed are studied in detail, and the solution concentration of the base metal powder 2 and the reaction temperature are controlled to obtain the same precipitation amount. The conditions for improving the oxidation resistance have been found with the Ni-B alloy powder 3a. The higher the concentration of the base metal powder 2 in the solution during the precipitation of the Ni-B alloy powder 3a, the more N the surface of the base metal powder 2 has.
The proportion of the i-B alloy powder 3a precipitated is increased, and the oxidation resistance of the base metal powder 2 is improved. The solution concentration of the base metal powder 2 needs to be 400 g / L or more, and when the concentration is lower than this, the Ni-B alloy powder alone precipitates on the surface other than the base metal powder surface, and the oxidation resistance decreases. The upper limit of the solution concentration of the base metal powder 2 is not particularly limited, but is preferably 1000 g / L or less, and 800 g / L.
L or less is more preferable.

【0026】また、反応温度の下限値については、0℃
以上であることが好ましく、20℃以上であることがよ
り好ましい。反応温度が低いほどNi−B合金粉末3a
の急激な析出を制御することができ、卑金属粉末2表面
でのNi−B合金粉末3aの析出が起こりやすくなるた
め、耐酸化性を向上させることができる。また、反応温
度の上限値については、50℃以下であることが好まし
い。反応温度が50℃を超えると、Ni−B合金粉末3
aの急激な析出が起こり、卑金属粉末2表面以外で単独
に析出するため、耐酸化性が低下する。
The lower limit of the reaction temperature is 0 ° C.
It is preferably at least 20 ° C., more preferably at 20 ° C. or higher. The lower the reaction temperature, the more Ni-B alloy powder 3a.
Of the Ni-B alloy powder 3a is likely to occur on the surface of the base metal powder 2, so that the oxidation resistance can be improved. The upper limit of the reaction temperature is preferably 50 ° C or lower. When the reaction temperature exceeds 50 ° C, Ni-B alloy powder 3
Since a rapid precipitation of a occurs, and it precipitates independently on the surface other than the surface of the base metal powder 2, the oxidation resistance decreases.

【0027】次に、上記導電粉末1に熱を加えた場合に
ついて、図1(b)に基づいて詳細に説明する。図1
(b)に示すように、加熱された導電粉末1aは、卑金
属粉末2が、酸化硼素膜3bにより略被覆された構成と
なる。
Next, the case where heat is applied to the conductive powder 1 will be described in detail with reference to FIG. Figure 1
As shown in (b), the heated conductive powder 1a has a configuration in which the base metal powder 2 is substantially covered with the boron oxide film 3b.

【0028】酸化硼素膜3bは、Ni−B合金粉末3a
に含まれるB成分が酸化した後、熔融して卑金属粉末2
の表面を略被覆するように残留させたものである。Ni
−B合金粉末3aは、特開昭56−84806号公報に
記載されているように、温度が上昇すると、まずB成分
が酸化して酸化硼素となり、さらに温度が上昇すると、
酸化硼素が熔融する。この酸化硼素は、卑金属粉末2の
表面を略被覆する酸化硼素膜3bとなり、卑金属粉末2
の酸化を防止する。
The boron oxide film 3b is a Ni-B alloy powder 3a.
After the B component contained in is oxidized, it is melted to form the base metal powder 2
Is left so as to substantially cover the surface. Ni
In the -B alloy powder 3a, as described in JP-A-56-84806, when the temperature rises, the B component is first oxidized to boron oxide, and when the temperature further rises,
Boron oxide melts. This boron oxide becomes a boron oxide film 3b which substantially covers the surface of the base metal powder 2, and the base metal powder 2
To prevent the oxidation of.

【0029】つまり、Ni−B合金粉末3aを卑金属粉
末2表面に析出させた導電粉末1を含有する導電性ペー
ストは、ペースト中にB粉末またはB化合物を添加して
分散させた導電性ペーストに比べて、ペースト中にNi
−B合金粉末が均一に分散されているため、卑金属粉末
の耐酸化性のバラツキを少なくすることができる。ま
た、卑金属粉末2の近傍にNi−B合金粉末3aが存在
しているので、例えば導電性ペーストを焼成した場合、
酸化硼素膜3bが卑金属粉末2を被覆する割合がより高
くなる。このような導電粉末1を含有してなる導電性ペ
ーストを用いて内部電極を形成した積層セラミック電子
部品は、その製造過程である焼成工程において、酸化硼
素膜3bが卑金属粉末2の表面を略被覆することから、
卑金属粉末2の耐酸化性が高まる。
That is, the conductive paste containing the conductive powder 1 in which the Ni-B alloy powder 3a is deposited on the surface of the base metal powder 2 is a conductive paste in which the B powder or the B compound is added and dispersed in the paste. Compared to Ni in the paste
Since the -B alloy powder is uniformly dispersed, it is possible to reduce variations in the oxidation resistance of the base metal powder. Further, since the Ni-B alloy powder 3a is present in the vicinity of the base metal powder 2, for example, when the conductive paste is fired,
The ratio of the boron oxide film 3b covering the base metal powder 2 becomes higher. In the multilayer ceramic electronic component in which the internal electrodes are formed by using the conductive paste containing the conductive powder 1, the boron oxide film 3b substantially covers the surface of the base metal powder 2 in the firing step which is a manufacturing process thereof. From doing
The oxidation resistance of the base metal powder 2 is enhanced.

【0030】なお、卑金属粉末2の表面にNi−B合金
粉末3aを析出させた後に100℃以上で熱処理を行
い、さらに粉砕処理を行うことが好ましい。熱処理を行
うことにより、粉末の粉砕処理時ならびにペースト作製
時にNi−B合金粉末3aが卑金属粉末2から離脱する
ことを抑制することができるため、本発明の効果をより
顕著なものとすることができる。また、Ni−B合金粉
末3aの析出や熱処理を行うことで、卑金属粉末2の凝
集が起こる可能性があるため、熱処理後に粉砕処理を行
うことが好ましい。
It is preferable that after the Ni-B alloy powder 3a is deposited on the surface of the base metal powder 2, heat treatment is performed at 100 ° C. or higher, and further pulverization treatment is performed. By performing the heat treatment, it is possible to prevent the Ni—B alloy powder 3a from being separated from the base metal powder 2 during the pulverizing process of the powder and during the paste preparation, so that the effect of the present invention can be more remarkable. it can. Further, the precipitation of the Ni-B alloy powder 3a and the heat treatment may cause aggregation of the base metal powder 2. Therefore, it is preferable to perform the pulverization treatment after the heat treatment.

【0031】また、Ni−B合金粉末3aの平均粒径
は、卑金属粉末2の平均粒径よりも小さいことが好まし
い。Ni−B合金粉末3aの平均粒径が卑金属粉末2の
平均粒径よりも小さい場合に、上述した酸化硼素膜3b
が卑金属粉末2を被覆し、卑金属粉末2の耐酸化性を高
めることができるという本発明の効果を得られる。他
方、Ni−B合金粉末3aの平均粒径が卑金属粉末2の
平均粒径以上であると、この導電粉末を含有してなる導
電性ペーストを用いて内部電極を形成した積層セラミッ
ク電子部品は、脱バインダー時における卑金属粉末の酸
化膨張による層剥がれといった構造不良や、酸化による
卑金属粉末の焼結不足による取得容量の低下や、等価直
列抵抗ならびにtanδの増加等の不具合が発生するこ
とがある。
The average particle size of the Ni-B alloy powder 3a is preferably smaller than that of the base metal powder 2. When the average particle size of the Ni-B alloy powder 3a is smaller than the average particle size of the base metal powder 2, the above-mentioned boron oxide film 3b.
The base metal powder 2 can be coated to improve the oxidation resistance of the base metal powder 2. On the other hand, when the average particle diameter of the Ni-B alloy powder 3a is equal to or larger than the average particle diameter of the base metal powder 2, the laminated ceramic electronic component in which the internal electrode is formed by using the conductive paste containing the conductive powder, There may occur problems such as a structural defect such as layer peeling due to oxidative expansion of the base metal powder during debinding, a decrease in acquisition capacity due to insufficient sintering of the base metal powder due to oxidation, and an increase in equivalent series resistance and tan δ.

【0032】また、Ni−B合金粉末3aの卑金属粉末
2表面への析出量は、卑金属粉末100重量部に対し
て、50重量部以下であることが好ましい。Ni−B合
金粉末の析出量が50重量部を超えると、多量のNi−
B合金粉末が熔融し、内部電極の電極として機能が損な
われることがある。なお、Ni−B合金粉末の析出量の
下限値は特に限定しないが、Ni−B合金粉末3aの析
出量が0.1重量部程度であればよい。この程度の量が
析出していれば、導電粉末の酸化開始温度が上昇し、す
なわち卑金属粉末の耐酸化性を向上させる効果を得るこ
とができる。この導電粉末を含有してなる導電性ペース
トを用いて内部電極を形成した積層セラミック電子部品
において、脱バインダー時における導電粉末の酸化膨張
による層剥がれといった構造不良の発生、酸化による導
電粉末の焼結不足による取得容量の低下、等価直列抵抗
ならびにtanδの増加等の不具合が発生することを抑
制することができる。
The amount of the Ni-B alloy powder 3a deposited on the surface of the base metal powder 2 is preferably 50 parts by weight or less with respect to 100 parts by weight of the base metal powder. When the amount of precipitation of the Ni-B alloy powder exceeds 50 parts by weight, a large amount of Ni-
The B alloy powder may melt and the function of the internal electrode as an electrode may be impaired. The lower limit of the precipitation amount of the Ni-B alloy powder is not particularly limited, but the precipitation amount of the Ni-B alloy powder 3a may be about 0.1 part by weight. If the amount of this amount is deposited, the oxidation start temperature of the conductive powder rises, that is, the effect of improving the oxidation resistance of the base metal powder can be obtained. In a multilayer ceramic electronic component in which internal electrodes are formed using a conductive paste containing this conductive powder, structural defects such as layer peeling due to oxidative expansion of the conductive powder during debinding, and sintering of the conductive powder due to oxidation It is possible to prevent problems such as a decrease in acquisition capacity, an increase in equivalent series resistance, and an increase in tan δ due to a shortage.

【0033】また、卑金属粉末の平均粒径は、1.0μ
m以下であることが好ましい。一般的に、卑金属粉末は
平均粒径が小さくなるほど比表面積が増えて活性にな
り、酸化が起こりやすくなる。特に、卑金属粉末の平均
粒径が1.0μm以下の場合に酸化が起こりやすくなる
傾向がある。そのため、本発明において、卑金属粉末の
平均粒径が1.0μm以下である場合に本発明の耐酸化
効果が十分に発揮される。卑金属粉末の平均粒径が1.
0μmを超える場合も本発明の耐酸化効果は得られる
が、もともと比表面積が小さく酸化に対して敏感でない
ため、その耐酸化効果は1.0μm以下の粉末ほど顕著
ではない。
The average particle size of the base metal powder is 1.0 μm.
It is preferably m or less. Generally, as the average particle size of the base metal powder becomes smaller, the specific surface area increases and becomes active, so that oxidation easily occurs. In particular, when the average particle size of the base metal powder is 1.0 μm or less, oxidation tends to occur. Therefore, in the present invention, the oxidation resistance effect of the present invention is sufficiently exhibited when the average particle size of the base metal powder is 1.0 μm or less. The average particle size of the base metal powder is 1.
Even if it exceeds 0 μm, the oxidation resistance effect of the present invention can be obtained, but since the specific surface area is originally small and it is not sensitive to oxidation, the oxidation resistance effect is not so remarkable as that of the powder having a particle size of 1.0 μm or less.

【0034】また、Ni−B合金粉末の平均粒径は、
0.10μm以下で、かつ、卑金属粉末の平均粒径の1
/2以下であることが好ましい。上述する範囲内である
場合、Ni−B合金粉末が卑金属粉末の表面をより均一
に被覆することができるため、卑金属粉末の耐酸化性が
十分得られる。
The average particle size of the Ni-B alloy powder is
0.10 μm or less and 1 of the average particle size of the base metal powder
It is preferably / 2 or less. Within the above range, the Ni-B alloy powder can coat the surface of the base metal powder more uniformly, so that sufficient oxidation resistance of the base metal powder can be obtained.

【0035】得られたNi−B合金粉末を分析した結
果、この粉末は、非晶質であり、また、粉末中に含まれ
ているB成分の構成割合は、約25モル%であった。な
お、Ni−B合金粉末中に含まれるB成分の構成割合に
ついては、特に限定されるものではない。
As a result of analyzing the obtained Ni-B alloy powder, this powder was amorphous, and the composition ratio of the B component contained in the powder was about 25 mol%. The composition ratio of the B component contained in the Ni-B alloy powder is not particularly limited.

【0036】本発明の導電性ペーストは、上述の導電粉
末と、有機ビヒクルとを含有してなる。有機ビヒクルの
材料は、特に限定されるものではないが、従来より積層
セラミック電子部品内部電極形成に好適な導電性ペース
トに一般的に用いられている有機ビヒクル、具体的に
は、スクリーン印刷法、グラビア印刷法、スプレー法等
によって、積層セラミックコンデンサ、多層セラミック
基板、チップバリスタ、チップLCフィルタ、チップイ
ンダクタ等の内部電極形成に好適な導電性ペーストに用
いられる有機ビヒクル、より具体的には、例えば、エチ
ルセルロース樹脂をテルピネオール等の溶剤に溶解させ
たもの等を適宜用いることができる。
The conductive paste of the present invention contains the above-mentioned conductive powder and an organic vehicle. The material of the organic vehicle is not particularly limited, but an organic vehicle that is generally used in a conductive paste suitable for forming a multilayer ceramic electronic component internal electrode from the past, specifically, a screen printing method, An organic vehicle used for a conductive paste suitable for forming internal electrodes such as a multilayer ceramic capacitor, a multilayer ceramic substrate, a chip varistor, a chip LC filter, and a chip inductor by a gravure printing method, a spray method, or the like, more specifically, for example, It is possible to appropriately use a solution of ethyl cellulose resin dissolved in a solvent such as terpineol.

【0037】本発明の積層セラミック電子部品につい
て、図2に基づいて詳細に説明する。図2に示すよう
に、本実施形態にかかる積層セラミック電子部品11
は、略直方体型であり、セラミック積層体12と、内部
電極13・13と、端子電極14・14と、めっき膜1
5・15とから構成されている。
The multilayer ceramic electronic component of the present invention will be described in detail with reference to FIG. As shown in FIG. 2, the monolithic ceramic electronic component 11 according to the present embodiment.
Is a substantially rectangular parallelepiped type, and has a ceramic laminate 12, internal electrodes 13 and 13, terminal electrodes 14 and 14, and a plating film 1.
It is composed of 5 and 15.

【0038】セラミック積層体12は、BaTiO3
主成分とする誘電体材料からなるセラミック層12aが
複数積層された生のセラミック積層体が焼成されてな
る。
The ceramic laminated body 12 is formed by firing a raw ceramic laminated body in which a plurality of ceramic layers 12a made of a dielectric material containing BaTiO 3 as a main component are laminated.

【0039】各内部電極13・13は、セラミック積層
体12内の各セラミック層12a・12a間にあって、
複数の生のセラミック層12a上に本発明の導電性ペー
ストが印刷され、生のセラミック層とともに積層されて
なる生のセラミック積層体と同時に焼成されてなる。ま
た、各内部電極13・13のそれぞれの端縁は、セラミ
ック積層体12のいずれかの端面に露出するように形成
されている。
The internal electrodes 13 and 13 are located between the ceramic layers 12a and 12a in the ceramic laminate 12,
The conductive paste of the present invention is printed on a plurality of raw ceramic layers 12a and fired at the same time as a raw ceramic laminate that is laminated with the raw ceramic layers. Further, the respective end edges of the respective inner electrodes 13, 13 are formed so as to be exposed on either end surface of the ceramic laminate 12.

【0040】端子電極14・14は、セラミック積層体
12の端面に露出した各内部電極13・13の一端と電
気的かつ機械的に接合されるように、端子電極形成用の
導電性ペーストがセラミック積層体12の端面に塗布さ
れ焼き付けられてなる。
The conductive paste for forming the terminal electrodes is made of ceramic so that the terminal electrodes 14 and 14 are electrically and mechanically bonded to the ends of the internal electrodes 13 and 13 exposed at the end faces of the ceramic laminate 12. It is applied to the end surface of the laminate 12 and baked.

【0041】めっき膜15・15は、例えば、SnやN
i等の無電解めっきや、はんだめっき等からなり、端子
電極14・14上に少なくとも1層形成されてなる。
The plating films 15 and 15 are made of, for example, Sn or N.
At least one layer is formed on the terminal electrodes 14 and 14 by electroless plating such as i or solder plating.

【0042】なお、本発明の積層セラミック電子部品の
セラミック積層体12の材料は、上述の実施形態に限定
されることはなく、例えば、PbZrO3等その他の誘
電体材料や、絶縁体、磁性体、半導体材料からなっても
構わない。また、本発明の積層セラミック電子部品の内
部電極13の枚数は、上述の実施形態に限定されること
はなく、何層形成されていても構わない。また、端子電
極14の形成位置ならびに個数は、上述の実施形態に限
定されるものではない。また、めっき膜15・15は、
必ずしも備えている必要はなく、また何層形成されてい
ても構わない。
The material of the ceramic laminated body 12 of the laminated ceramic electronic component of the present invention is not limited to the above-mentioned embodiment, and for example, other dielectric materials such as PbZrO 3 and insulators and magnetic materials can be used. It may be made of a semiconductor material. Further, the number of the internal electrodes 13 of the monolithic ceramic electronic component of the present invention is not limited to that in the above embodiment, and any number of layers may be formed. Further, the formation position and the number of the terminal electrodes 14 are not limited to those in the above embodiment. Also, the plating films 15 and 15 are
It does not necessarily have to be provided, and any number of layers may be formed.

【0043】[0043]

【実施例】〔実施例1〕Ni粉末にNi−B合金粉末を
析出させた実施例を示す。Ni−B合金粉末量は、Ni
−B合金粉末析出後にNi粉末100重量部に対して、
Ni−B合金粉末として0.90重量部になるように、
B量としては0.05重量部になるようにNi−B合金
粉末を析出させた。
Example 1 An example in which Ni-B alloy powder is deposited on Ni powder will be described. The amount of Ni-B alloy powder is Ni
After depositing the B alloy powder, 100 parts by weight of the Ni powder,
Ni-B alloy powder to be 0.90 parts by weight,
The Ni-B alloy powder was deposited so that the amount of B was 0.05 parts by weight.

【0044】硫酸ニッケルNiSO4・6H2O(Ni
塩)15gを純水1Lに溶解させ、液温を30℃に設定
した。次に、このNi塩溶液に、粒径0.5μmのNi
粉末400gを、Ni塩溶液を攪拌しながら添加し、N
i粉末をNi塩溶液に分散させ、Ni粉末濃度として4
00g/Lの溶液Aを調整した。以下、Ni粉末をNi
塩溶液に分散させた溶液のことを溶液Aという。一方、
水素化硼素ナトリウム5gと、水酸化ナトリウム5gと
を純水1Lに溶解し、液温を30℃に設定した還元剤溶
液を調整した。
[0044] nickel sulfate NiSO 4 · 6H 2 O (Ni
15 g of salt) was dissolved in 1 L of pure water, and the liquid temperature was set to 30 ° C. Next, in this Ni salt solution, Ni having a particle size of 0.5 μm is added.
400 g of powder was added while stirring the Ni salt solution,
i powder was dispersed in a Ni salt solution to obtain a Ni powder concentration of 4
A solution A of 00 g / L was prepared. Hereinafter, Ni powder is referred to as Ni
The solution dispersed in the salt solution is referred to as solution A. on the other hand,
Sodium borohydride (5 g) and sodium hydroxide (5 g) were dissolved in pure water (1 L) to prepare a reducing agent solution having a liquid temperature of 30 ° C.

【0045】次いで、上記還元剤溶液を、溶液Aに、溶
液Aを攪拌しながら添加し、Ni粉末表面へのNi−B
合金粉末の還元析出反応を行った。析出反応後のNi粉
末を水洗し、アセトン置換を行った後乾燥させ、粉末試
料(試料)1を得た。
Next, the above reducing agent solution was added to Solution A while stirring Solution A, and Ni-B on the surface of Ni powder was added.
The reduction precipitation reaction of the alloy powder was performed. The Ni powder after the precipitation reaction was washed with water, replaced with acetone, and then dried to obtain a powder sample (Sample) 1.

【0046】〔実施例2〕実施例2についてそれぞれ、
実施例1におけるNi粉末濃度を、2倍に変更して、す
なわち800g/Lにして、実施例1と同様にNi粉末
表面にNi−B合金粉末の還元析出反応を行った。この
とき、硫酸ニッケル、水素化硼素ナトリウム、水酸化ナ
トリウムの濃度も、それぞれ2倍にした。濃度以外の条
件は、実施例1と同じにした。
[Embodiment 2] Regarding Embodiment 2, respectively,
The Ni powder concentration in Example 1 was doubled, that is, 800 g / L, and the reduction precipitation reaction of the Ni-B alloy powder was performed on the Ni powder surface in the same manner as in Example 1. At this time, the concentrations of nickel sulfate, sodium borohydride and sodium hydroxide were also doubled. The conditions other than the concentration were the same as in Example 1.

【0047】〔比較例1・2〕比較例1・2について、
それぞれ実施例1におけるNi粉末濃度を、1/2倍、
1/4倍に変更して、すなわち200g/L、100g
/Lにして、実施例1と同様にNi粉末表面にNi−B
合金粉末の還元析出反応を行った。このとき、硫酸ニッ
ケル、水素化硼素ナトリウム、水酸化ナトリウムの濃度
も、それぞれ1/2倍、1/4倍にした。濃度以外の条
件は、実施例1と同じにした。
[Comparative Examples 1 and 2] Regarding Comparative Examples 1 and 2,
The Ni powder concentration in Example 1 was 1/2 times,
Change to 1/4 times, that is, 200g / L, 100g
/ L, and Ni-B was formed on the surface of the Ni powder as in Example 1.
The reduction precipitation reaction of the alloy powder was performed. At this time, the concentrations of nickel sulfate, sodium borohydride, and sodium hydroxide were also made 1/2 times and 1/4 times, respectively. The conditions other than the concentration were the same as in Example 1.

【0048】〔実施例3〜5〕実施例3〜5についてそ
れぞれ、実施例2における液温を30℃から20℃、4
0℃、50℃にして、実施例2と同様にNi−B合金粉
末の還元析出反応を行った。液温以外の条件は、実施例
2と同じにした。
[Examples 3 to 5] Regarding Examples 3 to 5, the liquid temperatures in Example 2 were changed from 30 ° C to 20 ° C and 4 respectively.
The reduction precipitation reaction of the Ni-B alloy powder was performed in the same manner as in Example 2 at 0 ° C and 50 ° C. The conditions other than the liquid temperature were the same as in Example 2.

【0049】実施例1〜5、比較例1〜2の反応条件に
ついて表1にまとめて示す。このような反応条件で作製
した試料1〜7に含まれるB量を発光分光で分析した。
その結果、いずれの試料についてもB量として0.05
重量%含まれることが示され、B量に違いは見られなか
った。
The reaction conditions for Examples 1-5 and Comparative Examples 1-2 are summarized in Table 1. The amount of B contained in Samples 1 to 7 produced under such reaction conditions was analyzed by emission spectroscopy.
As a result, the B content of all samples was 0.05.
The content of B was shown to be the same, and no difference was found in the amount of B.

【0050】[0050]

【表1】 [Table 1]

【0051】次に、Ni−B合金粉末を析出させたNi
粉末の耐酸化性の確認のため、試料1〜7の導電粉末の
酸化開始温度を、示差熱天秤を用いて空気気流中で室温
より1000℃までの質量変化を測定した。導電粉末の
酸化による重量増加が始まる温度を酸化開始温度と規定
して、酸化開始温度を表2にまとめた。なお、比較例3
において、Ni−B合金粉末を析出させていない粒径
0.5μmのNi粉末を試料8として示す。
Next, the Ni containing the Ni-B alloy powder was deposited.
In order to confirm the oxidation resistance of the powder, the oxidation start temperature of the conductive powders of Samples 1 to 7 was measured for the mass change from room temperature to 1000 ° C. in an air stream using a differential thermal balance. The temperature at which the weight increase due to the oxidation of the conductive powder starts is defined as the oxidation start temperature, and the oxidation start temperature is summarized in Table 2. Comparative Example 3
In, a Ni powder having a grain size of 0.5 μm, in which the Ni—B alloy powder is not deposited, is shown as a sample 8.

【0052】[0052]

【表2】 [Table 2]

【0053】表2から、Ni粉末濃度を変更した試料1
〜4で比較すると、Ni粉末濃度が800g/Lである
溶液Aから得られた試料2の酸化開始温度が最も高く、
Ni粉末濃度が低くなるほど耐酸化性が低くなることが
判った。特に、Ni粉末濃度が200g/L以下になる
と、耐酸化性の低下が著しいことが判った。これらの結
果から、Ni粉末濃度は、400g/L以上が好ましい
ことが示された。
From Table 2, Sample 1 with different Ni powder concentration
4 to 4, the oxidation start temperature of the sample 2 obtained from the solution A having a Ni powder concentration of 800 g / L is the highest,
It was found that the lower the Ni powder concentration, the lower the oxidation resistance. In particular, it was found that when the Ni powder concentration was 200 g / L or less, the oxidation resistance was significantly reduced. From these results, it was shown that the Ni powder concentration is preferably 400 g / L or more.

【0054】また、反応温度を変更した試料2および試
料5〜7によると、反応温度は50℃以下が好ましいこ
とが示された。
Further, according to Sample 2 and Samples 5 to 7 in which the reaction temperature was changed, it was shown that the reaction temperature is preferably 50 ° C. or lower.

【0055】〔実施例6〜10〕次いで、試料1、2、
5〜7の導電粉末を用いて、導電性ペーストを作製し
た。すなわち、表3に示すように、導電粉末50重量%
と、エチルセルロース樹脂20重量%とテルピネオール
80重量%とを混合してなる有機ビヒクル50重量%
と、を混合した後、三本ロールにて分散処理を行い、ペ
ースト試料(導電性ペースト)、、〜を作成し
た。
[Examples 6 to 10] Next, samples 1, 2 and
A conductive paste was prepared using 5 to 7 conductive powders. That is, as shown in Table 3, conductive powder 50% by weight
50% by weight of an organic vehicle obtained by mixing 20% by weight of ethyl cellulose resin and 80% by weight of terpineol
After mixing and, dispersion treatment was performed with a triple roll to prepare paste samples (conductive paste) ,.

【0056】[0056]

【表3】 [Table 3]

【0057】次いで、導電性ペースト、、〜を
用いて、内部電極を形成した、設計段階の静電容量が
1.0μFである積層セラミックコンデンサを作製し
た。すなわち、BaTiO3を主成分とするセラミック
グリーンシートを準備し、所定枚数のセラミックグリー
ンシートの表面上に一方の端縁がセラミックグリーンシ
ートのいずれかの端面側に露出するように、導電性ペー
スト、、〜を用いて内部電極となるべき電極膜
を印刷した。次いで、これら複数のセラミックグリーン
シートを所定枚数積層し圧着して、試料1、2、5〜7
(導電性ペースト、、〜)の生のセラミック積
層体を複数準備した。
Next, using conductive pastes, and, a multilayer ceramic capacitor having internal electrodes formed and having a capacitance of 1.0 μF at the design stage was produced. That is, a ceramic green sheet containing BaTiO 3 as a main component is prepared, and a conductive paste, such that one edge is exposed on either end surface side of the ceramic green sheet on the surface of a predetermined number of ceramic green sheets, , To were used to print an electrode film to be an internal electrode. Next, a predetermined number of these ceramic green sheets are laminated and pressure-bonded to each other, and samples 1, 2, 5 to 7 are attached.
A plurality of raw ceramic laminates of (conductive paste, ...) were prepared.

【0058】次いで、試料1、2、5〜7(導電性ペー
スト、、〜)の生のセラミック積層体を脱バイ
ンダーさせるにあたり、条件を表4の条件Aのように設
定した。すなわち、耐酸化性のない導電粉末を用いた導
電性ペーストの場合に導電粉末の酸化が生じ易い条件と
して、保持温度400℃、保持時間60分、Air雰囲
気と設定し、これを脱バインダー条件Aとした。他方、
導電粉末の酸化は生じにくいが、有機バインダーの熱分
解が不十分となり易い条件として、保持温度250℃、
保持時間60分、N2雰囲気と設定し、これを脱バイン
ダー条件Bとした。これら条件A、Bを表4に示す。
Next, in debinding the raw ceramic laminates of Samples 1, 2, 5 to 7 (conductive paste, ...), the conditions were set as Condition A in Table 4. That is, in the case of a conductive paste using a conductive powder having no oxidation resistance, a holding temperature of 400 ° C., a holding time of 60 minutes, and an Air atmosphere were set as conditions under which oxidation of the conductive powder was likely to occur. And On the other hand,
Oxidation of the conductive powder is unlikely to occur, but as a condition that thermal decomposition of the organic binder tends to be insufficient, a holding temperature of 250 ° C
The holding time was set to 60 minutes and the atmosphere was set to N 2 , and this was set as the binder removal condition B. Table 4 shows these conditions A and B.

【0059】[0059]

【表4】 [Table 4]

【0060】次いで、上述の脱バインダー処理後に焼成
し、さらにセラミック積層体の両端面にAgを導電成分
とする端子電極形成用の導電性ペーストを塗布し、乾燥
させた後これを焼き付けて、内部電極に電気的かつ機械
的に接合された1対の端子電極を備える、試料1、2、
5〜7の積層セラミックコンデンサを10000個づつ
得た。
Next, after the binder removal treatment described above, firing is carried out, and further, a conductive paste for forming a terminal electrode containing Ag as a conductive component is applied to both end faces of the ceramic laminated body, dried and then baked to form an internal component. Samples 1, 2, comprising a pair of terminal electrodes electrically and mechanically joined to the electrodes
10,000 laminated ceramic capacitors of 5 to 7 were obtained.

【0061】そこで、試料1、2、5〜7の積層セラミ
ックコンデンサを100個づつ抜き取り、静電容量(1
00個平均)、ショート不良発生率、層剥がれ不良発生
率を測定し、3項目を総合して評価した。
Therefore, 100 monolithic ceramic capacitors of Samples 1, 2, 5 and 7 were extracted one by one, and the capacitance (1
(Average of 00 pieces), short-circuit failure occurrence rate, and layer peeling failure occurrence rate were measured, and three items were comprehensively evaluated.

【0062】なお、評価は、静電容量が1.0±0.2
μF、ショート不良発生率が0%、層剥がれ不良発生率
が0%であり、本発明の範囲内である試料について○
を、本発明の範囲外である試料について×を付した。
The evaluation is that the capacitance is 1.0 ± 0.2.
μF, 0% short circuit defect occurrence rate, 0% layer peeling defect occurrence rate, and within the scope of the present invention for samples
Is marked with x for samples that are outside the scope of the invention.

【0063】〔比較例4〜7〕次いで、試料3、4、お
よび8の導電粉末を用いて、実施例6〜10と同様に導
電性ペースト、、およびを作製し、試料3、4、
および8(導電性ペースト、、および)の積層セ
ラミックコンデンサを作成した。なお、試料8(導電性
ペースト)については、脱バインダー条件A(比較例
6)および条件B(比較例7)で脱バインダーさせた。
[Comparative Examples 4 to 7] Next, using the conductive powders of Samples 3, 4 and 8, conductive pastes and were prepared in the same manner as in Examples 6 to 10, and Samples 3, 4 and
And 8 (conductive paste, and) multilayer ceramic capacitors were prepared. Sample 8 (conductive paste) was debindered under debinding condition A (comparative example 6) and condition B (comparative example 7).

【0064】そして、実施例6〜10と同様に、試料
3、4、および8の積層セラミックコンデンサについ
て、静電容量(100個平均)、ショート不良発生率、
層剥がれ不良発生率を測定し、3項目を総合して評価し
た。
Then, in the same manner as in Examples 6 to 10, for the multilayer ceramic capacitors of Samples 3, 4, and 8, the capacitance (average of 100 capacitors), the short-circuit defect occurrence rate,
The layer peeling defect occurrence rate was measured, and the three items were comprehensively evaluated.

【0065】上記実施例6〜10および比較例4〜7の
結果を表5にまとめた。
The results of Examples 6 to 10 and Comparative Examples 4 to 7 are summarized in Table 5.

【0066】[0066]

【表5】 [Table 5]

【0067】表5から明らかであるように、Ni粉末濃
度が400g/L以上の溶液Aから得られた試料1、
2、5〜7の導電粉末(導電性ペースト、、〜
)を用いた積層セラミックコンデンサ(実施例6〜1
0)は、静電容量が1.0μFであり、ショート不良発
生率、層剥がれ不良発生率がいずれも0%であり、良好
な特性が得られた。
As is clear from Table 5, Sample 1 obtained from solution A having a Ni powder concentration of 400 g / L or more,
2, 5-7 conductive powder (conductive paste, ...
) Used multilayer ceramic capacitors (Examples 6 to 1)
In 0), the electrostatic capacity was 1.0 μF, and the occurrence rates of short circuit defects and layer peeling defects were both 0%, and good characteristics were obtained.

【0068】これに対して、Ni粉末濃度が400g/
Lより低い溶液から得られた試料3、4の導電粉末(導
電性ペースト、)を用いた積層セラミックコンデン
サ(比較例4、5)は、層剥がれ不良が発生した。
On the other hand, the Ni powder concentration is 400 g /
In the multilayer ceramic capacitors (Comparative Examples 4 and 5) using the conductive powders (conductive pastes) of Samples 3 and 4 obtained from the solutions lower than L, layer peeling failure occurred.

【0069】また、反応温度が20℃〜50℃で得られ
た試料1、2、試料5〜7の導電粉末(導電性ペースト
、、、、)を用いた積層セラミックコンデン
サ(実施例6〜10)は、静電容量が1.0μFであ
り、ショート不良発生率、層剥がれ不良発生率がいずれ
も0%であり、良好な特性が得られた。
A multilayer ceramic capacitor using the conductive powders (conductive paste, ...) Of Samples 1 and 2 and Samples 5 to 7 obtained at a reaction temperature of 20 to 50 ° C. (Examples 6 to 10) ), The electrostatic capacity was 1.0 μF, and the short-circuit defect occurrence ratio and the layer peeling defect occurrence ratio were both 0%, and good characteristics were obtained.

【0070】また、従来のNi粉末である試料8の導電
粉末(導電性ペースト)を用いた積層セラミックコン
デンサ(比較例6、7)は、脱バインダー条件がAir
雰囲気中で保持温度が高い場合(条件A)には、静電容
量が極端に低くなって層剥がれ不良発生率が高くなり、
2雰囲気中で保持温度が低い場合(条件B)には、シ
ョート不良発生率が高くなる。
Further, in the laminated ceramic capacitors (Comparative Examples 6 and 7) using the conductive powder (conductive paste) of Sample 8 which is a conventional Ni powder, the binder removal condition is Air.
When the holding temperature is high in the atmosphere (condition A), the electrostatic capacitance becomes extremely low and the layer peeling defect occurrence rate becomes high.
When the holding temperature is low in the N 2 atmosphere (condition B), the short-circuit defect occurrence rate becomes high.

【0071】[0071]

【発明の効果】以上のように本発明の導電粉末の製造方
法によれば、Ni粉末、Cu粉末、Niまたは/および
Cuを主成分とする合金粉末からなる群から選ばれる少
なくとも1種の卑金属粉末とNi塩を含む金属塩溶液
に、水素化硼化物を含む還元剤溶液を混合して前記Ni
塩溶液を液層還元し、前記卑金属粉末の表面にNi−B
合金粉末を析出させる反応において、卑金属粉末の溶液
濃度を400g/L以上にすることで、耐酸化性を有す
る導電粉末を提供することができる。また、このような
導電粉末を用いた導電性ペーストを提供することができ
る。これにより、有機物の分解ならびに除去に十分な温
度の酸化雰囲気中での脱バインダー処理を可能とし、こ
のような導電性ペーストを用いて内部電極を形成する積
層セラミック電子部品の歩留まりならびに生産性を向上
させることができる。
As described above, according to the method for producing a conductive powder of the present invention, at least one base metal selected from the group consisting of Ni powder, Cu powder, and alloy powder containing Ni or / and Cu as a main component. The metal salt solution containing the powder and the Ni salt is mixed with the reducing agent solution containing the borohydride to form the Ni
The salt solution is subjected to liquid phase reduction, and Ni-B is applied to the surface of the base metal powder.
In the reaction for depositing the alloy powder, by setting the solution concentration of the base metal powder to 400 g / L or more, it is possible to provide a conductive powder having oxidation resistance. Further, a conductive paste using such a conductive powder can be provided. This enables debindering treatment in an oxidizing atmosphere at a temperature sufficient for decomposing and removing organic substances, and improves the yield and productivity of multilayer ceramic electronic components that form internal electrodes using such conductive paste. Can be made.

【0072】また、上述の導電粉末の製造方法におい
て、反応温度を0℃以上、50℃以下にすることで、よ
り確実に耐酸化性を有する導電粉末を提供することがで
きる。
Further, in the above-mentioned method for producing a conductive powder, by setting the reaction temperature to 0 ° C. or higher and 50 ° C. or lower, it is possible to more reliably provide a conductive powder having oxidation resistance.

【0073】また、上述の卑金属粉末の平均粒径は、
1.0μm以下であることが好ましい。これにより、一
般に卑金属粉末は、粒径が小さくなるほど比表面積が増
えて活性になり、酸化が起こり易くなるが、卑金属粉末
の耐酸化性を向上させるという本発明の効果が顕著とな
る。また、積層セラミック電子部品のさらなる薄層化や
多層化に貢献できる効果がある。
The average particle size of the above base metal powder is
It is preferably 1.0 μm or less. As a result, in general, the base metal powder has a larger specific surface area and becomes more active as the particle size becomes smaller and becomes more active, so that oxidation easily occurs, but the effect of the present invention of improving the oxidation resistance of the base metal powder becomes remarkable. Further, there is an effect that it can contribute to further thinning and multilayering of the monolithic ceramic electronic component.

【0074】また、上述のNi−B合金粉末の平均粒径
は、0.1μm以下であり、かつ、卑金属粉末の平均粒
径の1/2以下であることが好ましい。これにより、N
i−B合金粉末の表面をより均一に被覆することがで
き、卑金属粉末の耐酸化性が十分に得られるという効果
がある。
The average particle size of the above Ni-B alloy powder is preferably 0.1 μm or less and 1/2 or less of the average particle size of the base metal powder. By this, N
The surface of the i-B alloy powder can be coated more uniformly, and the oxidation resistance of the base metal powder can be sufficiently obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、本発明の一実施形態にかかる導電粉
末の図解的断面図であり、(b)は、(a)の導電粉末
を熱処理した(焼結後の)ものの図解的断面図である。
FIG. 1A is a schematic sectional view of a conductive powder according to an embodiment of the present invention, and FIG. 1B is a schematic cross-sectional view of the conductive powder of FIG. FIG.

【図2】本発明の一実施形態にかかる積層セラミック電
子部品の断面図である。
FIG. 2 is a cross-sectional view of a monolithic ceramic electronic component according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 導電粉末 2 卑金属粉末 3a Ni−B合金粉末 11 積層セラミック電子部品 12a セラミック層 12 セラミック積層体 13 内部電極 1 Conductive powder 2 Base metal powder 3a Ni-B alloy powder 11 Multilayer ceramic electronic components 12a ceramic layer 12 Ceramic laminate 13 internal electrodes

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22F 9/04 B22F 9/04 C H01B 1/00 H01B 1/00 B 1/22 1/22 A H01G 4/12 361 H01G 4/12 361 Fターム(参考) 4K017 AA04 BA03 BA05 BB13 CA07 DA07 EA03 4K018 BA02 BA04 BB04 BC01 BC08 BC24 BD04 5E001 AB03 AE02 AF06 AH01 AH06 AH09 AJ01 AJ02 5G301 DA06 DA10 DA22 DD01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B22F 9/04 B22F 9/04 C H01B 1/00 H01B 1/00 B 1/22 1/22 A H01G 4 / 12 361 H01G 4/12 361 F term (reference) 4K017 AA04 BA03 BA05 BB13 CA07 DA07 EA03 4K018 BA02 BA04 BB04 BC01 BC08 BC24 BD04 5E001 AB03 AE02 AF06 AH01 AH06 AH09 AJ01 AJ02 5G301 DA06 DA10 DA22 DD01

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】Ni粉末、Cu粉末、ならびにNiまたは
/およびCuを主成分とする合金粉末からなる群から選
ばれる少なくとも1種の卑金属粉末と、Ni塩とを含む
金属塩溶液に、水素化硼化物を含む還元剤溶液を混合
し、前記卑金属粉末の表面にNi−B合金粉末を析出さ
せる析出工程を備える導電粉末の製造方法であって、前
記金属塩溶液における卑金属粉末濃度が、400g/L
以上であることを特徴とする導電粉末の製造方法。
1. A metal salt solution containing at least one base metal powder selected from the group consisting of Ni powder, Cu powder, and alloy powder containing Ni and / or Cu as a main component, and a Ni salt, and hydrogenated. A method for producing a conductive powder, comprising a precipitation step of mixing a reducing agent solution containing a boride and depositing a Ni-B alloy powder on the surface of the base metal powder, wherein the base metal powder concentration in the metal salt solution is 400 g / L
The above is the method for producing a conductive powder.
【請求項2】前記析出工程における温度が、0℃以上、
50℃以下であることを特徴とする請求項1記載の導電
粉末の製造方法。
2. The temperature in the precipitation step is 0 ° C. or higher,
It is 50 degrees C or less, The manufacturing method of the electrically conductive powder of Claim 1 characterized by the above-mentioned.
【請求項3】前記析出工程の後に、前記Ni−B合金粉
末が表面に析出した前記卑金属粉末を、100℃以上で
熱処理する熱処理工程をさらに備えることを特徴とする
請求項1または2記載の導電粉末の製造方法。
3. The method according to claim 1, further comprising a heat treatment step of heat-treating the base metal powder having the Ni—B alloy powder deposited on the surface thereof at 100 ° C. or higher after the precipitation step. Method for producing conductive powder.
【請求項4】前記析出工程の後に、前記Ni−B合金粉
末が表面に析出した前記卑金属粉末を粉砕処理する粉砕
処理工程をさらに備えることを特徴とする請求項1ない
し3のいずれか1項に記載の導電粉末の製造方法。
4. The crushing step of crushing the base metal powder having the Ni-B alloy powder deposited on its surface after the precipitation step, further comprising a crushing step. The method for producing a conductive powder according to.
【請求項5】前記卑金属粉末の平均粒径より小さく、か
つ、前記卑金属粉末100重量部に対して50重量部以
下の量のNi−B合金粉末を析出させることを特徴とす
る請求項1ないし4のいずれか1項に記載の導電粉末の
製造方法。
5. The Ni-B alloy powder, which is smaller than the average particle diameter of the base metal powder and which is 50 parts by weight or less with respect to 100 parts by weight of the base metal powder, is deposited. 4. The method for producing a conductive powder according to any one of 4 above.
【請求項6】前記卑金属粉末の平均粒径が、1.0μm
以下であることを特徴とする請求項1ないし5のいずれ
か1項に記載の導電粉末の製造方法。
6. The average particle diameter of the base metal powder is 1.0 μm.
It is the following, The manufacturing method of the electrically conductive powder of any one of Claim 1 thru | or 5 characterized by the above-mentioned.
【請求項7】前記Ni−B合金粉末の平均粒径は、0.
1μm以下であり、かつ、前記卑金属粉末の平均粒径の
1/2以下であることを特徴とする請求項1ないし6の
いずれか1項に記載の導電粉末の製造方法。
7. The average particle size of the Ni-B alloy powder is 0.
It is 1 micrometer or less, and is 1/2 or less of the average particle diameter of the said base metal powder, The manufacturing method of the electrically conductive powder of any one of Claim 1 thru | or 6 characterized by the above-mentioned.
【請求項8】請求項1ないし7のいずれか1項に記載の
導電粉末の製造方法によって得られたことを特徴とする
導電粉末。
8. A conductive powder obtained by the method for manufacturing a conductive powder according to any one of claims 1 to 7.
【請求項9】請求項8に記載の導電粉末と、有機ビヒク
ルとを含有してなることを特徴とする導電性ペースト。
9. A conductive paste containing the conductive powder according to claim 8 and an organic vehicle.
【請求項10】複数のセラミック層が積層されてなるセ
ラミック積層体と、前記セラミック層間に形成された複
数の内部電極とを備える積層セラミック電子部品であっ
て、 前記内部電極は、請求項9に記載の導電性ペーストを用
いて形成されていることを特徴とする積層セラミック電
子部品。
10. A monolithic ceramic electronic component comprising a ceramic laminated body formed by laminating a plurality of ceramic layers, and a plurality of internal electrodes formed between the ceramic layers, wherein the internal electrodes are the same as those in claim 9. A laminated ceramic electronic component formed by using the conductive paste as described above.
JP2001377455A 2001-12-11 2001-12-11 Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component Expired - Lifetime JP3698098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001377455A JP3698098B2 (en) 2001-12-11 2001-12-11 Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001377455A JP3698098B2 (en) 2001-12-11 2001-12-11 Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component

Publications (2)

Publication Number Publication Date
JP2003183703A true JP2003183703A (en) 2003-07-03
JP3698098B2 JP3698098B2 (en) 2005-09-21

Family

ID=27590800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001377455A Expired - Lifetime JP3698098B2 (en) 2001-12-11 2001-12-11 Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component

Country Status (1)

Country Link
JP (1) JP3698098B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013846A (en) * 2006-07-06 2008-01-24 Samsung Electro-Mechanics Co Ltd Method for producing metal nanoparticle, and metal nanoparticle
CN103611932A (en) * 2013-12-18 2014-03-05 江苏科技大学 Sonochemistry preparation method allowing surface of copper powder to be coated with nickel and phosphorus alloy layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280206A (en) * 1985-10-02 1987-04-13 Murata Mfg Co Ltd Production of nickel powder
JPS6327567A (en) * 1986-07-18 1988-02-05 Mitsubishi Electric Corp Electrically conductive paste
JPH05195005A (en) * 1992-01-13 1993-08-03 Murata Mfg Co Ltd Method for preventing oxidation of copper powder
JP2002080902A (en) * 2000-07-05 2002-03-22 Murata Mfg Co Ltd Method for producing electrically conductive powder, electrically conductive powder, electrically conductive paste and laminated ceramic electronic parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280206A (en) * 1985-10-02 1987-04-13 Murata Mfg Co Ltd Production of nickel powder
JPS6327567A (en) * 1986-07-18 1988-02-05 Mitsubishi Electric Corp Electrically conductive paste
JPH05195005A (en) * 1992-01-13 1993-08-03 Murata Mfg Co Ltd Method for preventing oxidation of copper powder
JP2002080902A (en) * 2000-07-05 2002-03-22 Murata Mfg Co Ltd Method for producing electrically conductive powder, electrically conductive powder, electrically conductive paste and laminated ceramic electronic parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013846A (en) * 2006-07-06 2008-01-24 Samsung Electro-Mechanics Co Ltd Method for producing metal nanoparticle, and metal nanoparticle
US7785392B2 (en) 2006-07-06 2010-08-31 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing metal nanoparticles
CN103611932A (en) * 2013-12-18 2014-03-05 江苏科技大学 Sonochemistry preparation method allowing surface of copper powder to be coated with nickel and phosphorus alloy layer

Also Published As

Publication number Publication date
JP3698098B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
JP4081987B2 (en) Metal powder manufacturing method, metal powder, conductive paste using the same, and multilayer ceramic electronic component using the same
EP0964415B1 (en) Electronic device and method of producing the same
JP3644235B2 (en) Multilayer ceramic electronic components
US20070253140A1 (en) Base metal electrode multilayer capacitor with localized oxidizing source
US20070193410A1 (en) Copper alloy powder for electrically conductive paste
KR100259562B1 (en) Nickel powder containing a composite oxide of la and ni and process for preparing the same
KR970004274B1 (en) Seramic capacitor
KR20000028837A (en) Nickel composite particle and production process therefor
JP2003013103A (en) Method for manufacturing electroconductive powder, electroconductive powder, electroconductive paste and laminated ceramic electronic component
JP3918450B2 (en) Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component
JP3473548B2 (en) Method for producing metal powder, metal powder, conductive paste using the same, and multilayer ceramic electronic component using the same
JP2002275511A (en) Method for manufacturing metal powder, metal powder, conductive paste and laminated ceramic electronic parts
JP3414502B2 (en) Noble metal powder and conductor paste for high temperature firing
JP3698098B2 (en) Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component
JP2004183027A (en) Method for manufacturing nickel powder, nickel powder, electroconductive paste, and multilayered ceramic electronic component
JPH0696988A (en) Paste for forming internal electrode of multilayer ceramic capacitor and multilayer ceramic capacitor employing the paste
JP2004068090A (en) Method for manufacturing conductive powder, conductive powder, conductive paste and electronic partt of laminated ceramic
JP4595235B2 (en) Method for producing conductive powder having oxidation resistance, conductive powder, conductive paste, and multilayer ceramic electronic component
JP2002275509A (en) Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
JPH07197103A (en) Method for coating surface of metallic powder with metallic compound
JP3922001B2 (en) Copper powder manufacturing method, copper powder, conductive paste, and multilayer ceramic electronic component
JP4085587B2 (en) Metal powder manufacturing method, metal powder, conductive paste and multilayer ceramic electronic component
JPS61144813A (en) Laminated ceramic capacitor and manufacture thereof
JPH03214716A (en) Formation of electrode and electronic parts using the same
JP2005023394A (en) Conductive powder, production method thereof and conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Ref document number: 3698098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

EXPY Cancellation because of completion of term