JP2001220137A - Tin-doped indium oxide powder and its manufacturing method - Google Patents

Tin-doped indium oxide powder and its manufacturing method

Info

Publication number
JP2001220137A
JP2001220137A JP2000038233A JP2000038233A JP2001220137A JP 2001220137 A JP2001220137 A JP 2001220137A JP 2000038233 A JP2000038233 A JP 2000038233A JP 2000038233 A JP2000038233 A JP 2000038233A JP 2001220137 A JP2001220137 A JP 2001220137A
Authority
JP
Japan
Prior art keywords
tin
hydroxide
indium oxide
powder
doped indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000038233A
Other languages
Japanese (ja)
Other versions
JP3838615B2 (en
Inventor
Norio Mogi
謙雄 茂木
Tatsumi Inamura
辰美 稲村
Koichiro Ejima
光一郎 江島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2000038233A priority Critical patent/JP3838615B2/en
Publication of JP2001220137A publication Critical patent/JP2001220137A/en
Application granted granted Critical
Publication of JP3838615B2 publication Critical patent/JP3838615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a low-resistance tin-doped indium oxide powder preventing the formation of an agglomerate by sintering even if heat-treating temperature is raised, having excellent dispersibility when converted to a paint and appropriately used in a transparent and conductive paint, etc., and to furnish a method for manufacturing such a tin-doped indium oxide powder at a low cost. SOLUTION: The hydroxides of indium and tin formed by adding an alkali solution to an aqueous acidic mixed solution of indium chloride and tin chloride are cleaned, dried and baked in an inert gas containing a reducing gas to manufacture the tin-doped indium oxide powder. In this method, an aqueous solution of a potassium compound is used as the alkali solution or added when or after the hydroxides are cleaned to incorporate potassium hydroxide into the hydroxides.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スズドープ酸化イ
ンジウム粉末およびその製造方法に関し、特に透明導電
性塗料などに使用するスズドープ酸化インジウム粉末お
よびその製造方法に関する。
The present invention relates to a tin-doped indium oxide powder and a method for producing the same, and more particularly, to a tin-doped indium oxide powder used for a transparent conductive paint and the like and a method for producing the same.

【0002】[0002]

【従来の技術】従来、透明導電性塗料の材料として、酸
化スズ、アンチモンドープ酸化スズ、スズドープ酸化イ
ンジウム、銀などの金属が知られている。これらのう
ち、酸化インジウムにスズをドープしたスズドープ酸化
インジウムは、その可視光に対する透光性と高い導電性
から、静電防止や電磁波遮蔽のために、テレビやコンピ
ューター等のディスプレイとして用いられるCRTの表
示面に塗布されている。このスズドープ酸化インジウム
は、可視光に対して透明であるとともに酸素欠損により
導電性を示す半導体であり、添加されたSnがSn4+
として電子供給源となり、高い導電性を示すものであ
る。
2. Description of the Related Art Conventionally, metals such as tin oxide, antimony-doped tin oxide, tin-doped indium oxide, and silver have been known as materials for transparent conductive coatings. Of these, tin-doped indium oxide obtained by doping tin into indium oxide is a CRT used as a display of a television or a computer for preventing static electricity and shielding electromagnetic waves due to its light transmittance and high conductivity with respect to visible light. It is applied to the display surface. This tin-doped indium oxide is a semiconductor that is transparent to visible light and exhibits conductivity due to oxygen deficiency, and the added Sn is Sn 4+
As an electron supply source and exhibit high conductivity.

【0003】このスズドープ酸化インジウムを塗布する
方法として、導電性粉末であるスズドープ酸化インジウ
ム粉末を溶媒に分散させて無機または有機バインダーを
加えた塗布液をコーティングする方法が使用されてい
る。この塗布液に用いられるスズドープ酸化インジウム
粉末は、透明性を得るために、微粒子であるとともに塗
布液中で凝集等がなく分散されることが必要である。
[0003] As a method of applying the tin-doped indium oxide, a method of dispersing a tin-doped indium oxide powder, which is a conductive powder, in a solvent and coating a coating solution containing an inorganic or organic binder is used. In order to obtain transparency, the tin-doped indium oxide powder used in the coating solution must be fine particles and be dispersed without aggregation in the coating solution.

【0004】このようなスズドープ酸化インジウム粉末
の製造方法として、塩化インジウムと塩化スズの混合水
溶液に、アンモニア水や炭酸アンモニウム水溶液などの
アルカリ水溶液を加えることにより得られた共沈水酸化
物を、熱処理することにより微粒子導電性酸化物粉末を
得る方法が知られている(特開昭62−7627等参
照)。
As a method for producing such tin-doped indium oxide powder, a coprecipitated hydroxide obtained by adding an aqueous alkali solution such as aqueous ammonia or an aqueous ammonium carbonate solution to a mixed aqueous solution of indium chloride and tin chloride is heat-treated. Thus, a method for obtaining a fine particle conductive oxide powder is known (see Japanese Patent Application Laid-Open No. 62-7627).

【0005】[0005]

【発明が解決しようとする課題】しかし、上述した従来
のスズドープ酸化インジウム粉末の製造方法において
は、共沈水酸化物を熱処理により酸化物とした後に、さ
らに結晶性の高い粒子を得るために熱処理温度を上げる
と、焼結により凝集粒子が形成され、塗料化時に分散さ
れ難くなるという問題がある。
However, in the above-mentioned conventional method for producing tin-doped indium oxide powder, after the coprecipitated hydroxide is converted into an oxide by heat treatment, the heat treatment temperature is adjusted to obtain particles having higher crystallinity. However, there is a problem that aggregated particles are formed by sintering and are hardly dispersed at the time of coating.

【0006】したがって、本発明は、このような従来の
問題点に鑑み、熱処理温度を上げても焼結により凝集粒
子が形成されるのを防止し、塗料化時に優れた分散性を
有し、透明導電性塗料などに使用するのに適した低抵抗
のスズドープ酸化インジウム粉末およびこのようなスズ
ドープ酸化インジウム粉末を低コストで製造する方法を
提供することを目的とする。
Accordingly, the present invention has been made in view of such conventional problems, and prevents the formation of agglomerated particles by sintering even when the heat treatment temperature is increased, and has excellent dispersibility during coating. An object of the present invention is to provide a low-resistance tin-doped indium oxide powder suitable for use in a transparent conductive paint and the like, and a method for producing such a tin-doped indium oxide powder at low cost.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究した結果、塩化インジウムと
塩化スズの酸性混合水溶液にアルカリ溶液を加えること
により生成したインジウムとスズの水酸化物を、洗浄、
乾燥し、還元ガスを含む不活性ガス中で焼成することに
よってスズドープ酸化インジウム粉末を製造する方法に
おいて、水酸化物にカリウムを含有させることにより、
熱処理温度を上げても焼結により凝集粒子が形成される
のを防止することができ、塗料化時の分散性が良好で、
低抵抗で透明性に優れたスズドープ酸化インジウム粉末
が得られることを見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, the indium and tin water produced by adding an alkaline solution to an acidic mixed aqueous solution of indium chloride and tin chloride. Cleaning oxides,
In a method for producing a tin-doped indium oxide powder by drying and calcining in an inert gas containing a reducing gas, by allowing the hydroxide to contain potassium,
Even if the heat treatment temperature is raised, it is possible to prevent the formation of aggregated particles by sintering, and the dispersibility at the time of coating is good,
They have found that a tin-doped indium oxide powder having low resistance and excellent transparency can be obtained, and the present invention has been completed.

【0008】すなわち、本発明によるスズドープ酸化イ
ンジウム粉末の製造方法は、塩化インジウムと塩化スズ
の酸性混合水溶液にアルカリ溶液を加えることにより生
成したインジウムとスズの水酸化物を、洗浄、乾燥し、
還元ガスを含む不活性ガス中で焼成することによってス
ズドープ酸化インジウム粉末を製造する方法において、
水酸化物にカリウムを含有させることを特徴とする。
That is, the method for producing tin-doped indium oxide powder according to the present invention comprises washing and drying a hydroxide of indium and tin produced by adding an alkaline solution to an aqueous acidic mixed solution of indium chloride and tin chloride;
In a method of producing a tin-doped indium oxide powder by firing in an inert gas containing a reducing gas,
It is characterized in that the hydroxide contains potassium.

【0009】上記製造方法において、アルカリ溶液とし
て水酸化カリウム、炭酸カリウム、炭酸水素カリウムな
ど、好ましくは水酸化カリウムを使用することにより、
あるいは水酸化物の洗浄の際または洗浄後に水酸化カリ
ウム、炭酸カリウム、炭酸水素カリウムなどの水溶液、
好ましくは水酸化カリウム水溶液を加えることにより、
水酸化物にカリウムを含有させることができる。
In the above production method, potassium hydroxide, potassium carbonate, potassium hydrogen carbonate or the like, preferably potassium hydroxide is used as the alkaline solution,
Alternatively, during or after washing the hydroxide, an aqueous solution of potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, or the like,
Preferably by adding an aqueous solution of potassium hydroxide,
The hydroxide may contain potassium.

【0010】また、本発明によるスズドープ酸化インジ
ウム粉末は、BET比表面積が8乃至40m/g、カ
リウム含有量が10より大きく且つ100ppm以下で
あり、Sn含有量がSnO換算で0.1乃至20重量
%であることを特徴とする。このスズドープ酸化インジ
ウム粉末は、粉体pHが4.5乃至8.5であることが
好ましい。
The tin-doped indium oxide powder according to the present invention has a BET specific surface area of 8 to 40 m 2 / g, a potassium content of more than 10 and 100 ppm or less, and a Sn content of 0.1 to 100 ppm in terms of SnO 2. 20% by weight. The tin-doped indium oxide powder preferably has a powder pH of 4.5 to 8.5.

【0011】[0011]

【発明の実施の形態】本発明によるスズドープ酸化イン
ジウム粉末の製造方法の実施の形態では、出発原料とし
て、塩化インジウム水溶液と塩化スズ水溶液を使用す
る。高い導電性の粉末を得るために、これらの水溶液
を、焼成後のスズドープ酸化インジウム粉末中のSn含
有量がSnO換算で0.1〜20重量%、好ましくは
2〜15重量%となるような割合で混合する。この範囲
は、酸化インジウム結晶中にドープされるSnが導電キ
ャリアとして働く範囲であり、Sn含有量がこの範囲よ
り少ないとSnとの複合化の効果が得られず、この範囲
より多いと逆に導電性を阻害するため、良好な導電性粉
末が得られないからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the embodiment of the method for producing tin-doped indium oxide powder according to the present invention, an aqueous indium chloride solution and an aqueous tin chloride solution are used as starting materials. In order to obtain high electrical conductivity of the powder, these aqueous solutions, Sn content of tin-doped indium oxide powder after firing 0.1 to 20 wt% in terms of SnO 2, and preferably no greater 2-15 wt% Mix in proper proportions. This range is a range in which Sn doped in the indium oxide crystal acts as a conductive carrier. If the Sn content is less than this range, the effect of complexing with Sn cannot be obtained. This is because good conductivity powder cannot be obtained because the conductivity is impaired.

【0012】このようにして得られた酸性混合溶液に、
中和剤としてアルカリ溶液を添加し、撹拌して反応させ
ることにより、水酸化インジウムと水酸化スズの複合水
酸化物の沈殿が得られる。添加するアルカリ溶液として
は、アンモニア水、水酸化ナトリウム、水酸化カリウ
ム、炭酸カリウム、炭酸水素カリウム、炭酸アンモニウ
ム、重炭酸アンモニウムなどの溶液またはこれらの混合
溶液を使用することができる。
[0012] The acidic mixed solution thus obtained is
By adding an alkaline solution as a neutralizing agent and stirring and reacting, a precipitate of a composite hydroxide of indium hydroxide and tin hydroxide is obtained. As the alkaline solution to be added, a solution of aqueous ammonia, sodium hydroxide, potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, ammonium carbonate, ammonium bicarbonate, or a mixed solution thereof can be used.

【0013】次に、得られた水酸化物を洗浄して固液分
離する。この洗浄方法としてデカンテーション、洗浄濾
過方法として遠心脱水やフィルタプレスなどを使用する
ことができる。
Next, the obtained hydroxide is washed and solid-liquid separated. Decantation can be used as the washing method, and centrifugal dehydration or filter press can be used as the washing and filtering method.

【0014】上記の中和反応時の中和剤としてカリウム
化合物以外のアルカリ溶液を使用する場合には、水酸化
物の洗浄時の溶液としてカリウム化合物の水溶液を使用
する。これは、水酸化物のカリウム含有量を制御するこ
とにより、塗料化時の分散性を向上させることができる
からである。すなわち、カリウムを含有させることによ
り、後述する焼成工程において粒子同士が焼結により凝
集粒子が形成されるのを防止して、塗料化時の粒子の分
散性が向上し、塗膜化時に粒子が不均一になって抵抗が
高くなるのを防止することができるからである。カリウ
ム成分は水酸化物の洗浄時や焼成時の揮発により除去さ
れるが、酸化物中に残留するカリウムの量が10より大
きく且つ100ppm以下、好ましくは15〜50pp
mになるようにする。本発明において、水酸化カリウム
として水酸化物中に存在するカリウム分は、焼成時に残
留塩素やインジウム、スズ、酸素と化合することで粒子
成長、焼結を部分的に妨げる働きをすると考えられる。
残留カリウムが10ppm以下では、実質的に焼結防止
効果が得られず、また粉体pHも低く、分散性が悪い。
一方、100ppmを超えると、酸化物粒子からの溶出
が多くなり、結晶成長し過ぎて粒子が大きくなり過ぎ、
塗膜化時の導電性が低下し、粉体pHも高くなり、分散
性が悪い。酸化物の粉体pHは、残留塩素が多いと低く
なり、少ないと中性領域に近づくが、水酸化物にカリウ
ム分が存在すると、カリウム分と塩素分が化合して粉体
pHが高くなる。
When an alkaline solution other than a potassium compound is used as a neutralizing agent in the neutralization reaction, an aqueous solution of a potassium compound is used as a solution for washing the hydroxide. This is because by controlling the potassium content of the hydroxide, the dispersibility at the time of coating can be improved. That is, by adding potassium, the particles are prevented from forming aggregated particles by sintering in the firing step described later, the dispersibility of the particles during coating is improved, and the particles are reduced during coating. This is because it is possible to prevent non-uniformity and increase in resistance. The potassium component is removed by volatilization at the time of washing or baking the hydroxide, but the amount of potassium remaining in the oxide is more than 10 and 100 ppm or less, preferably 15 to 50 pp.
m. In the present invention, the potassium component present in the hydroxide as potassium hydroxide is considered to function to partially hinder particle growth and sintering by being combined with residual chlorine, indium, tin, and oxygen during firing.
When the residual potassium content is 10 ppm or less, the effect of preventing sintering is not substantially obtained, the powder pH is low, and the dispersibility is poor.
On the other hand, if it exceeds 100 ppm, the elution from the oxide particles increases, and the particles grow too much due to crystal growth,
The conductivity at the time of coating is reduced, the powder pH is increased, and the dispersibility is poor. The powder pH of the oxide decreases when the residual chlorine is large, and approaches the neutral region when the residual chlorine is low. However, when potassium is present in the hydroxide, the potassium and chlorine are combined to increase the powder pH. .

【0015】次いで、得られた水酸化物を乾燥し、得ら
れた乾燥粒材を焼成することにより、スズドープ酸化イ
ンジウム粉末が得られる。この焼成工程は、不活性ガス
を炉内に導入し、500〜900℃の温度で数時間保持
することにより行う。導電性を高めるため、不活性ガス
に還元性ガスなどを含有させてもよい。焼成雰囲気が大
気または酸化性雰囲気であると、酸化物の酸素欠損が形
成されず、導電性の低い粒子となるので好ましくない。
Next, the obtained hydroxide is dried, and the obtained dried granules are fired to obtain a tin-doped indium oxide powder. This firing step is performed by introducing an inert gas into the furnace and holding the same at a temperature of 500 to 900 ° C. for several hours. In order to increase conductivity, a reducing gas or the like may be contained in the inert gas. It is not preferable that the sintering atmosphere be air or an oxidizing atmosphere because oxygen deficiency of the oxide is not formed and particles having low conductivity are obtained.

【0016】このようにして得られる酸化物粉末の比表
面積は、BET1点法により測定した比表面積が8〜4
0m/gであるのが好ましく、特に8〜20m/g
であるのが好ましい。比表面積は、粉末の一次粒子サイ
ズと逆相関があり、粒子サイズが小さくBETが大きい
方が、焼結による凝集が弱く、塗料化時に分散され易
く、また粒子の光散乱の影響を受け難いため、可視光透
過率も高くなる。しかし、一次粒子サイズが小さいと、
塗膜中の粒子接触界面数が多くなり、導電性が低くな
る。したがって、粒子サイズを大きくする(すなわちB
ETを下げる)ことにより、導電性を高めるとともに分
散性を高める必要がある。本発明による焼結防止効果
は、より低BET側で効果が見られるが、BETが8m
/gより小さいと、粒子サイズが大きくなり、透過率
が低くなる。一方、BETが40m/gより大きい
と、粒子サイズが小さ過ぎて凝集力が強くなり、逆に分
散し難くなる。
The specific surface area of the oxide powder thus obtained is 8 to 4 as measured by the BET one-point method.
0 m 2 / g, preferably 8 to 20 m 2 / g
It is preferred that The specific surface area is inversely related to the primary particle size of the powder, and the smaller the particle size and the larger the BET, the weaker the cohesion due to sintering, the easier it is to disperse at the time of coating, and the less the effect of light scattering of the particles. , The visible light transmittance also increases. However, if the primary particle size is small,
The number of particle contact interfaces in the coating film increases, and the conductivity decreases. Therefore, increasing the particle size (ie, B
It is necessary to increase conductivity and dispersibility by lowering ET). The effect of preventing sintering according to the present invention is seen at a lower BET side, but the BET is 8 m.
If it is smaller than 2 / g, the particle size increases and the transmittance decreases. On the other hand, if the BET is larger than 40 m 2 / g, the particle size is too small, the cohesive strength becomes strong, and conversely, it becomes difficult to disperse.

【0017】[0017]

【実施例】以下、実施例に基づいて本発明によるスズド
ープ酸化インジウム粉末およびその製造方法について詳
細に説明する。
EXAMPLES Hereinafter, the tin-doped indium oxide powder and the method for producing the same according to the present invention will be described in detail based on examples.

【0018】[実施例1]インジウムメタル150gを
塩酸水溶液に入れて加熱溶解し、三塩化インジウム(In
Cl3)溶液を作り、この溶液に二塩化スズ二水和物(SnC
l2・2H2O)14.4g(焼成後のスズドープ酸化インジ
ウム粉末中のSn含有量がSnO換算で5重量%とな
るような割合)を混合溶解し、純水を加えて、1500
mlのインジウムとスズの酸性混合溶液を調整した。こ
の混合溶液に水酸化カリウムの20重量%水溶液を添加
して反応させ、最終pH9とした。反応時の温度は50
℃に調整した。得られたインジウムとスズの複合水酸化
物を、純水によるデカンテーションで繰り返し洗浄し、
濾過した後、150℃で乾燥した。
Example 1 150 g of indium metal was placed in an aqueous hydrochloric acid solution and dissolved by heating.
Cl 3 ) solution and add tin dichloride dihydrate (SnC
l 2 · 2H 2 O) 14.4g (Sn content of tin-doped indium oxide powder after firing is mixed and dissolved percentage) such that 5% by weight in terms of SnO 2, the addition of pure water, 1500
An acidic mixed solution of indium and tin of ml was prepared. A 20% by weight aqueous solution of potassium hydroxide was added to the mixed solution to cause a reaction, and the final pH was adjusted to 9. The reaction temperature is 50
Adjusted to ° C. The obtained indium and tin composite hydroxide is repeatedly washed by decantation with pure water,
After filtration, it was dried at 150 ° C.

【0019】得られた水酸化物を硝酸溶液に加熱溶解
し、残留Sn化合物の沈殿を濾過した液に硝酸銀を加え
て塩化銀を沈殿させ、比濁法により塩素含有量を分析し
たところ、水酸化物中の塩素含有量は140ppmであ
った。また、得られた水酸化物を純水に入れ、5分間超
音波分散した後、上澄み液をとり、原子吸光法により水
酸化物中のK含有量を分析したところ、K含有量は13
0ppmであった。
The obtained hydroxide was dissolved in a nitric acid solution by heating, silver nitrate was added to the filtrate from which the precipitate of the residual Sn compound was filtered to precipitate silver chloride, and the chlorine content was analyzed by turbidimetry. The chlorine content in the oxide was 140 ppm. The obtained hydroxide was put into pure water, ultrasonically dispersed for 5 minutes, and the supernatant was taken. The K content of the hydroxide was analyzed by an atomic absorption method.
It was 0 ppm.

【0020】次に、得られた水酸化物を管状炉に入れ、
窒素ガスに0.05体積%のアンモニアガスと1.5体
積%の水蒸気を加えた雰囲気中において、750℃で2
時間の焼成を行った。このようにして得られたスズドー
プ酸化インジウムの焼成品を卓上ミルで解砕した。
Next, the obtained hydroxide is put into a tube furnace,
In an atmosphere in which 0.05% by volume of ammonia gas and 1.5% by volume of water vapor are added to nitrogen gas, at 750 ° C.
Time firing was performed. The fired product of the tin-doped indium oxide thus obtained was crushed by a table mill.

【0021】得られた粉体の比表面積をBET1点法に
より測定したところ、この粉体のBETは12.0m
/gであった。また、得られた粉体と電気伝導度が1μ
S/cm以下の純水(イオン交換水または蒸留水)とを
重量比で1:9の割合で混合した溶液を5分間煮沸し、
冷却後に電気伝導度が1μS/cm以下の純水を追加し
て、煮沸前の溶液と同じ重量にした後にとった上澄み液
のpHを測定することにより、得られた粉体pHは8.
0であった。さらに、上記と同様の方法で測定したK含
有量は100ppmであった。
When the specific surface area of the obtained powder was measured by the BET one-point method, the BET of this powder was 12.0 m 2.
/ G. In addition, the obtained powder has an electric conductivity of 1 μm.
A solution obtained by mixing S / cm or less pure water (ion-exchanged water or distilled water) at a weight ratio of 1: 9 is boiled for 5 minutes,
After cooling, pure water having an electric conductivity of 1 μS / cm or less was added to make the weight the same as that of the solution before boiling, and the pH of the supernatant was measured.
It was 0. Further, the K content measured by the same method as described above was 100 ppm.

【0022】この粉末の粉体pHを測定した溶液には、
わずかであるがインジウムとスズの溶出が見られた。こ
れにより、焼結時にカリウムがインジウムおよびスズと
化合して焼結を阻害していると考えられる。
The solution in which the powder pH of this powder was measured includes:
Slight elution of indium and tin was observed. Thereby, it is considered that potassium is combined with indium and tin during sintering and inhibits sintering.

【0023】また、この粉末6gとIPA30gを遊星
ボールミル(フリッチュ製P−5型、容器容量80m
l、PSZ 1mmφボールを使用)に入れ、回転数2
000rpmで30分間回転させて分散させた後、粒度
分布を測定したところ、平均径0.12μmであった。
さらに、この分散液にコロイダルシリカとエチルアルコ
ールを加え、スズドープ酸化インジウム粉末の含有量が
2%、シリカ含有量が2%、残部がIPAおよびエチル
アルコールである塗料を作製し、ガラス板にスピンコー
トした後、150℃で30分間加熱し、膜厚0.3μm
の透明導電性膜を形成した。
Further, 6 g of this powder and 30 g of IPA were mixed with a planetary ball mill (P-5 type manufactured by Fritsch, container capacity: 80 m).
1, using PSZ 1mmφ ball)
After being dispersed by rotating at 000 rpm for 30 minutes, the particle size distribution was measured and found to be an average diameter of 0.12 μm.
Further, colloidal silica and ethyl alcohol were added to this dispersion to prepare a coating having a tin-doped indium oxide powder content of 2%, a silica content of 2%, and a balance of IPA and ethyl alcohol, and spin coating on a glass plate. After heating at 150 ° C. for 30 minutes, a film thickness of 0.3 μm
Was formed.

【0024】このようにして形成された透明導電性膜の
抵抗値を四探針法で測定したところ、4.0kΩ/□で
あった。また、分光光度計による透過率は90%(波長
540nm)であり、良好な透明導電性膜が得られた。
The resistance value of the thus formed transparent conductive film was measured by a four probe method and found to be 4.0 kΩ / □. Moreover, the transmittance | permeability by a spectrophotometer was 90% (wavelength 540 nm), and the favorable transparent conductive film was obtained.

【0025】[実施例2]実施例1と同様の手順により
調整した酸性混合溶液に、重炭酸アンモニウムの20重
量%水溶液と25%のアンモニア水を4:1の割合で混
合した混合溶液を添加して反応させ、最終pH8.5と
した。反応時の温度は50℃に調整した。得られたイン
ジウムとスズの複合水酸化物を、純水によるデカンテー
ションで繰り返し洗浄し、濾過し、濾過物に対して10
%の水酸化カリウム水溶液を通液した後、150℃で乾
燥した。
Example 2 A mixed solution obtained by mixing a 20% by weight aqueous solution of ammonium bicarbonate and 25% aqueous ammonia in a ratio of 4: 1 was added to the acidic mixed solution prepared in the same procedure as in Example 1. To a final pH of 8.5. The temperature during the reaction was adjusted to 50 ° C. The obtained composite hydroxide of indium and tin was repeatedly washed by decantation with pure water, filtered, and filtered to obtain 10%.
% Potassium hydroxide aqueous solution, and dried at 150 ° C.

【0026】得られた水酸化物中の塩素含有量およびK
含有量を実施例1と同様の方法で測定したところ、塩素
含有量は100ppmであり、 K含有量は30ppm
であった。
The chlorine content and K in the obtained hydroxide
When the content was measured in the same manner as in Example 1, the chlorine content was 100 ppm, and the K content was 30 ppm.
Met.

【0027】次に、得られた水酸化物を実施例1と同様
の手順で焼成、解砕し、得られた粉体の比表面積を実施
例1と同様の方法により測定したところ、この粉体のB
ETは12.0m/gであった。また、粉体pHおよ
びK含有量を実施例1と同様の方法で測定したところ、
粉体pHは6.7であり、K含有量は20ppmであっ
た。
Next, the obtained hydroxide was fired and crushed in the same procedure as in Example 1, and the specific surface area of the obtained powder was measured by the same method as in Example 1. Body B
ET was 12.0 m 2 / g. Further, when the powder pH and K content were measured by the same method as in Example 1,
The powder pH was 6.7 and the K content was 20 ppm.

【0028】また、この粉末6gとIPA30gを実施
例1と同様の手順で分散させた後、粒度分布を測定した
ところ、平均径0.15μmであった。さらに、この分
散液から実施例1と同様の手順で膜厚0.3μmの透明
導電性膜を形成し、この膜の抵抗値を四探針法で測定し
たところ、3.5kΩ/□であった。また、分光光度計
による透過率は90%(波長540nm)であり、良好
な透明導電性膜が得られた。
After dispersing 6 g of the powder and 30 g of IPA in the same manner as in Example 1, the particle size distribution was measured. The result was an average diameter of 0.15 μm. Further, a transparent conductive film having a thickness of 0.3 μm was formed from the dispersion in the same procedure as in Example 1, and the resistance of the film was measured by a four-probe method to be 3.5 kΩ / □. Was. Moreover, the transmittance | permeability by a spectrophotometer was 90% (wavelength 540 nm), and the favorable transparent conductive film was obtained.

【0029】[実施例3]実施例2と同様の手順により
得られたインジウムとスズの複合水酸化物を、純水によ
るデカンテーションで繰り返し洗浄し、濾過し、濾過物
に対して10%の水酸化カリウム水溶液を通液した後、
150℃で乾燥した。この実施例では、水酸化カリウム
水溶液の通液量を調整して、水酸化物中のK含有量が実
施例2と異なるようにした。
Example 3 A composite hydroxide of indium and tin obtained by the same procedure as in Example 2 was repeatedly washed by decantation with pure water, filtered, and filtered to 10% of the filtrate. After passing the aqueous solution of potassium hydroxide,
Dried at 150 ° C. In this example, the flow rate of the aqueous potassium hydroxide solution was adjusted so that the K content in the hydroxide was different from that in Example 2.

【0030】得られた水酸化物中の塩素含有量およびK
含有量を実施例1と同様の方法で測定したところ、塩素
含有量は100ppmであり、K含有量は60ppmで
あった。
The chlorine content and K in the obtained hydroxide
When the content was measured in the same manner as in Example 1, the chlorine content was 100 ppm and the K content was 60 ppm.

【0031】次に、得られた水酸化物を実施例1と同様
の手順で焼成、解砕し、得られた粉体の比表面積を実施
例1と同様の方法により測定したところ、この粉体のB
ETは12.2m/gであった。また、粉体pHおよ
びK含有量を実施例1と同様の方法で測定したところ、
粉体pHは7.5であり、K含有量は50ppmであっ
た。
Next, the obtained hydroxide was fired and crushed in the same procedure as in Example 1, and the specific surface area of the obtained powder was measured by the same method as in Example 1. Body B
ET was 12.2 m 2 / g. Further, when the powder pH and K content were measured by the same method as in Example 1,
The powder pH was 7.5 and the K content was 50 ppm.

【0032】また、この粉末6gとIPA30gを実施
例1と同様の手順で分散させた後、粒度分布を測定した
ところ、平均径0.17μmであった。さらに、この分
散液から実施例1と同様の手順で膜厚0.3μmの透明
導電性膜を形成し、この膜の抵抗値を四探針法で測定し
たところ、3.6kΩ/□であった。また、分光光度計
による透過率は92%(波長540nm)であり、良好
な透明導電性膜が得られた。
Further, after dispersing 6 g of this powder and 30 g of IPA in the same manner as in Example 1, the particle size distribution was measured and found to be an average diameter of 0.17 μm. Further, a transparent conductive film having a thickness of 0.3 μm was formed from the dispersion in the same procedure as in Example 1, and the resistance value of the film was measured by a four-probe method to be 3.6 kΩ / □. Was. Moreover, the transmittance | permeability by a spectrophotometer was 92% (wavelength 540 nm), and the favorable transparent conductive film was obtained.

【0033】[実施例4]実施例2と同様の手順により
得られたインジウムとスズの複合水酸化物を、純水によ
るデカンテーションで繰り返し洗浄し、濾過し、濾過物
に対して10%の水酸化カリウム水溶液を通液した後、
150℃で乾燥した。この実施例においても、水酸化カ
リウム水溶液の通液量を調整して、水酸化物中のK含有
量が実施例2と異なるようにした。
Example 4 A composite hydroxide of indium and tin obtained by the same procedure as in Example 2 was repeatedly washed by decantation with pure water, filtered, and filtered by 10% of the filtrate. After passing the aqueous solution of potassium hydroxide,
Dried at 150 ° C. Also in this example, the flow rate of the aqueous potassium hydroxide solution was adjusted so that the K content in the hydroxide was different from that in Example 2.

【0034】得られた水酸化物中の塩素含有量およびK
含有量を実施例1と同様の方法で測定したところ、塩素
含有量は100ppmであり、K含有量は20ppmで
あった。
The chlorine content and K in the obtained hydroxide
When the content was measured in the same manner as in Example 1, the chlorine content was 100 ppm and the K content was 20 ppm.

【0035】次に、得られた水酸化物を、焼成温度を7
00℃にした以外は実施例1と同様の手順で焼成、解砕
し、得られた粉体の比表面積を実施例1と同様の方法に
より測定したところ、この粉体のBETは17.0m
/gであった。また、粉体pHおよびK含有量を実施例
1と同様の方法で測定したところ、粉体pHは6.2で
あり、K含有量は15ppmであった。
Next, the obtained hydroxide was heated at a firing temperature of 7
The powder was fired and crushed in the same procedure as in Example 1 except that the temperature was changed to 00 ° C., and the specific surface area of the obtained powder was measured by the same method as in Example 1. The BET of this powder was 17.0 m. 2
/ G. Further, when the powder pH and the K content were measured by the same methods as in Example 1, the powder pH was 6.2 and the K content was 15 ppm.

【0036】また、この粉末6gとIPA30gを実施
例1と同様の手順で分散させた後、粒度分布を測定した
ところ、平均径0.12μmであった。さらに、この分
散液から実施例1と同様の手順で膜厚0.3μmの透明
導電性膜を形成し、この膜の抵抗値を四探針法で測定し
たところ、3.8kΩ/□であった。また、分光光度計
による透過率は92%(波長540nm)であり、良好
な透明導電性膜が得られた。
Further, after dispersing 6 g of the powder and 30 g of IPA in the same manner as in Example 1, the particle size distribution was measured and found to be an average diameter of 0.12 μm. Further, a transparent conductive film having a thickness of 0.3 μm was formed from the dispersion in the same procedure as in Example 1, and the resistance of the film was measured by a four-point probe method. As a result, it was 3.8 kΩ / □. Was. Moreover, the transmittance | permeability by a spectrophotometer was 92% (wavelength 540 nm), and the favorable transparent conductive film was obtained.

【0037】[実施例5]実施例2と同様の手順により
得られたインジウムとスズの複合水酸化物を、純水によ
るデカンテーションで繰り返し洗浄し、濾過し、濾過物
に対して10%の水酸化カリウム水溶液を通液した後、
150℃で乾燥した。この実施例においても、水酸化カ
リウム水溶液の通液量を調整して、水酸化物中のK含有
量が実施例2と異なるようにした。
Example 5 A composite hydroxide of indium and tin obtained by the same procedure as in Example 2 was repeatedly washed by decantation with pure water, filtered, and filtered by 10% of the filtrate. After passing the aqueous solution of potassium hydroxide,
Dried at 150 ° C. Also in this example, the flow rate of the aqueous potassium hydroxide solution was adjusted so that the K content in the hydroxide was different from that in Example 2.

【0038】得られた水酸化物中の塩素含有量およびK
含有量を実施例1と同様の方法で測定したところ、塩素
含有量は100ppmであり、K含有量は30ppmで
あった。
The chlorine content and K in the obtained hydroxide
When the content was measured by the same method as in Example 1, the chlorine content was 100 ppm and the K content was 30 ppm.

【0039】次に、得られた水酸化物を、焼成温度を5
50℃にした以外は実施例1と同様の手順で焼成、解砕
し、得られた粉体の比表面積を実施例1と同様の方法に
より測定したところ、この粉体のBETは38.0m
/gであった。また、粉体pHおよびK含有量を実施例
1と同様の方法で測定したところ、粉体pHは6.5で
あり、K含有量は25ppmであった。
Next, the obtained hydroxide was heated at a sintering temperature of 5
The powder was calcined and crushed in the same procedure as in Example 1 except that the temperature was changed to 50 ° C., and the specific surface area of the obtained powder was measured by the same method as in Example 1. The BET of the powder was 38.0 m. 2
/ G. Further, when the powder pH and the K content were measured by the same methods as in Example 1, the powder pH was 6.5 and the K content was 25 ppm.

【0040】また、この粉末6gとIPA30gを実施
例1と同様の手順で分散させた後、粒度分布を測定した
ところ、平均径0.14μmであった。さらに、この分
散液から実施例1と同様の手順で膜厚0.3μmの透明
導電性膜を形成し、この膜の抵抗値を四探針法で測定し
たところ、4.5kΩ/□であった。また、分光光度計
による透過率は92%(波長540nm)であり、良好
な透明導電性膜が得られた。
After dispersing 6 g of the powder and 30 g of IPA in the same manner as in Example 1, the particle size distribution was measured. The result was an average diameter of 0.14 μm. Further, a transparent conductive film having a thickness of 0.3 μm was formed from the dispersion in the same procedure as in Example 1, and the resistance of the film was measured by a four-probe method to find that it was 4.5 kΩ / □. Was. Moreover, the transmittance | permeability by a spectrophotometer was 92% (wavelength 540 nm), and the favorable transparent conductive film was obtained.

【0041】[比較例1]実施例2の粉体製造工程にお
いて、濾過物に対して水酸化カリウム溶液を通液しなか
った以外は、実施例2と同様の操作で粉体を得た。
Comparative Example 1 A powder was obtained in the same manner as in Example 2 except that the potassium hydroxide solution was not passed through the filtrate in the powder production step of Example 2.

【0042】得られた粉体の比表面積と実施例1と同様
の方法により測定したところ、この粉体のBETは1
2.1m/gであった。また、粉体pHは5.0であ
り、K含有量は検出されなかった。
When the specific surface area of the obtained powder was measured by the same method as in Example 1, the BET of this powder was 1
2.1 m 2 / g. The powder pH was 5.0, and the K content was not detected.

【0043】また、この粉末6gとIPA30gを実施
例1と同様の操作で分散させた後、粒度分布を測定した
ところ、平均径0.25μmであった。さらに、この分
散液実施例1と同様の手順で膜厚0.3μmの透明導電
性膜を形成し、この膜の抵抗値を四探針法で測定したと
ころ、8.5kΩ/□であった。また、分光光度計によ
る透過率は88%(波長540nm)であり、実施例2
と比較して分散性が悪いため、塗膜抵抗値が高く、光透
過率もやや低下した。
After dispersing 6 g of this powder and 30 g of IPA in the same manner as in Example 1, the particle size distribution was measured, and the average diameter was 0.25 μm. Further, a transparent conductive film having a thickness of 0.3 μm was formed by the same procedure as in Example 1 of the dispersion, and the resistance value of the film was measured by a four-probe method to be 8.5 kΩ / □. . Further, the transmittance by the spectrophotometer was 88% (wavelength 540 nm).
Since the dispersibility was poor as compared with the above, the coating film resistance value was high and the light transmittance was slightly lowered.

【0044】[0044]

【発明の効果】上述したように、本発明によれば、塩化
インジウムと塩化スズの酸性混合水溶液にアルカリ溶液
を加えることにより生成したインジウムとスズの水酸化
物を、洗浄、乾燥し、還元ガスを含む不活性ガス中で焼
成することによってスズドープ酸化インジウム粉末を製
造する方法において、アルカリ溶液としてカリウム化合
物の水溶液を使用し、あるいは水酸化物の洗浄の際また
は洗浄後にカリウム化合物の水溶液を加えて、水酸化物
にカリウムを含有させることにより、熱処理温度を上げ
ても焼結により凝集粒子が形成されるのを防止すること
ができ、塗料化時の分散性が良好で、低抵抗で透明性に
優れたスズドープ酸化インジウム粉末を低コストで製造
することができる。
As described above, according to the present invention, a hydroxide of indium and tin produced by adding an alkaline solution to an acidic mixed aqueous solution of indium chloride and tin chloride is washed, dried, and reduced gaseous. In a method for producing a tin-doped indium oxide powder by firing in an inert gas containing, an aqueous solution of a potassium compound is used as an alkaline solution, or an aqueous solution of a potassium compound is added during or after washing of a hydroxide. By adding potassium to the hydroxide, it is possible to prevent the formation of agglomerated particles by sintering even when the heat treatment temperature is increased, and the dispersibility during coating is good, and the resistance and transparency are low. And a tin-doped indium oxide powder excellent in quality can be produced at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江島 光一郎 東京都千代田区丸の内一丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 4J038 EA011 HA166 NA20  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Koichiro Ejima 1-8-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Dowa Mining Co., Ltd. 4J038 EA011 HA166 NA20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 BET比表面積が8乃至40m/g、
カリウム含有量が10より大きく且つ100ppm以下
であり、Sn含有量がSnO換算で0.1乃至20重
量%であることを特徴とする、スズドープ酸化インジウ
ム粉末。
1. A BET specific surface area of 8 to 40 m 2 / g,
A tin-doped indium oxide powder characterized by having a potassium content of more than 10 and 100 ppm or less, and a Sn content of 0.1 to 20% by weight in terms of SnO 2 .
【請求項2】 粉体pHが4.5乃至8.5であること
を特徴とする、請求項1に記載のスズドープ酸化インジ
ウム粉末。
2. The tin-doped indium oxide powder according to claim 1, wherein the powder has a pH of 4.5 to 8.5.
【請求項3】 塩化インジウムと塩化スズの酸性混合水
溶液にアルカリ溶液を加えることにより生成したインジ
ウムとスズの水酸化物を、洗浄、乾燥し、還元ガスを含
む不活性ガス中で焼成することによってスズドープ酸化
インジウム粉末を製造する方法において、前記水酸化物
にカリウムを含有させることを特徴とする、スズドープ
酸化インジウム粉末の製造方法。
3. An indium and tin hydroxide produced by adding an alkaline solution to an acidic mixed aqueous solution of indium chloride and tin chloride is washed, dried and calcined in an inert gas containing a reducing gas. A method for producing a tin-doped indium oxide powder, wherein the hydroxide contains potassium.
【請求項4】 前記アルカリ溶液として水酸化カリウム
を使用することにより前記水酸化物に水酸化カリウムを
含有させることを特徴とする、請求項3に記載のスズド
ープ酸化インジウム粉末の製造方法。
4. The method for producing tin-doped indium oxide powder according to claim 3, wherein potassium hydroxide is contained in the hydroxide by using potassium hydroxide as the alkaline solution.
【請求項5】 前記水酸化物の洗浄の際または洗浄後に
水酸化カリウム水溶液を加えることにより前記水酸化物
に水酸化カリウムを含有させることを特徴とする、請求
項3に記載のスズドープ酸化インジウム粉末の製造方
法。
5. The tin-doped indium oxide according to claim 3, wherein potassium hydroxide is contained in the hydroxide by adding an aqueous solution of potassium hydroxide during or after washing the hydroxide. Powder manufacturing method.
JP2000038233A 2000-02-10 2000-02-10 Tin-doped indium oxide powder and method for producing the same Expired - Lifetime JP3838615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000038233A JP3838615B2 (en) 2000-02-10 2000-02-10 Tin-doped indium oxide powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000038233A JP3838615B2 (en) 2000-02-10 2000-02-10 Tin-doped indium oxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001220137A true JP2001220137A (en) 2001-08-14
JP3838615B2 JP3838615B2 (en) 2006-10-25

Family

ID=18561999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000038233A Expired - Lifetime JP3838615B2 (en) 2000-02-10 2000-02-10 Tin-doped indium oxide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3838615B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080144A2 (en) * 2003-03-14 2004-09-23 Degussa Ag Nanoscale indium tin mixed oxide powder
US7172817B2 (en) 2001-11-16 2007-02-06 Hitachi Maxell, Ltd. Indium particle containing tin, method for producing the same and electroconductive sheet comprising the same
JP2008056514A (en) * 2006-08-30 2008-03-13 Mitsubishi Materials Corp Tin oxide powder and method for manufacturing the same
CN104505191A (en) * 2014-12-30 2015-04-08 桂林电器科学研究院有限公司 Indium-tin-oxide-containing silver tin oxide electrical contact material preparation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172817B2 (en) 2001-11-16 2007-02-06 Hitachi Maxell, Ltd. Indium particle containing tin, method for producing the same and electroconductive sheet comprising the same
WO2004080144A2 (en) * 2003-03-14 2004-09-23 Degussa Ag Nanoscale indium tin mixed oxide powder
WO2004080144A3 (en) * 2003-03-14 2004-11-04 Degussa Nanoscale indium tin mixed oxide powder
JP2006521268A (en) * 2003-03-14 2006-09-21 デグサ アクチエンゲゼルシャフト Nanoscale indium tin mixed oxide powder
US7374743B2 (en) 2003-03-14 2008-05-20 Degussa Ag Nanoscale indium tin mixed oxide powder
JP2008056514A (en) * 2006-08-30 2008-03-13 Mitsubishi Materials Corp Tin oxide powder and method for manufacturing the same
CN104505191A (en) * 2014-12-30 2015-04-08 桂林电器科学研究院有限公司 Indium-tin-oxide-containing silver tin oxide electrical contact material preparation method

Also Published As

Publication number Publication date
JP3838615B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
EP1527017B1 (en) Doped zinc oxide powder, process for its preparation, and its use
JP4134314B2 (en) Method for producing conductive powder
CN110357626B (en) Doped tungsten oxide target material and preparation method thereof
EP0921099B1 (en) ITO fine powder and method for preparing the same
JP4765051B2 (en) Tin-doped indium oxide powder
JP4253721B2 (en) Tin-doped indium oxide powder and method for producing the same
JP2011198518A (en) Conductive particulate and method for manufacturing the same, and visible light transmission type particle dispersion conductor
JP4841029B2 (en) Tin oxide-added indium oxide powder and method for producing the same
JP4171790B2 (en) Method for producing tin-doped indium oxide powder
JP3838615B2 (en) Tin-doped indium oxide powder and method for producing the same
JP5514570B2 (en) Method for producing tin-doped indium oxide powder and tin-doped indium oxide powder
JP4134313B2 (en) Method for producing conductive powder
JP4982691B2 (en) Sn-containing In oxide, method for producing the same, paint using the same, and conductive coating film
EP2599751B1 (en) Indium tin oxide powder, production method therefor, and a transparent conductive composition
JP2011102229A (en) Minute ito powder with high crystallinity and application thereof, and method for producing the same
JP4793537B2 (en) Visible light transmission type particle-dispersed conductor, conductive particles, visible light transmission type conductive article, and manufacturing method thereof
JP4590566B2 (en) ITO powder and manufacturing method thereof, ITO conductive film paint, and transparent conductive film
JP4692028B2 (en) Ru-Mn-O fine powder, method for producing the same, and thick film resistor composition using the same
JP5514435B2 (en) Method for producing white conductive powder
JP6952051B2 (en) Method for manufacturing infrared shielding material and tin oxide particles
JP2003104725A (en) Ito powder, transparent electroconductive film and the film preparation method
JP4718111B2 (en) Conductive powder and method for producing the same
JPS60186416A (en) Production of sn-doped in2o3 powder having low electrical resistance
KR100455280B1 (en) Method of preparing indium tin oxide(ITO)
JP3453783B2 (en) Method for producing acicular powder of indium-tin oxide

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3838615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term