JPS6245725A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPS6245725A
JPS6245725A JP61191945A JP19194586A JPS6245725A JP S6245725 A JPS6245725 A JP S6245725A JP 61191945 A JP61191945 A JP 61191945A JP 19194586 A JP19194586 A JP 19194586A JP S6245725 A JPS6245725 A JP S6245725A
Authority
JP
Japan
Prior art keywords
container
heat
fibers
microwave
microwaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61191945A
Other languages
Japanese (ja)
Other versions
JPS6332886B2 (en
Inventor
Tsunemi Ochiai
常巳 落合
Shozo Minami
南 省三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIROCHIKU KK
New Japan Radio Co Ltd
Original Assignee
HIROCHIKU KK
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIROCHIKU KK, New Japan Radio Co Ltd filed Critical HIROCHIKU KK
Priority to JP61191945A priority Critical patent/JPS6245725A/en
Publication of JPS6245725A publication Critical patent/JPS6245725A/en
Publication of JPS6332886B2 publication Critical patent/JPS6332886B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To carry out the heating of fragile pitch fiber, rapidl and uniformly in high efficiency, by the combined action of the heat-insulating vessel to retain the heat in the vessel and containing said pitch fiber used as a raw material of a carbon fiber and the microwave-reflecting enclosure of the vessel. CONSTITUTION:A fragile coal-based pitch fiber is heated and carbonized with microwave radiation in an insert atmosphere. The vessel 31 holding said pitch fiber is made of a heat-insulating refractory material having microwave- transmissibility and gas permeability. The vessel is placed in enclosures 12-16 made of microwave-reflecting material. The microwave is reflected by the inner surface of the enclosure to suppress the dissipation of generated heat.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、石炭系ピッチの繊維を手踊化処理した原料
繊維からマイクロ波照射によって工業的に製造する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for industrially producing coal-based pitch fibers from raw material fibers subjected to hand-dancing treatment by microwave irradiation.

〈従来の技術〉 従来、ピッチ系炭素繊維の製造においては、低温酸化に
より不融化した繊維を不活性雰囲気中で1000〜15
00°Cの温度において炭化することが行われている。
<Prior art> Conventionally, in the production of pitch-based carbon fibers, fibers made infusible by low-temperature oxidation are heated to 1000 to 150% in an inert atmosphere.
Carbonization is carried out at a temperature of 00°C.

この場合、炭化前の不融化繊維の強度が弱いので、特公
昭47−24786号公報に記載の合成繊維を@枢体と
してこれを延伸しながらマイクロ波照射を行う方法は適
用できない。従って、ピッチ系炭素、俄碓の製造におい
て、その加熱は、繊維束を懸吊したり、コンベア上に積
み重ねたり、容オgK収容したりした状態で、電気発熱
体からの18射伝熱あるいは、高温の不活性ガスとの接
触:てよるものであった。
In this case, since the strength of the infusible fibers before carbonization is low, the method described in Japanese Patent Publication No. 47-24786, in which synthetic fibers are used as a pivot body and subjected to microwave irradiation while being stretched, cannot be applied. Therefore, in the production of pitch-based carbon, the fiber bundles are suspended, stacked on a conveyor, or housed in a container, and are heated by 18-irradiation heat transfer from an electric heating element or by , contact with hot inert gases:

別に、ピッチ系炭素繊維の製造方法として、特開昭53
−147822号公報記載のものがある。これには、低
温酸化処理された繊維を珪素管からなるマイクロ波に不
活性の耐火材料支持体中に入れてマイクロ波を照射する
ことが記載されているが、工業的に多量に生産する方法
は示されていない。
Separately, as a method for producing pitch-based carbon fiber, JP-A-53
There is one described in JP-147822. This document describes the method of irradiating fibers that have been subjected to low-temperature oxidation treatment with microwaves by placing them in an inert refractory material support made of silicon tubes, but there is a method for producing them in large quantities industrially. is not shown.

〈発明が解決しようとする問題点〉 従来のピッチ系炭素繊維の製造方法のマイクロ波を使用
しない加熱手段による場合、輻射伝熱によるときは、外
部77I]熱方式であるため、繊維の集合体内に空気層
を包含するものを加熱することになるので、伝熱速度が
小さく、また全体を均一に加熱することが川流であり、
昇温速度が伝熱速度によって制約されるために加熱に長
時間を要するなどの問題があり、高温不活性ガスとの接
触によるときは、高温用の熱交換器や循環ガスプロワを
必要とするので、コスト高となるのみならず、加熱温度
の点でも制限があり、実用的には800″C以上の温度
での炭化は困難であるなどの問題がある。
<Problems to be Solved by the Invention> When heating means that do not use microwaves in the conventional method for manufacturing pitch-based carbon fibers are used, radiation heat transfer is performed using an external 77 I] heating method, so internal heating within the fiber assembly is used. Since we are heating something that contains an air layer, the heat transfer rate is low, and it is important to heat the whole thing evenly.
There are problems such as the heating time required because the temperature increase rate is limited by the heat transfer rate, and when contact with high temperature inert gas, a high temperature heat exchanger or circulating gas blower is required. However, not only is the cost high, but there are also restrictions on the heating temperature, and in practical terms, there are problems such as carbonization being difficult at temperatures of 800''C or higher.

なお、ピッチ系の炭素繊維の引張り強度が処理温度13
00°C程度までは処理温度とともに上昇することは周
知であり、処理温度が低温度に制限されることは明らか
に不利である。
In addition, the tensile strength of pitch-based carbon fiber is
It is well known that the temperature increases with the processing temperature up to about 00°C, and it is clearly disadvantageous that the processing temperature is limited to a low temperature.

また、従来のピッチ系炭素繊維のマイクロ波を使用する
製造方法においては、効率よく多量に製造できない点に
問題がある。
Further, in the conventional manufacturing method of pitch-based carbon fiber using microwaves, there is a problem in that it cannot be efficiently manufactured in large quantities.

く問題点を解決するための手段〉 この発明は、脆弱なピッチ系の原料繊維を、マイクロ波
を使用して、均一かつ速やかに炭化して高品質の炭素繊
維を、効率よく多量に生産できる方法を提供することを
目的とする。
Means for Solving the Problems> The present invention uses microwaves to uniformly and quickly carbonize brittle pitch-based raw material fibers, thereby making it possible to efficiently produce large quantities of high-quality carbon fibers. The purpose is to provide a method.

この発明の手段は、石炭系ピッチの繊維を不出化処理し
た原料繊維群を不活性雰囲気中においてマイクロ波で照
射して内部熱の発生により炭化させる炭素繊維の製造方
法において、前記原料繊維群をマイクロ波を透過しかつ
耐火断熱性を有する材料で構成された通気孔を有する容
器に収容し、その容器をマイクロ波を反射する材料で構
成された外囲器内に設置し、不活性ガスを前記容器中の
原料繊維群内に通気しながらマイクロ波を照射するごと
を特徴とする。
The means of the present invention provides a method for producing carbon fibers, in which a group of raw material fibers obtained by non-emitting treatment of coal-based pitch fibers is irradiated with microwaves in an inert atmosphere to carbonize due to the generation of internal heat. is placed in a container with ventilation holes made of a material that transmits microwaves and has fireproof insulation properties, and the container is placed in an envelope made of a material that reflects microwaves, and an inert gas The method is characterized in that each time microwave is irradiated while aerating the raw material fibers in the container.

く作  用〉 容器内の原料繊維群に照射されるマイクロ波は容器壁は
通過するが外囲器内面では反射するので、反射が繰返え
されることにより原料繊維群が均等に急速に加熱される
。容器の断熱性は発生した熱を容器内に保持するから、
つまり熱の放散が少ないからi前記1′XI熱がきわめ
て効率的である。なお、容器の材質はセラミックウール
を成形したものが最適である。
Effect〉 The microwaves irradiated to the raw material fibers inside the container pass through the container wall but are reflected on the inner surface of the envelope, so the repeated reflections cause the raw material fibers to be heated evenly and rapidly. Ru. The insulation of the container retains the generated heat within the container.
In other words, the 1'XI heat described above is extremely efficient because there is little heat dissipation. The best material for the container is one made of ceramic wool.

く実 施 例〉 使用する炭素繊維製造装置の1例を第1図乃至第4図に
示す。この装置は、炉体lと、搬送装置2と、マイクロ
波照射装置3と、不活性ガス流通装置4と、温度制御装
置5と、冷却装置6とで構成されている。
Embodiment An example of the carbon fiber manufacturing apparatus used is shown in FIGS. 1 to 4. This device is composed of a furnace body 1, a transport device 2, a microwave irradiation device 3, an inert gas distribution device 4, a temperature control device 5, and a cooling device 6.

炉体1ば、第1図乃至第4図に示すように、一端に入口
10、曲端に出口11を有する水平に長い角筒状に形成
され、その外殻12はマイクロ波を反射する材料である
耐熱鋼板で形成されている。その炉体1内は区分壁13
.14.15.16.17によって区分された噴流帯域
18、第2加熱帯域20、第2加熱帯域20、均熱帯域
21、冷却帯域22、噴流帯域23を形成されている。
As shown in FIGS. 1 to 4, the furnace body 1 is formed into a horizontally long rectangular tube shape having an inlet 10 at one end and an outlet 11 at a curved end, and the outer shell 12 is made of a material that reflects microwaves. It is made of heat-resistant steel plate. Inside the furnace body 1 is a partition wall 13
.. A jet zone 18, a second heating zone 20, a soaking zone 21, a cooling zone 22, and a jet zone 23 are formed, which are divided by 14, 15, 16, and 17.

各々の区分壁13〜17は外殻12と同じ耐熱鋼板で形
成され、後述する容器31の搬送のだめの貫通孔13a
〜17aを設けられている。外殻12は上記各帯域毎に
分割形成され、その各々をフランジ結合するフランジ間
に区分壁を挾持する形で互いに結合されている。入口1
o及び出口11には各々開閉可能な鋼板製のスライド大
扉24.25を設けられている。全ての加熱帯域26、
すなわち第1、第27Il′]熱帯域19.20及び均
熱帯域21の炉殻内面並びに冷却帯域22の内面にはマ
イクロ波が透過する耐火断熱材であるセラミックファイ
バー系の断熱材27テ内張りしである。噴流帯域18.
23内には夫々パンチングメタル28で形成された多数
のノズルが開口しており、このノズルを介して不活性ガ
ス、例えば窒素ガスが供給されるようになっており、入
口10及び出口11からの空気の流入を防止するように
なっている。炉体1全体はローラ29を介して架台30
に支持され、熱による伸縮を許容できるようになってい
る。
Each of the partition walls 13 to 17 is made of the same heat-resistant steel plate as the outer shell 12, and has a through hole 13a for transporting the container 31, which will be described later.
~17a are provided. The outer shell 12 is divided into the above-mentioned zones, and the zones are connected to each other by interposing a partition wall between flanges that connect the zones. Entrance 1
o and the exit 11 are each provided with large sliding doors 24 and 25 made of steel plates that can be opened and closed. all heating zones 26,
That is, the inner surfaces of the furnace shell of the heating zone 19.20 and the soaking zone 21 and the inner surface of the cooling zone 22 are lined with ceramic fiber-based heat insulating material 27, which is a fireproof heat insulating material through which microwaves can pass. It is. Jet zone 18.
A number of nozzles each made of punched metal 28 are opened in the inside of the 23, and an inert gas such as nitrogen gas is supplied through the nozzles. It is designed to prevent air from entering. The entire furnace body 1 is mounted on a pedestal 30 via rollers 29.
The material is supported by a material that allows it to expand and contract due to heat.

搬送装置2は、炉体1内を入口10から出口11へ原料
、繊維を収容した容器31を搬送するものであり、耐熱
鋼製メツシュベルト32を主体とするベルトコンベヤで
ある。メツシュベルト32は、マイクロ波が反射しない
ような大きさの網目のものであり、7” −U 33.
34、炉内ベルトガイド35、炉外ベルトガイド36に
よって張設されている。炉内ベルトガイド35は炉内全
長に連続して設けられたもので、噴流帯域18.23に
おいてはベルト32の全嘔を支持するように外殻(第3
図参照)で代用され、加熱帯域26及び冷却帯域22に
おいてはベルト32の両端縁部を支持するように外殻1
2の内側面から内側へ突設され、第4図に示すように、
炉体1内が両側のガイド35の間でのみ上下に連通して
いる。第2図の37はメツシュベルト32の駆動部であ
る。
The conveying device 2 conveys a container 31 containing raw materials and fibers from the inlet 10 to the outlet 11 within the furnace body 1, and is a belt conveyor mainly composed of a mesh belt 32 made of heat-resistant steel. The mesh belt 32 has a mesh size such that microwaves are not reflected, and has a mesh size of 7"-U 33.
34, a belt guide 35 inside the furnace, and a belt guide 36 outside the furnace. The in-furnace belt guide 35 is provided continuously along the entire length of the in-furnace, and in the jet zone 18.23, an outer shell (third
(see figure), and in the heating zone 26 and cooling zone 22, the outer shell 1 supports both end edges of the belt 32.
2, protruding inward from the inner surface of the
The interior of the furnace body 1 communicates vertically only between the guides 35 on both sides. Reference numeral 37 in FIG. 2 is a drive section for the mesh belt 32.

容器31は、マイクロ波が透過する耐火性の材料、例え
ばセラミックウールを成型したもので、幅500請、長
さ1000朋、高さ150朋の箱型であり、底面壁に直
径が5 MM程度の通気孔を多数穿設したものである。
The container 31 is made of a microwave-transmissive fire-resistant material, such as ceramic wool, and is box-shaped with a width of 500 mm, a length of 1000 mm, and a height of 150 mm, with a bottom wall having a diameter of approximately 5 mm. It has many ventilation holes.

この容器31は蓋38を有するもので、蓋38も同材質
で、同様な通気孔を多数有し、さらに内部温度検出用の
幅l Q MlN程度のスリットを有している。容器3
1は入口10側でベルト32上に載せられると、搬送装
置2によって炉体1内を搬送され、出口11側・\出る
This container 31 has a lid 38, which is also made of the same material, has many similar ventilation holes, and further has a slit with a width of about l Q MlN for detecting the internal temperature. container 3
1 is placed on the belt 32 on the inlet 10 side, is conveyed within the furnace body 1 by the conveying device 2, and exits on the outlet 11 side.

マイクロ波照射装置3ば、第1加・熱帯域19、第2加
熱帯域20、均熱帯域21の各々に上面と下面からマイ
クロ波の導波管39.40の一端を開口させたものであ
り、他方はマイクロ波発生装置に連結している。なお、
各導波管とマグネトロンとの間には炉体1内で反射して
帰って来るマイクロ波のために、アイソレータを設けて
、この中に給水して吸収させ、熱として排出するように
しである。
The microwave irradiation device 3 has one end of microwave waveguides 39 and 40 opened from the upper and lower surfaces of each of the first heating/heating zone 19, the second heating zone 20, and the soaking zone 21. , the other is connected to a microwave generator. In addition,
An isolator is provided between each waveguide and the magnetron for the microwaves reflected within the furnace body 1 and returned to the furnace, and water is supplied into the isolator to be absorbed and discharged as heat. .

不活性ガス流a装置4は、炉体1内の第1加熱帯域19
、第2加熱帯域20、均熱帯域21の夫々の両側下部に
配置された多数の小孔を有する管からなるノズル41と
、同各帯域19.20.21の上部に設けられた排気孔
42と、排気路中に設けられたダンパ43と、ノズル4
1に対する不活性ガス供給用の配管とで構成されている
。ノズル41からは通計の不活性ガスが供給されるが、
ダンパ43の調節により炉体1の内部気圧が大気圧より
も若干大きい正圧に維持されるようになっている。また
、下方から上方へ不活性ガスは流通するが、その間にi
J記容tg31がメツシュベルト32上にある状態では
、炉内ペルトガ、イド35の存在により、大部分が容器
31及び蓋38の通気孔を通るようになっている。
The inert gas flow a device 4 is connected to the first heating zone 19 in the furnace body 1.
, a nozzle 41 made of a tube having a large number of small holes arranged at the bottom of both sides of the second heating zone 20 and soaking zone 21, and an exhaust hole 42 provided at the top of each zone 19, 20, 21. , a damper 43 provided in the exhaust path, and a nozzle 4
1 and a pipe for supplying inert gas to the pipe. The total amount of inert gas is supplied from the nozzle 41,
By adjusting the damper 43, the internal pressure of the furnace body 1 is maintained at a positive pressure slightly higher than atmospheric pressure. In addition, the inert gas flows from the bottom to the top, but in the meantime, i
When the tg31 is on the mesh belt 32, most of the air passes through the vent holes in the container 31 and lid 38 due to the presence of the furnace pelt gas and lid 35.

温度制御装置5ば、第2図に示すように帯域19.20
.21の天井部にメツシュベルト32上に位置せしめら
れる容器31のM2Sのスリットを介して内部の原料繊
維に指向して設けられた放射型温度計44によって繊維
温度を検出し、別の制御部によって該当帯域におけるマ
イクロ波出力を調整するようになっている。温度制御は
例えば第1加熱帯域19で約700°Cvctで昇温さ
せ、第2加熱帯域20で所定の1.300’Cまで昇温
させ、均熱帯域で1300″Cを維持するようにしであ
る。
The temperature control device 5 has a zone 19.20 as shown in FIG.
.. The fiber temperature is detected by a radiation type thermometer 44 installed in the ceiling of the container 21 and directed toward the raw material fiber inside through the M2S slit of the container 31, which is positioned on the mesh belt 32, and the fiber temperature is detected by another controller. It is designed to adjust the microwave output in the band. For example, the temperature control is such that the temperature is raised at about 700° Cvct in the first heating zone 19, the temperature is raised to a predetermined 1.300'C in the second heating zone 20, and 1300"C is maintained in the soaking zone. be.

冷却装置6は、加熱処理された炭素繊維を冷却してから
炉外に取出すためのもので、第1加熱帯域19などにお
ける不活性ガス流通装置4と同様な、両側下部のノズル
41a1排気孔42a1ダンパ43a1ノズル41aに
付する配管で構成されている。しかし冷却が目的のため
、加熱帯域のものよりは大量の不活性ガスを流通させる
ことができるようになっている。
The cooling device 6 is for cooling the heat-treated carbon fibers and then taking them out of the furnace, and has nozzles 41a1 and exhaust holes 42a1 at the bottom of both sides, similar to the inert gas distribution device 4 in the first heating zone 19, etc. It is composed of piping attached to the damper 43a1 and the nozzle 41a. However, since its purpose is cooling, a larger amount of inert gas can be passed through it than in the heating zone.

第2図における45は覗窓である。45 in FIG. 2 is a viewing window.

この炭素繊維製造装置は、炉体1の入口10から容器3
1に1車重繊維を収容して蓋38を載置して炉内に供給
すると、炭素繊維に加工されたものが出口11から出て
くる。搬送装置2は間歇動作する。最初に炉体ユ内に送
り込まれた容器31は第1加熱帯域19で停止し、窒素
ガスを供給されながらマイクロ波によって内部の原料繊
維のみが加熱される。
This carbon fiber manufacturing apparatus includes a container 3 from an inlet 10 of a furnace body 1.
When one vehicle's weight of fibers is stored in the furnace and the lid 38 is placed on the furnace, the processed carbon fibers come out from the outlet 11. The transport device 2 operates intermittently. The container 31 that is first sent into the furnace body stops in the first heating zone 19, and only the raw material fibers inside are heated by microwaves while being supplied with nitrogen gas.

供給される窒素ガスは容′j:?i31内を通って外部
へ排出され、加熱初期の段階で原料繊維間に包含されて
いた空気の大部分を置換し、さらに流通を、続ける。原
料繊維の温度が所定時間もで所定温度、例えば700°
Cに達し、容器31は第2加熱帯域20へ搬送される。
The volume of nitrogen gas supplied is: ? It passes through the i31 and is discharged to the outside, displacing most of the air that was trapped between the raw material fibers at the initial stage of heating, and then continuing to circulate. The temperature of the raw material fiber is a predetermined temperature for a predetermined period of time, for example, 700°
C, and the container 31 is transported to the second heating zone 20.

ここでも窒素ガスを供給されながらマイクロ波によって
加熱され、原料繊維の温度が前記と同じ所定時間tで所
定処理温度、例えば130゜°Cに達し、容器31は均
熱帯域21へ搬送される。ここでも窒素ガスを供給され
ながらマイクロ波によって加熱され、原料繊維の温度が
処理温度1300°Cに処理時間を維持された後、容器
31は冷却帯域22へ搬送される。ここでは比較的大量
の窒素ガスが供給されて容器内の繊維が300°C程度
に冷却され、時間も経過後に外部へ搬出される。以上は
最初に炉体1内へ送り込まれた容器31についての説明
であるが、後続の容器31についても順次同じ処理がな
されて外部へ搬出される。
Here too, it is heated by microwaves while being supplied with nitrogen gas, and the temperature of the raw material fiber reaches a predetermined treatment temperature, for example 130° C., in the same predetermined time t as above, and the container 31 is conveyed to the soaking zone 21. Here too, the container 31 is heated by microwaves while being supplied with nitrogen gas, and after the temperature of the raw fiber is maintained at the processing temperature of 1300° C. for the processing time, the container 31 is conveyed to the cooling zone 22. Here, a relatively large amount of nitrogen gas is supplied to cool the fibers in the container to about 300° C., and after a certain period of time has elapsed, the fibers are transported outside. The above is a description of the container 31 that is first sent into the furnace body 1, but the subsequent containers 31 are sequentially subjected to the same processing and then transported outside.

J二連の装置において、不活性ガスは、各帯域毎に供給
され、排出されるが、これは区分壁13.14.15.
16.17の存在が有効に作用しており、不活性ガスの
供給hl トダンバの調節により、好ましい状態が維持
される。これによって各帯域の酸素濃度を夫々規定値以
下に制御することができる。また、不活性ガスの流通に
おいて、炉体]内の下半部に充満した状1鵠から容器3
1の通気孔を通し7て繊維間を通り、上側空間に至る挙
動は、ガイド35の区画作用によるものである。従って
、順次継続的に送り込まれる容器間に間隔があるときは
、炉体1内の1−下の区画の意味で容器31の底面に沿
う方向のひれ伏突部を設けてもよい。
In the J-double system, inert gas is supplied and discharged for each zone, which is connected to the partition walls 13, 14, 15, .
16.17 is working effectively, and a favorable state is maintained by adjusting the inert gas supply. Thereby, the oxygen concentration in each zone can be controlled to be below the specified value. In addition, in the flow of inert gas, if the lower half of the furnace body is filled with
The behavior of the fibers passing through the air holes 1, 7, between the fibers, and reaching the upper space is due to the partitioning action of the guides 35. Therefore, when there is a gap between the containers that are successively fed into the furnace body 1, a protrusion extending along the bottom surface of the container 31 may be provided in the sense of the 1-lower section in the furnace body 1.

また、前記区分壁13〜17の存在は、各帯域における
容器内の、U&維湿温度規定する昇温パターンになるた
めにも有効に作用している。すなわち、不活性ガスの整
流作用のみでなく、加熱帯域26の各帯域19.20.
21毎に照射されるマイクロ波が夫々油の帯域に大きく
影響を及ぼさないようにマイクロ波についても整流作用
のようなものがあるのである。
Further, the presence of the partition walls 13 to 17 effectively works to create a temperature increase pattern that defines the U & fiber temperature inside the container in each zone. That is, not only the rectifying action of the inert gas but also each zone 19, 20 .
Microwaves also have a rectifying effect so that the microwaves irradiated every 21 hours do not greatly affect the oil band.

上述の装置を用いた実施例を次に示す。原料繊維は、石
炭系ピッチの繊維を不1鵡化処理したもので、繊維の長
さ1内程度のものをトウ状にしてあり、これを厚さ10
0 srsに積重ねて容器31に、充填密度5oKg/
m3程度で収容する。このような容器31を多数準備し
て、順次IF4に内に挿入する。得られた炭素繊維は、
従来の輻射加熱によって製造されたものと較べて、強度
及び収率は変らないものであった。
An example using the above-mentioned apparatus will be shown below. The raw material fibers are coal-based pitch fibers that have been subjected to a heat treatment, and the fibers are made into tows with a thickness of 10 mm.
0 srs in a container 31 with a packing density of 5oKg/
It can be accommodated in about m3. A large number of such containers 31 are prepared and sequentially inserted into the IF 4. The obtained carbon fiber is
The strength and yield were unchanged compared to those produced by conventional radiant heating.

〈発明の効果〉 この発明によれば、1車重俄維群を収容する容器の断熱
性による熱保持作用とマイクロ波を反射する外囲器とに
よp1高速で均等な加熱が効率よく行われるから、一定
した品質の炭素繊維が、安価に提供でき、多量に生産す
ることも可能である。
<Effects of the Invention> According to the present invention, uniform heating is efficiently performed at high speed due to the heat retention effect due to the heat insulation properties of the container that accommodates the group of fibers for one car and the microwave-reflecting envelope. Therefore, carbon fiber of constant quality can be provided at low cost and can be produced in large quantities.

因に、実施例に使用した装置によれば、従来の輻射加熱
数式に比し加熱時間がイ〜4に短縮でき、従来の磁気ヒ
ータ式のもので昇温速度が5°C/分であるのに比し3
0〜45 ”C/分で加熱可能であった。
Incidentally, according to the device used in the example, compared to the conventional radiation heating formula, the heating time can be shortened to I~4, and the temperature increase rate is 5°C/min with the conventional magnetic heater type. compared to 3
It was possible to heat from 0 to 45"C/min.

また第2加勢帯域を出た段階の温度分布は±20’C以
内であった。
Furthermore, the temperature distribution at the stage of exiting the second auxiliary zone was within ±20'C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施に使用した装置の概略の構成を
示す横断平面図、第2図は第1図の装置の、縦断lll
1I而図、第3図は第2図のA−A断面拡大図、第4図
は第2図のB−B断面拡大図である。 12・・・外殻(外囲器)、13.14.15.16・
・・区分壁(外囲器)、26・・・77I熱帯域、31
・・・容器、38・・・蓋、39.4o・・・マイクロ
波導波管、41・・・ノズル(不活性ガス用)、42・
・・排気孔。 特許出願人  株式会社 広   築 同   新日本無線株式会社 代 理 人  清 水   哲 ほか2名第3 口 ↓
FIG. 1 is a cross-sectional plan view showing the general configuration of the device used to carry out the present invention, and FIG. 2 is a vertical cross-section of the device shown in FIG. 1.
FIG. 3 is an enlarged cross-sectional view taken along line AA in FIG. 2, and FIG. 4 is an enlarged cross-sectional view taken along line B-B in FIG. 2. 12... Outer shell (envelope), 13.14.15.16.
...Division wall (envelope), 26...77I tropical zone, 31
... Container, 38... Lid, 39.4o... Microwave waveguide, 41... Nozzle (for inert gas), 42.
・Exhaust hole. Patent applicant Hiroshi Chikudo Co., Ltd. New Japan Radio Co., Ltd. Representative Tetsu Shimizu and 2 others Third mouth↓

Claims (1)

【特許請求の範囲】[Claims] (1)石炭系ピッチの繊維を不融化処理した原料繊維群
を不活性雰囲気中においてマイクロ波で照射して内部熱
の発生により炭化させる炭素繊維の製造方法において、
前記原料繊維群をマイクロ波を透過しかつ耐火断熱性を
有する材料で構成された通気孔を有する容器に収容し、
その容器をマイクロ波を反射する材料で構成された外囲
器内に設置し、不活性ガスを前記容器中の原料繊維群内
に通気しながらマイクロ波を照射することを特徴とする
炭素繊維の製造方法。
(1) A method for producing carbon fiber in which a group of raw material fibers obtained by infusibility treatment of coal-based pitch fibers is irradiated with microwaves in an inert atmosphere and carbonized by the generation of internal heat,
The raw material fiber group is housed in a container having a ventilation hole and made of a material that transmits microwaves and has fire-resistant and heat-insulating properties,
The container is placed in an envelope made of a material that reflects microwaves, and the microwaves are irradiated while an inert gas is passed through the group of raw material fibers in the container. Production method.
JP61191945A 1986-08-15 1986-08-15 Production of carbon fiber Granted JPS6245725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61191945A JPS6245725A (en) 1986-08-15 1986-08-15 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61191945A JPS6245725A (en) 1986-08-15 1986-08-15 Production of carbon fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1999782A Division JPS58144125A (en) 1982-02-10 1982-02-10 Microwave heating apparatus for preparing carbon fiber

Publications (2)

Publication Number Publication Date
JPS6245725A true JPS6245725A (en) 1987-02-27
JPS6332886B2 JPS6332886B2 (en) 1988-07-01

Family

ID=16283072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61191945A Granted JPS6245725A (en) 1986-08-15 1986-08-15 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS6245725A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180372A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber coated with metal oxide and method for producing the same
WO2006101084A1 (en) * 2005-03-23 2006-09-28 Bridgestone Corporation Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber
JP2009001468A (en) * 2007-06-25 2009-01-08 Ihi Corp Apparatus and method for producing highly functional carbon fiber
JP2009533562A (en) * 2006-04-15 2009-09-17 東邦テナックス株式会社 Continuous production method of carbon fiber
JP2011500973A (en) * 2007-10-11 2011-01-06 東邦テナックス株式会社 Hollow carbon fiber and its manufacturing process
US20110079505A1 (en) * 2005-11-09 2011-04-07 Ut-Battelle,Llc System to continuously produce carbon fiber via microwave assisted plasma processing
US20120181162A1 (en) * 2009-07-28 2012-07-19 Marina Vladimirovna Soboleva Method for Stabilizing Carbon-Containing Fibre and Method for Producing Carbon Fibre
DE102014113338A1 (en) * 2014-09-16 2016-03-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for tempering and tempering this
US9745671B2 (en) 2013-07-26 2017-08-29 Toho Tenax Co., Ltd. Carbonization method and carbon fiber production method
CN110878434A (en) * 2018-09-06 2020-03-13 永虹先进材料股份有限公司 High-temperature carbonization furnace

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180372A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber coated with metal oxide and method for producing the same
WO2006101084A1 (en) * 2005-03-23 2006-09-28 Bridgestone Corporation Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber
US9427720B2 (en) 2005-11-09 2016-08-30 Ut-Batelle, Llc System to continuously produce carbon fiber via microwave assisted plasma processing
US20110079505A1 (en) * 2005-11-09 2011-04-07 Ut-Battelle,Llc System to continuously produce carbon fiber via microwave assisted plasma processing
US8679592B2 (en) * 2005-11-09 2014-03-25 Ut-Battelle, Llc System to continuously produce carbon fiber via microwave assisted plasma processing
JP2009533562A (en) * 2006-04-15 2009-09-17 東邦テナックス株式会社 Continuous production method of carbon fiber
JP2009001468A (en) * 2007-06-25 2009-01-08 Ihi Corp Apparatus and method for producing highly functional carbon fiber
JP2011500973A (en) * 2007-10-11 2011-01-06 東邦テナックス株式会社 Hollow carbon fiber and its manufacturing process
US20120181162A1 (en) * 2009-07-28 2012-07-19 Marina Vladimirovna Soboleva Method for Stabilizing Carbon-Containing Fibre and Method for Producing Carbon Fibre
US20140190818A1 (en) * 2009-07-28 2014-07-10 Marina Vladimirovna Soboleva Method for Stabilizing Carbon-Containing Fibre and Method for Producing Carbon Fibre
US9745671B2 (en) 2013-07-26 2017-08-29 Toho Tenax Co., Ltd. Carbonization method and carbon fiber production method
DE102014113338A1 (en) * 2014-09-16 2016-03-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for tempering and tempering this
CN110878434A (en) * 2018-09-06 2020-03-13 永虹先进材料股份有限公司 High-temperature carbonization furnace

Also Published As

Publication number Publication date
JPS6332886B2 (en) 1988-07-01

Similar Documents

Publication Publication Date Title
US2543708A (en) Heat-treating furnace
JP2003075077A (en) Microwave calcination furnace, and microwave calcination method
JPS6245725A (en) Production of carbon fiber
US4610860A (en) Method and system for producing carbon fibers
CN102575387A (en) Method for stabilizing a carbon-containing fibre and method for producing a carbon fibre
US5193996A (en) Method and system for producing carbon fibers
US4148600A (en) Heat treatment furnace for metal strip
JPS5825860A (en) Method and device for heating of casting
KR100881822B1 (en) A carburization treatment apparatus
JPS58144125A (en) Microwave heating apparatus for preparing carbon fiber
CZ285210B6 (en) PROCESS FOR PREPARING WORKING GAS DURING HEAT TREATMENT carbon AND APPARATUS FOR MAKING THE SAME
GB2148866A (en) Method and system for producing carbon fibers
EP0127333A1 (en) Method for reducing the volume of atmosphere needed to inhibit ingress of ambient oxygen into the furnace chamber of a continuous heat treatment furnace
JP2665333B2 (en) Hood for continuous heat treatment furnace
ES8500867A1 (en) Method of and apparatus for making hydrogen cyanide.
US3168607A (en) Methods of heat treating articles
US2290551A (en) Heat treating furnace
JP2567130B2 (en) Bright annealing furnace
JPS58156026A (en) Preparation of carbon fiber
JP2006147553A (en) Furnace and method for baking carbon material
US4596610A (en) Hardening metal parts
JP2982598B2 (en) Operating method of atmosphere heat treatment furnace
US3854918A (en) Method for continuous heat treating of glass articles
US3930831A (en) Furnace for heat treating glass sheet material
US4482316A (en) Insulated atmosphere furnace