JPS58156026A - Preparation of carbon fiber - Google Patents

Preparation of carbon fiber

Info

Publication number
JPS58156026A
JPS58156026A JP3432582A JP3432582A JPS58156026A JP S58156026 A JPS58156026 A JP S58156026A JP 3432582 A JP3432582 A JP 3432582A JP 3432582 A JP3432582 A JP 3432582A JP S58156026 A JPS58156026 A JP S58156026A
Authority
JP
Japan
Prior art keywords
fibers
microwaves
outer box
vessel
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3432582A
Other languages
Japanese (ja)
Inventor
Tsunemi Ochiai
落合 常已
Shozo Minami
南 省三
Tadashi Kuramitsu
蔵満 正
Koichi Washimi
弘一 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIROCHIKU KK
Toyo Engineering Corp
Original Assignee
HIROCHIKU KK
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIROCHIKU KK, Toyo Engineering Corp filed Critical HIROCHIKU KK
Priority to JP3432582A priority Critical patent/JPS58156026A/en
Publication of JPS58156026A publication Critical patent/JPS58156026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain carbon fibers of high quality uniformly and rapidly at a high carbonization temperature, by introducing short fibers, etc. of infusibilized coal type pitch in a fire-resistant heat insulating vessel permeable to microwaves, and carbonizing the short fibers while irradiated with microwaves in an outer box reflecting the microwaves. CONSTITUTION:A coal type pitch is melt spun to give short fibers or continuous tow-like fibers 1 which are then made infusible in an oxidizing atmosphere. The resultant infusibilized fibers 1 are introduced into a vessel 2, permeable to microwaves, constituted of a fire-resistant and heat insulating material, e.g. a molded article of silica fibers, and having vent holes 10 and 11, and the vessel 2 is then placed in an outer box 4 constituted of a material reflecting the microwaves. An inert gas is then passed from an introductory nozzle 6 through the vent holes 11 of a lid 3 by the presence of a partition plate 8, a layer of the fibers 1 in the vessel 2 and the vent holes 10 and discharged from a discharging nozzle 9. Microwaves are applied to the interior of the outer box 4, disturbed by a rotating metallic plate 7, and permeated through the wall of the vessel 2 to generate internal heat by the dielectric effect on the fibers 1 and give the aimed fibers.

Description

【発明の詳細な説明】 本発明は石炭系ピッチから炭素繊維を製造する方法の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in the method of producing carbon fiber from coal-based pitch.

従来、ピッチ系炭素繊維の製造においては、低温酸化に
より不融化した繊維を不活性雰囲気中で1000〜15
00°Cの温度において炭化することが行われている。
Conventionally, in the production of pitch-based carbon fibers, fibers made infusible by low-temperature oxidation are heated to 1,000 to 15
Carbonization is carried out at a temperature of 00°C.

この場合炭化前の不融化繊維の強度が弱いので、合成繊
維を前駆体とする炭素繊維の製造におけるごとく繊維を
連続的に引張りながら加熱して行く方法は実施すること
ができない。従って、繊維の束を懸吊したり、ベルトコ
ンベア上に積み重ねたり、容器に収容した状態で炭化が
行われている。
In this case, since the strength of the infusible fibers before carbonization is low, it is not possible to carry out a method of heating the fibers while continuously pulling them, as in the production of carbon fibers using synthetic fibers as precursors. Therefore, carbonization is performed while fiber bundles are suspended, stacked on a belt conveyor, or housed in a container.

その加熱手段としては電気発熱体〃・らの輻射伝熱或は
高温の不活性ガスとの接触による熱交換などが提案され
ている。しかし、これら外部から加熱する方式では繊維
の集合体のごとき内部に空気層を包含する断熱体を加熱
することになるので、伝熱速度が小さく、全体を均一に
加熱することが困難であり、昇温の速度が伝熱速度によ
って制約されるために加熱に長時間を要するなどの欠点
がある。捷た、高温の不活性ガスとの熱交換による方式
では、高温用の熱交換器や循環ガスブロワを必要トする
ので、コスト高となるのみならず、加熱温度の点でも制
限があり、実用的には800°C以上の温度での炭化は
困難である。ピッチ系の炭素繊維の引張り強度が処理温
度1300°C程度1では処理温度とともに上昇するこ
とは周知であり、このような低温度で制限されることは
明らかに不利である。
Proposed heating means include radiation heat transfer using an electric heating element or heat exchange through contact with a high-temperature inert gas. However, these methods of heating from the outside involve heating an insulator that contains an air layer inside, such as an aggregate of fibers, so the heat transfer rate is low and it is difficult to uniformly heat the entire body. The rate of temperature increase is limited by the rate of heat transfer, so there are drawbacks such as the need for a long time for heating. Methods that rely on heat exchange with high-temperature inert gas require high-temperature heat exchangers and circulating gas blowers, which not only increases costs but also limits the heating temperature, making it impractical. Carbonization is difficult at temperatures above 800°C. It is well known that the tensile strength of pitch-based carbon fibers increases with processing temperature at a processing temperature of about 1300° C.1, and it is clearly disadvantageous to be limited at such a low temperature.

特公昭4’7−24186号公報にはレーヨン、ポリア
クリルニトリル、ピッチなどの有機質合成繊維をその軸
線方向に延伸しつつマイクロ波で照射して内部熱を発生
させるとともに軸線方向の配向性を高め、前記内部熱に
よって前記有機質合成繊維を炭素化させて炭素繊維を製
造する方法が開示されている。この方法は加熱手段とし
てのマイクロ波照射の点では上記の欠点を改良している
が、ピッチ繊維のような不融化繊維の強度の弱い繊維に
適用するのは困難である。
Japanese Patent Publication No. 4'7-24186 discloses that organic synthetic fibers such as rayon, polyacrylonitrile, and pitch are stretched in the axial direction and irradiated with microwaves to generate internal heat and improve the orientation in the axial direction. , discloses a method for producing carbon fibers by carbonizing the organic synthetic fibers using the internal heat. Although this method improves the above-mentioned drawbacks in terms of microwave irradiation as a heating means, it is difficult to apply to fibers such as pitch fibers, which are infusible fibers with low strength.

本発明の目的は、脆弱なピッチ系の原料繊維を、炭化温
度の制限を受けることなく、極めて均一かつ速かに炭化
して茜品質の炭素繊維を経済的に製造する方法を提案す
ることにある。
The purpose of the present invention is to propose a method for economically producing madder-quality carbon fibers by carbonizing brittle pitch-based raw material fibers extremely uniformly and quickly without being limited by carbonization temperature. be.

本発明の炭素繊維の製造方法は、石炭系ピンチを溶融紡
糸し、酸化性雰囲気中で不融化処理した短繊維捷だは連
続したトウ状繊維を、不活性雰囲気中においてマイクロ
波で照射して内部熱の発生により炭化して炭素繊維を製
造するに当って、上記短繊維捷たはトウ状繊維を、マイ
クロ波を透過しかつ耐火断熱性を有する材料で構成され
た通気孔を有する容器に収容し、該容器をマイクロ波を
反射する材料で構成された外箱内に設置し、不活性ガス
を該容器中の繊維層内に通気しつつ4呑i゛−−−−マ
イクロ波を照射すること を特徴とするものである。
The method for producing carbon fibers of the present invention involves melt-spinning coal-based pinch, and irradiating the short fibers, which have been infusible in an oxidizing atmosphere, into twisted or continuous tow-like fibers, with microwaves in an inert atmosphere. In producing carbon fibers by carbonization due to the generation of internal heat, the short fibers or tow-like fibers are placed in a container with vents made of a material that transmits microwaves and has fireproof and heat insulating properties. The container is placed in an outer box made of a material that reflects microwaves, and the container is irradiated with microwaves while an inert gas is passed through the fiber layer in the container. It is characterized by:

本発明の方法において用いられる原料繊維は、例えば石
炭類を公知の方法により水素加圧丁に炭化水素系溶剤中
にて加熱して解重合し、未溶解固形物を分離除去し、蒸
留により溶剤を除去して得られたピッチ捷だはコールタ
ールの熱処理により得られたピッチを溶融紡糸して得ら
れたピッチ繊維を酸素含有ガス中で加熱して不融化する
方法により得られたものである。
The raw material fibers used in the method of the present invention can be obtained by depolymerizing coal by heating it in a hydrocarbon solvent using a hydrogen press using a known method, separating and removing undissolved solids, and removing the solvent by distillation. The pitch fiber obtained by removing the coal tar is obtained by melt-spinning the pitch obtained by heat treatment of coal tar and heating the pitch fiber in an oxygen-containing gas to make it infusible. .

との原料繊維はマイクロ波が透過する材料で構経済とな
ることは当然であり、上限値を越えると炭化過程でター
ルによる融着が起り易いからである。容器に収容された
原料繊維の層の厚みは均一に炭化させるだめには300
.以下とするのが好ましい。
It is natural that the raw material fiber is a material that allows microwaves to pass through, and if the upper limit is exceeded, fusion due to tar is likely to occur during the carbonization process. The thickness of the layer of raw material fibers housed in the container must be 300 mm to ensure uniform carbonization.
.. The following is preferable.

容器の構成材料の例は、ンリカ系統の耐火断熱材が挙げ
られるが、さらに昇温冷却に伴う熱損失を小さくするた
めにバブル状もしくは繊維状のもの全成型して熱容昂を
小さくした耐火断熱材がよい。この容器は不活性ガスを
繊維層内に均一に分散させて流通させるために通気孔を
その底部及びふたに開孔させる。通気孔の大きさと数は
全通気孔による圧損が水柱5〜50wnとなるように選
ぶことが望ましい。
Examples of container constituent materials include fireproof insulation materials of the Nrika type, but in addition, to reduce heat loss due to temperature rise and cooling, fireproof materials are made entirely of bubble-like or fibrous materials to reduce heat expansion. Good insulation. This container has ventilation holes in its bottom and lid for uniformly distributing and circulating inert gas within the fibrous layer. The size and number of vent holes are preferably selected so that the pressure drop due to all the vent holes is 5 to 50 wn of water column.

原料繊維を収容した上記の容器はマイクロ波を反射する
材料、例えば金属で構成した外箱内に設置される。この
外箱内の頂部及び底部にはノズルを設け、そのいずれか
一方を不活性ガスの導入用−他方を不活性ガスの排出用
とする。
The container containing the raw material fibers is placed inside an outer box made of a material that reflects microwaves, such as metal. Nozzles are provided at the top and bottom of the outer box, one of which is used for introducing inert gas and the other for discharging inert gas.

′      マイクロ波の外箱の導入部にはマイクロ
波を撹乱する目的で回転金属板等を設置するのが望まし
い。
' It is desirable to install a rotating metal plate or the like in the introduction section of the microwave outer box for the purpose of disturbing the microwaves.

不活性ガスは不活性ガス導入ノズルから外箱内に導入さ
れ、容器の通気孔を通過して繊維層内を通り不活性ガス
排出ノズルから外部に排出される。
The inert gas is introduced into the outer box from the inert gas introduction nozzle, passes through the vent hole of the container, passes through the fiber layer, and is discharged to the outside from the inert gas discharge nozzle.

不活性ガスを通気させながらマイクロ波が外箱内に照射
される。照射されたマイクロ#(好ましくは900〜3
000MHz )は外箱内壁により乱反射され、容器の
壁を通してその中に収容されている原料繊維に誘電効果
を引き起し、繊維は自己発熱により昇温し、炭化する。
Microwaves are irradiated into the outer box while aerating inert gas. Irradiated micro# (preferably 900-3
000 MHz) is diffusely reflected by the inner wall of the outer box, causing a dielectric effect on the raw material fibers housed therein through the wall of the container, causing the fibers to heat up due to self-heating and carbonize.

不活性ガスとしては、アルゴン−窒素などが用いられ、
その昂は原料繊維]J’r当りo、l1以上とするのが
望ましい。炭化温度は1000−1300°Cが望まし
い。
As the inert gas, argon-nitrogen etc. are used.
It is desirable that the strength is 0.11 or more per J'r of raw material fiber. The carbonization temperature is preferably 1000-1300°C.

本発明においては、原料繊維を収容する容器の全面がマ
イクロ波を透過し得る材料で構成されること、及びこの
容器の捷わりがマイクロ波を反射する材料で構成された
外箱とされることが重要である。このようにすることに
より、マイクロeは外箱内壁で乱反射され、容器の全周
から原料繊維を照射することができるから−これによっ
てはじめて繊維層の均一な加熱が可能となり、従って均
一な高品質の炭素繊維を得ることができる。さらに、容
器が断熱性をもつことにより熱の放散損失が防止される
ので、加熱効率がよい。
In the present invention, the entire surface of the container containing the raw material fibers is made of a material that can transmit microwaves, and the outer box of this container is made of a material that reflects microwaves. is important. By doing this, the micro e is diffusely reflected on the inner wall of the outer box, and the raw material fibers can be irradiated from all around the container - this makes it possible to uniformly heat the fiber layer for the first time, resulting in uniform high quality. of carbon fiber can be obtained. Furthermore, since the container has heat insulating properties, heat dissipation loss is prevented, resulting in good heating efficiency.

炭化反応の過程で繊維の分解により発生する1(2、C
o、 Co2、タールなどのガスは停滞していると炭化
した繊維自体と高温で反応して繊維を傷つけるので、こ
れらの発生ガスは速かに繊維層から除去する必要がある
。本発明においては、このだめに上述したように少量の
不活性ガスを常に繊維層を通して流しておくことにより
、発生したガスが不活性ガスで置換され、容器外に速か
に排出される。
1 (2, C) generated by fiber decomposition during the carbonization reaction process.
If gases such as o, Co2, and tar are stagnant, they will react with the carbonized fibers themselves at high temperatures and damage the fibers, so these generated gases need to be quickly removed from the fiber layer. In the present invention, by constantly flowing a small amount of inert gas through the fiber layer as described above, the generated gas is replaced with the inert gas and quickly discharged out of the container.

不活性ガスの通気方向は容器の上方から下方或は丁方刀
≧ら上方のいずれでもよい。しかしながら、常温の不活
性ガス吉最初に接触する部分の繊維温度が低トするのを
防止し7.1だマイクロ波の#奉導波管が発生ガスを含
有した不活性ガスにより過熱汚染されることを防止する
ために、通気方向は不活性ガスの通気方向の上流側から
マイクロ波を導入することが望捷れるのである。
The direction of the inert gas may be either from the top to the bottom of the container or from the top to the top. However, inert gas at room temperature prevents the fiber temperature from dropping at the part that first comes into contact with it. In order to prevent this, it is desirable to introduce microwaves from the upstream side of the inert gas ventilation direction.

このようにして、本願発明によれば脆弱なピッチ繊維か
ら経済的に高品質の炭素繊維を製造することができる。
In this way, according to the present invention, high quality carbon fibers can be economically produced from brittle pitch fibers.

すなわち、原料繊維の形態の如何を問わず、任意の集合
体として、均一に、速かに、しカニも1000″C以上
の高温にまで加熱して炭化し、高品質の炭素繊維を製造
することができるのである。
In other words, regardless of the form of the raw fibers, any aggregate can be uniformly and quickly carbonized by heating to a high temperature of 1000"C or higher to produce high-quality carbon fibers. It is possible.

次に本発明の実施1例に使用した装置の1例を添付図面
を参照しつつ説明する。原料繊維1を収容する容器2は
、ソリ力繊維を成型した厚さ20.の耐火断熱材で構成
され、底部が一辺の長さ300 nnの正jj形で、高
さが300.であり、底部に直径i。
Next, one example of the apparatus used in the first embodiment of the present invention will be explained with reference to the accompanying drawings. The container 2 containing the raw material fibers 1 is made of molded fibers with a thickness of 20. The bottom part is a regular jj shape with a side length of 300 nn and a height of 300 nn. and diameter i at the bottom.

緬の通気孔lOを30個有するものである。容器2はふ
た3を有するものであり、ふた3も同じ耐火断熱材で構
成され、直径10m1l+の通気孔11を30個有して
いる。この容器2には原料繊維1が連続しだトウ状また
ばチップの状態で収容でキル。
It has 30 bamboo ventilation holes. The container 2 has a lid 3, which is also made of the same fireproof heat insulating material and has 30 ventilation holes 11 with a diameter of 10 ml+. The raw material fiber 1 is stored in the container 2 in the form of continuous tows or chips.

容器2が内部に設置される外箱4は、アルミニウム製で
あり、−辺の長さが600耽の立方体に形成されている
。この外箱4の側壁内面には内部を上Fに仕切るような
仕切板8を設けである。仕切板8は溶融ソリ力製であっ
て一容器2が載せられ、その容器2の載る部分が容器2
の底面よりもやや小さく開口している。外箱4内の一4
二部にはマイクロ波導波管5が接続され、導波管5の開
口部近傍には回転する金属板7が設置されている。まだ
外箱4内の」一部には不活性ガス導入ノズル6が、−「
部には排出ノズル9が設置されている。
The outer box 4 in which the container 2 is installed is made of aluminum and is shaped like a cube with a negative side length of 600 mm. A partition plate 8 is provided on the inner surface of the side wall of the outer box 4 to partition the inside into an upper part F. The partition plate 8 is made of a molten material and has one container 2 placed thereon, and the part on which the container 2 is placed is the container 2.
The opening is slightly smaller than the bottom. 14 inside outer box 4
A microwave waveguide 5 is connected to the second part, and a rotating metal plate 7 is installed near the opening of the waveguide 5. The inert gas introduction nozzle 6 is still in the outer box 4.
A discharge nozzle 9 is installed in the section.

この装置において、不活性ガスは導入ノズル6刀)ら外
箱4の上部に導入され、仕切板8の存在によりふた3の
通気孔11を通り、容器2内の繊維層(9) を通り、容器2の通気孔10を通り、排出ノズル9から
排出される。−v イ/i o eは、900−300
0 MHzの中所望のものが導波管5を通して外箱4内
に導入されるように々つでいる。導入されたマイクロe
は回転金属板ワにより撹乱され、外箱4の壁で反射され
て容器2の壁を透過してその中の繊維lに誘電効果を引
き起し、この結果原料繊維lは自己発熱によって昇温し
て炭化する。炭化反応の過程で発生する■■2、co 
、 co2、タール等のガスはノズル6から導入された
不活性ガスにより速かに駆出され、生成された炭素繊維
がこれらのガスと高温で反応するのか防止される。不活
性ガスの通気方向はノズル9から導入してノズル6から
排出することもあり得るが、その場合のマイクロ波の導
入は不活性ガスの通気方向の上流側から、つ捷り下側か
ら行うようにする。
In this device, inert gas is introduced into the upper part of the outer box 4 through the introduction nozzle (6), passes through the vent hole 11 of the lid 3 due to the presence of the partition plate 8, passes through the fiber layer (9) inside the container 2, It passes through the vent hole 10 of the container 2 and is discharged from the discharge nozzle 9. -v i/i o e is 900-300
0 MHz so as to be introduced into the outer box 4 through the waveguide 5. introduced micro e
is disturbed by the rotating metal plate W, is reflected by the wall of the outer box 4, and passes through the wall of the container 2, causing a dielectric effect on the fibers L therein, and as a result, the temperature of the raw fiber L rises due to self-heating. and carbonize. ■■2, co generated during the carbonization reaction process
Gases such as , CO2, and tar are quickly expelled by the inert gas introduced from the nozzle 6, and the produced carbon fibers are prevented from reacting with these gases at high temperatures. The inert gas may be introduced from the nozzle 9 and discharged from the nozzle 6, but in that case, the microwaves are introduced from the upstream side of the inert gas ventilation direction and from the bottom of the sieve. Do it like this.

以丁に本発明の実施例を示す。Examples of the present invention are shown below.

実施例 原料繊維1は、不融化処理した石炭系ピッチ繊維でトウ
状である。これを容器2に、嵩比重り(’Jk!。
Example raw material fiber 1 is a tow-shaped coal-based pitch fiber that has been treated to be infusible. Place this in container 2 and use a bulk ratio weight ('Jk!

(10) 繊維層の厚み250 rrvnの状態に収容し、上部に
ふだ3をする。そして容器2を仕切板8上に図示のよう
に設置する。外箱4内を99.99 % (容@係)の
窒素ガスで約30分間置換操作した後、窒素ガスをノズ
ル6から401/分の速度で供給し、ノズル9から外部
に排出する状態とする。この状態で導波管5から245
oMf(zのマイクロ波を導入し、常温から30°C/
分の速度で繊維1を昇流し、1200°Cに15分間保
持した後、マイクロ波を止め、窒素ガスで300°Cに
急冷して取出した。
(10) The fiber layer is housed in a state with a thickness of 250 rrvn, and a flap 3 is formed on the top. Then, the container 2 is placed on the partition plate 8 as shown. After replacing the inside of the outer box 4 with 99.99% (capacity) nitrogen gas for about 30 minutes, nitrogen gas is supplied from the nozzle 6 at a rate of 401/min, and is discharged from the nozzle 9 to the outside. do. In this state, waveguide 5 to 245
oMf (z microwave is introduced, from room temperature to 30°C/
After the fiber 1 was elevated at a rate of 15 minutes and held at 1200°C for 15 minutes, the microwave was turned off, and the fiber 1 was rapidly cooled to 300°C with nitrogen gas and taken out.

得られた炭素繊維はその性状が均一であり、引張り強度
14okg/rrvn  、伸度は2%で良好な製品で
あった。
The obtained carbon fiber was a good product with uniform properties, tensile strength of 14 ok/rrvn, and elongation of 2%.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例に用いた装置の概略の構成を示す縦
断面図である。 1・・・原料繊維、2・・・容器−3・・ふた、4・・
・外箱、5・・・導波管、6・・・導入ノズル、7・・
・回転金属板、8・・・仕切板、9・・・排出ノズル、
10.11・・・通気孔。 (11)
The figure is a vertical cross-sectional view showing a schematic configuration of an apparatus used in an example of the present invention. 1... Raw fiber, 2... Container-3... Lid, 4...
・Outer box, 5... Waveguide, 6... Introducing nozzle, 7...
・Rotating metal plate, 8... Partition plate, 9... Discharge nozzle,
10.11... Ventilation hole. (11)

Claims (1)

【特許請求の範囲】[Claims] (1)石炭系ピッチを溶融紡糸し、酸化性雰囲気中で不
融化処理した短繊維または連続した1−ウ状繊維を、不
活性雰囲気中においてマイクロ波で照射して内部熱の発
生により炭化して炭素繊維を製造するに当って、上記短
繊維またはトつ状繊維を、マイクロ波を透過しかつ耐火
断熱性を有する材料で構成された通気孔を有する容器に
収容し、該容器をマイクロ波を反射する材料で構成され
た外箱内に設置し、不活性ガスを該容器中の繊維層内に
通気しつつマイクロ波を照射することを特徴とする炭素
繊維の製造方法。
(1) Coal-based pitch is melt-spun and treated to make it infusible in an oxidizing atmosphere. Short fibers or continuous 1-C fibers are irradiated with microwaves in an inert atmosphere and carbonized by the generation of internal heat. To produce carbon fibers, the short fibers or spiky fibers are placed in a container with ventilation holes made of a material that transmits microwaves and has fireproof and heat-insulating properties, and the container is exposed to microwaves. 1. A method for producing carbon fibers, which comprises placing carbon fibers in an outer box made of a reflective material, and irradiating microwaves while passing an inert gas into the fiber layer in the container.
JP3432582A 1982-03-03 1982-03-03 Preparation of carbon fiber Pending JPS58156026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3432582A JPS58156026A (en) 1982-03-03 1982-03-03 Preparation of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3432582A JPS58156026A (en) 1982-03-03 1982-03-03 Preparation of carbon fiber

Publications (1)

Publication Number Publication Date
JPS58156026A true JPS58156026A (en) 1983-09-16

Family

ID=12410995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3432582A Pending JPS58156026A (en) 1982-03-03 1982-03-03 Preparation of carbon fiber

Country Status (1)

Country Link
JP (1) JPS58156026A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141125A (en) * 1985-12-09 1987-06-24 Nitto Boseki Co Ltd Method for infusibilization and carbonization treatment of pitch fiber and apparatus therefor
JPS62282022A (en) * 1986-05-26 1987-12-07 Nitto Boseki Co Ltd Method for treating pitch yarn and device therefor
JPH06295763A (en) * 1993-04-02 1994-10-21 Ike Denki Seisakusho:Yugen Power connector
JP2002180372A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber coated with metal oxide and method for producing the same
US20110079505A1 (en) * 2005-11-09 2011-04-07 Ut-Battelle,Llc System to continuously produce carbon fiber via microwave assisted plasma processing
US20120181162A1 (en) * 2009-07-28 2012-07-19 Marina Vladimirovna Soboleva Method for Stabilizing Carbon-Containing Fibre and Method for Producing Carbon Fibre
JP6446573B1 (en) * 2018-01-18 2018-12-26 マイクロ波化学株式会社 Microwave processing apparatus and carbon fiber manufacturing method
TWI704261B (en) * 2018-01-18 2020-09-11 日商微波化學有限公司 Microwave processing device and manufacturing method of carbon fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144125A (en) * 1982-02-10 1983-08-27 Hirochiku:Kk Microwave heating apparatus for preparing carbon fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144125A (en) * 1982-02-10 1983-08-27 Hirochiku:Kk Microwave heating apparatus for preparing carbon fiber

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141125A (en) * 1985-12-09 1987-06-24 Nitto Boseki Co Ltd Method for infusibilization and carbonization treatment of pitch fiber and apparatus therefor
JPS62282022A (en) * 1986-05-26 1987-12-07 Nitto Boseki Co Ltd Method for treating pitch yarn and device therefor
JPH0122368B2 (en) * 1986-05-26 1989-04-26 Nitsuto Boseki Kk
JPH06295763A (en) * 1993-04-02 1994-10-21 Ike Denki Seisakusho:Yugen Power connector
JP2002180372A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber coated with metal oxide and method for producing the same
US9427720B2 (en) 2005-11-09 2016-08-30 Ut-Batelle, Llc System to continuously produce carbon fiber via microwave assisted plasma processing
US8679592B2 (en) * 2005-11-09 2014-03-25 Ut-Battelle, Llc System to continuously produce carbon fiber via microwave assisted plasma processing
US20110079505A1 (en) * 2005-11-09 2011-04-07 Ut-Battelle,Llc System to continuously produce carbon fiber via microwave assisted plasma processing
US20120181162A1 (en) * 2009-07-28 2012-07-19 Marina Vladimirovna Soboleva Method for Stabilizing Carbon-Containing Fibre and Method for Producing Carbon Fibre
JP2013500406A (en) * 2009-07-28 2013-01-07 マリーナ ウラジーミロヴナ ソボレヴァ, Method for stabilizing carbon-containing fibers and method for producing carbon fibers
JP6446573B1 (en) * 2018-01-18 2018-12-26 マイクロ波化学株式会社 Microwave processing apparatus and carbon fiber manufacturing method
JP2019125534A (en) * 2018-01-18 2019-07-25 マイクロ波化学株式会社 Microwave processing apparatus and method of manufacturing carbon fiber
TWI704261B (en) * 2018-01-18 2020-09-11 日商微波化學有限公司 Microwave processing device and manufacturing method of carbon fiber

Similar Documents

Publication Publication Date Title
Ko Influence of continuous stabilization on the physical properties and microstructure of PAN‐based carbon fibers
US6372192B1 (en) Carbon fiber manufacturing via plasma technology
US3392216A (en) Method for producing carbon structures from molten baked substances
JP6713994B2 (en) Continuous carbonization method and carbon fiber production system
JPS5851526B2 (en) Carbon fiber manufacturing method
JPS58156026A (en) Preparation of carbon fiber
US5925591A (en) Process for the production of hollow carbon fiber membranes
CN211522400U (en) Microwave heating carbon fiber precursor annealing-pre-oxidation treatment equipment
US3556729A (en) Process for oxidizing and carbonizing acrylic fibers
US4389387A (en) Method for preparing carbon fibers
KR890013237A (en) Carbon fiber balanced with ultra high modulus and high tensile strength
Newell et al. Direct carbonization of PBO fiber
EP0147005A2 (en) Oxidation of pitch fibers
US5399330A (en) Carbon thread and process for producing it
US3723150A (en) Surface modification of carbon fibers
JPS6332886B2 (en)
JP2723356B2 (en) Continuous spinning and pyrolysis of ceramic filaments from resin
CA1126918A (en) Method of and apparatus for making pitch fiber infusible
CA2004370C (en) Continuous, ultrahigh modulus carbon fiber
RU2520982C1 (en) Method of carbonisation of viscose fibrous materials in process of obtaining carbon fibres
JPS5860019A (en) Preparation of carbon fiber
US3914393A (en) Process for the conversion of stabilized acrylic fibers to carbon fibers
JP2011500973A (en) Hollow carbon fiber and its manufacturing process
RU2698744C1 (en) Method of producing activated carbon fabric
JPH01162828A (en) Method for infusibilizing pitch fiber