JP2009001468A - Apparatus and method for producing highly functional carbon fiber - Google Patents

Apparatus and method for producing highly functional carbon fiber Download PDF

Info

Publication number
JP2009001468A
JP2009001468A JP2007166535A JP2007166535A JP2009001468A JP 2009001468 A JP2009001468 A JP 2009001468A JP 2007166535 A JP2007166535 A JP 2007166535A JP 2007166535 A JP2007166535 A JP 2007166535A JP 2009001468 A JP2009001468 A JP 2009001468A
Authority
JP
Japan
Prior art keywords
resonance
microwave
carbon fiber
hollow
resonance space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007166535A
Other languages
Japanese (ja)
Other versions
JP2009001468A5 (en
JP5029949B2 (en
Inventor
Junya Nishino
順也 西野
Hiroshi Nakai
宏 中井
Kenji Suzuki
健次 鈴木
Kazuo Uematsu
和夫 上松
Shoichi Hara
正一 原
Katsumi Takahashi
克巳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007166535A priority Critical patent/JP5029949B2/en
Publication of JP2009001468A publication Critical patent/JP2009001468A/en
Publication of JP2009001468A5 publication Critical patent/JP2009001468A5/ja
Application granted granted Critical
Publication of JP5029949B2 publication Critical patent/JP5029949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and method for producing a highly functional carbon fiber and characterized by the following: a carbon fiber can be continuously made to be highly functional by doping a functionalizing treatment agent while being heated at a temperature higher than 2,000°C; the apparatus is hardly damaged; and energy loss is small. <P>SOLUTION: The apparatus comprises a hollow resonance vessel 10 having a resonance space 9 in which a microwave can resonate and consisting of a material slightly absorbing a microwave 2, a microwave supplying device 12 for supplying a microwave with a specified frequency into the hollow resonance vessel to form a resonance state of a microwave 1 in the resonance space 9, a continuous hollow pipe 20 continuously stretched from the outside of the hollow resonance vessel through the resonance space 9 to its outside, a carbon fiber supplying device 22 continuously supplying a carbon fiber 1 from the one end of the continuous hollow pipe to its other end, and a gas circulation device 24 for circulating a high functionalizing treatment gas containing a high functionalizing treatment matter. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、炭素繊維を高温に加熱しながら、高機能化処理物質をドーピングして、連続的に炭素繊維を高機能化する高機能化炭素繊維の製造装置および方法に関する。   The present invention relates to an apparatus and a method for producing a highly functionalized carbon fiber that continuously increases the functionality of a carbon fiber by doping the highly functionalized substance while heating the carbon fiber to a high temperature.

リチウムイオンバッテリの負極材料は3D高結晶性グラファイトが主流であり、そこではグラファイトの六角網平面間にLiイオンが蓄えられて充電される。しかし、実際の電池負極では、理論値よりも低いLiイオンしか蓄えられない。これは、グラファイト中に介在する各種の欠陥の影響が主要な要因である。
この改善策として、ホウ素(B)を炭素六角網平面内にドーピングして、2500〜3000℃の温度で黒鉛化処理を行うことにより、性能が飛躍的に向上することが知られている(例えば、非特許文献1)。
The main negative electrode material for lithium ion batteries is 3D highly crystalline graphite, in which Li ions are stored and charged between hexagonal mesh planes of graphite. However, in an actual battery negative electrode, only Li ions lower than the theoretical value can be stored. This is mainly due to the effects of various defects present in the graphite.
As an improvement measure, it is known that the performance is drastically improved by doping boron (B) into a carbon hexagonal network plane and performing a graphitization treatment at a temperature of 2500 to 3000 ° C. (for example, Non-Patent Document 1).

上述した例のように、結晶構造を有する炭素材料を高温に加熱しながら、B,P,N等の高機能化処理物質をドーピングして、炭素材料の結晶構造を歪ませることにより、キャパシタンス等の電極性能を高めることができる。 As in the above-described example, while heating a carbon material having a crystal structure to a high temperature, doping a highly functional processing substance such as B, P, N 2 and the like to distort the crystal structure of the carbon material, capacitance The electrode performance such as can be improved.

結晶構造を有する炭素繊維は、石炭ピッチ、石油ピッチから量産することができる。この炭素繊維を上述した黒鉛化処理により高機能化するために、従来は、2000℃以上の温度に加熱できる黒鉛炉に紡糸した炭素繊維を充填し、そこにホウ素、リン、窒素等の処理するガスを流し、炭素繊維を機能化するバッチ式の方法が用いられていた。   Carbon fibers having a crystal structure can be mass-produced from coal pitch and petroleum pitch. In order to make this carbon fiber highly functional by the above-mentioned graphitization treatment, conventionally, the carbon fiber spun into a graphite furnace that can be heated to a temperature of 2000 ° C. or higher is filled and treated with boron, phosphorus, nitrogen, or the like. A batch type method of flowing gas and functionalizing carbon fibers has been used.

またその他の手段として、例えば特許文献1が既に開示されている。   As another means, for example, Patent Document 1 has already been disclosed.

特許文献1は、原材料の内部・外部を均一に加熱して高品位の活性炭や機能性材料を製造することを目的としている。
このため、この発明のハイブリッド反応炉は、マイクロ波吸収性物質を含有する原材料を装填するための外部加熱式反応炉であって、該反応炉内にマイクロ波を導入し、原材料の内部及び外部を同時に均一に加熱して、均一反応させる手段を具備するものである。
また、この外部加熱式反応炉は、図4に示すように、内部の活性炭原料や賦活剤が装填される内部反応炉55とその反応部を加熱する外部加熱炉57の二重炉となっており、内部反応炉55にはマイクロ波が導波管52を通して導入され、炉内の雰囲気制御のために不活性ガスなどを送給する導入口59および内部反応炉にガス排気口53を有し、導波管52には冷却及び発生ガスの進入を防ぐために不活性ガスの導入口58が設置されており、外部加熱炉57には燃料ガスの導入口と排気口50を有するものである。
Patent Document 1 aims to produce high-grade activated carbon and functional materials by uniformly heating the inside and outside of raw materials.
Therefore, the hybrid reactor of the present invention is an externally heated reactor for loading a raw material containing a microwave-absorbing substance, and the microwave is introduced into the reactor so that the inside and outside of the raw material are introduced. Is provided with a means for uniformly heating and reacting uniformly at the same time.
Further, as shown in FIG. 4, the external heating reactor is a double furnace of an internal reaction furnace 55 loaded with an internal activated carbon raw material and an activator and an external heating furnace 57 for heating the reaction part. The microwave is introduced into the internal reaction furnace 55 through the waveguide 52, and has an introduction port 59 for feeding an inert gas or the like for controlling the atmosphere in the furnace, and a gas exhaust port 53 in the internal reaction furnace. The waveguide 52 is provided with an inert gas inlet 58 in order to prevent cooling and generation gas from entering, and the external heating furnace 57 has a fuel gas inlet and an exhaust 50.

遠藤守信、他、「ナノカーボンとエネルギーデバイスの将来」、化学工業、2005年2月号Morinobu Endo, et al., “The Future of Nanocarbon and Energy Devices”, Chemical Industry, February 2005

特開2006−89344号公報、「ハイブリッド反応炉とそれを利用した高機能材料の製造方法」Japanese Patent Application Laid-Open No. 2006-89344, “Hybrid reactor and method for producing high-performance material using the same”

黒鉛炉を用いた従来の炭素繊維の機能化手段は、炭素繊維を高機能化するために処理温度を高める(例えば2000℃以上)と、炉の耐久性が急激に低下するため、処理性能と耐久性がトレードオフの関係にある問題点があった。
また、特許文献1では、内部加熱法のマイクロ波加熱と通常の外部加熱法を併用するため、均一に加熱できるが、炉体の耐久性保持のため加熱温度が1000℃以下に制限され、十分な高機能化ができない問題点があった。
さらに、これらの従来技術は、バッチ処理のため、連続処理ができず、安定した品質の高機能化炭素繊維を連続的に製造することができなかった。
Conventional carbon fiber functionalization means using a graphite furnace increases the processing temperature in order to increase the functionality of the carbon fiber (for example, 2000 ° C. or higher), and the durability of the furnace is drastically reduced. There was a problem that durability was in a trade-off relationship.
Moreover, in patent document 1, since the microwave heating of an internal heating method and a normal external heating method are used together, it can be heated uniformly, but the heating temperature is limited to 1000 ° C. or less in order to maintain the durability of the furnace body. There was a problem that it was not possible to achieve high functionality.
Furthermore, these conventional techniques cannot perform continuous processing due to batch processing, and cannot continuously produce highly functional carbon fibers with stable quality.

本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、2000℃を超える高温に炭素繊維を加熱しながら、高機能化処理物質をドーピングして、連続的に炭素繊維を高機能化することができ、かつ装置の損傷が少なく、エネルギー損失も少ない高機能化炭素繊維の製造装置および方法を提供することにある。   The present invention has been developed to solve such problems. That is, the object of the present invention is to continuously improve the functionality of carbon fiber by heating the carbon fiber at a high temperature exceeding 2000 ° C. and doping the highly functionalized substance, and causing damage to the apparatus. An object of the present invention is to provide an apparatus and a method for producing a highly functional carbon fiber with less energy loss.

本発明によれば、内部にマイクロ波が共鳴可能な共鳴空間を有し、マイクロ波の吸収が少ない材料からなる中空共鳴容器と、
該中空共鳴容器内に所定の周波数のマイクロ波を供給して前記共鳴空間にマイクロ波の共鳴状態を形成するマイクロ波供給装置と、
前記中空共鳴容器の外部から、前記共鳴空間を通って、その外部まで連続して延びる連続中空管と、
該連続中空管の一端から他端まで、炭素繊維を連続的に供給する炭素繊維供給装置と、
前記連続中空管の一端から他端まで、高機能化処理物質を含む高機能化処理ガスを流通させるガス流通装置とを備えた、ことを特徴とする高機能化炭素繊維の製造装置が提供される。
According to the present invention, there is a hollow resonance container made of a material having a resonance space in which microwaves can resonate and having little microwave absorption;
A microwave supply device for supplying a microwave of a predetermined frequency into the hollow resonance container to form a resonance state of the microwave in the resonance space;
A continuous hollow tube continuously extending from the outside of the hollow resonance vessel, through the resonance space, to the outside;
A carbon fiber supply device for continuously supplying carbon fibers from one end to the other end of the continuous hollow tube;
Provided with a high-performance carbon fiber production apparatus comprising a gas flow device for flowing a high-performance processing gas containing a high-performance processing material from one end to the other end of the continuous hollow tube Is done.

本発明の好ましい実施形態によれば、前記中空共鳴容器は、前記共鳴空間の形状を変化させマイクロ波の共鳴状態を形成するための可動壁を有し、
さらに、前記可動壁を前記共鳴空間の形状を変化させるために移動する壁駆動装置を備える。
According to a preferred embodiment of the present invention, the hollow resonance container has a movable wall for changing the shape of the resonance space to form a resonance state of microwaves,
Furthermore, a wall drive device is provided that moves the movable wall to change the shape of the resonance space.

また、前記マイクロ波供給装置は、所定の周波数のマイクロ波を発生するマイクロ波発生装置と、
発生したマイクロ波を前記中空共鳴容器内に供給する導波管と、
該導波管に取付けられ、中空共鳴容器から反射されるマイクロ波強度を計測する反射電力計とを備える。
The microwave supply device includes a microwave generator that generates a microwave having a predetermined frequency;
A waveguide for supplying the generated microwave into the hollow resonant container;
A reflection wattmeter that is attached to the waveguide and measures the intensity of the microwave reflected from the hollow resonant container.

また、前記反射電力計の出力信号を受信し前記壁駆動装置を制御する共鳴制御装置を備え、
該共鳴制御装置により前記出力信号が最小となる位置に前記可動壁を移動させる。
In addition, a resonance control device that receives the output signal of the reflected wattmeter and controls the wall driving device,
The movable wall is moved to a position where the output signal is minimized by the resonance control device.

また、本発明によれば、内部にマイクロ波が共鳴可能な共鳴空間を有し、マイクロ波の吸収が少ない材料からなる中空共鳴容器内に、その外部から、前記共鳴空間を通って、その外部まで連続して延びる連続中空管を備え、
該中空共鳴容器内に所定の周波数のマイクロ波を供給して前記共鳴空間にマイクロ波の共鳴状態を形成し、
前記連続中空管の一端から他端まで、炭素繊維と高機能化処理物質を含む高機能化ガスを連続的に供給して、炭素繊維をマイクロ波で高温に加熱しながら、高機能化処理物質をドーピングして、炭素繊維を高機能化する、ことを特徴とする高機能化炭素繊維の製造方法が提供される。
Further, according to the present invention, the inside of a hollow resonance container made of a material having a resonance space in which microwaves can resonate and having little microwave absorption passes from the outside to the outside through the resonance space. With a continuous hollow tube extending continuously to
A microwave having a predetermined frequency is supplied into the hollow resonance vessel to form a resonance state of the microwave in the resonance space,
High-functionalization treatment is performed by continuously supplying a high-performance gas containing carbon fiber and a high-functionality treatment substance from one end to the other end of the continuous hollow tube, and heating the carbon fiber to a high temperature with microwaves. There is provided a method for producing a highly functional carbon fiber, characterized in that a carbon fiber is highly functionalized by doping a substance.

炭素材料は、マイクロ波の良好な吸収物質であり、マイクロ波の照射により容易に高温に加熱される特性がある。   A carbon material is a good absorbing material for microwaves, and has a characteristic of being easily heated to a high temperature by microwave irradiation.

上述した本発明の装置および方法によれば、内部にマイクロ波が共鳴可能な共鳴空間を有し、マイクロ波の吸収が少ない材料からなる中空共鳴容器内に所定の周波数のマイクロ波を供給してマイクロ波の共鳴状態を形成するので、この共鳴状態において中空共鳴容器内にマイクロ波の電界強度の高い領域を少ないエネルギー損失で形成することができる。   According to the above-described apparatus and method of the present invention, a microwave having a predetermined frequency is supplied into a hollow resonance vessel made of a material that has a resonance space in which microwaves can resonate and has little microwave absorption. Since a microwave resonance state is formed, in this resonance state, a region having a high microwave field strength can be formed in the hollow resonance container with a small energy loss.

また中空共鳴容器の外部から、共鳴空間を通って、その外部まで連続して延びる連続中空管を備え、その一端から他端まで、炭素繊維と高機能化処理物質を含む高機能化処理ガスを連続的に供給することで、マイクロ波の良好な吸収物質である炭素繊維に選択的にマイクロ波を照射し、2000℃を超える高温に炭素繊維を効率よく加熱することができ、この高温において高機能化処理物質をドーピングして、連続的に炭素繊維を高機能化することができる。
また、マイクロ波を吸収して高温に加熱されるのは、炭素繊維自体であり、その他の構成部材は、マイクロ波の吸収が少なく加熱されない。
Also, a highly functional processing gas comprising a continuous hollow tube continuously extending from the outside of the hollow resonant container through the resonant space to the outside thereof, including carbon fiber and a highly functional processing substance from one end to the other end. By continuously supplying the carbon fiber, it is possible to selectively irradiate the carbon fiber, which is a good absorber of microwaves, with the microwave, and to efficiently heat the carbon fiber to a high temperature exceeding 2000 ° C. The carbon fiber can be continuously functionalized by doping with a functional material.
Further, it is the carbon fiber itself that absorbs the microwave and is heated to a high temperature, and the other constituent members absorb little microwave and are not heated.

従って中空共鳴容器やその他の構成機材を炭素繊維より低温の比較的穏和な条件に維持出来るため、炉体への負荷をあまりかけずに、炭素繊維を高機能化できる。
また、照射するマイクロ波の波長、出力と防止した炭素繊維の化学成分を調整することにより結晶組織、メソフェースの大きさ、比表面積等を制御することができる。
Therefore, since the hollow resonance vessel and other components can be maintained at relatively mild conditions at a lower temperature than the carbon fiber, the carbon fiber can be highly functionalized without applying much load to the furnace body.
In addition, the crystal structure, mesophase size, specific surface area, and the like can be controlled by adjusting the wavelength of the irradiated microwave, the output, and the chemical components of the prevented carbon fiber.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明による高機能化炭素繊維製造装置の全体構成図である。
この図に示すように本発明の高機能化炭素繊維製造装置は、中空共鳴容器10、マイクロ波供給装置12、壁駆動装置16および共鳴制御装置18を備える。
FIG. 1 is an overall configuration diagram of a highly functionalized carbon fiber manufacturing apparatus according to the present invention.
As shown in this figure, the highly functionalized carbon fiber production apparatus of the present invention includes a hollow resonance container 10, a microwave supply device 12, a wall driving device 16, and a resonance control device 18.

中空共鳴容器10は、内部でマイクロ波2が共鳴可能な共鳴空間9を有する。この共鳴空間9は、中空円筒形又は中空直方体であるのが好ましいが、本発明はこれに限定されず、内部でマイクロ波が共鳴可能であれば、任意の形状であってもよい。
中空共鳴容器10は、マイクロ波の吸収が少ない材料からなる。また、この材料はワーク1が2000℃以上、好ましくは2500℃以上に加熱されても、損傷を受けない耐熱強度が高い材料からなる。このような材料として、例えばグラファイトを用いることができる。
The hollow resonance container 10 has a resonance space 9 in which the microwave 2 can resonate. The resonance space 9 is preferably a hollow cylindrical shape or a hollow rectangular parallelepiped, but the present invention is not limited to this, and may have any shape as long as microwaves can resonate inside.
The hollow resonant container 10 is made of a material that absorbs less microwaves. In addition, this material is made of a material having high heat resistance that is not damaged even when the workpiece 1 is heated to 2000 ° C. or higher, preferably 2500 ° C. or higher. As such a material, for example, graphite can be used.

この例において、中空共鳴容器10は、共鳴空間9の形状を変化させマイクロ波2の共鳴状態を形成するための可動壁(後述する底板10bおよび上蓋10c)を有する。   In this example, the hollow resonance container 10 has movable walls (a bottom plate 10b and an upper lid 10c described later) for changing the shape of the resonance space 9 to form a resonance state of the microwave 2.

この例において、中空共鳴容器10は、中空胴部10a、底板10bおよび上蓋10cからなる。
中空胴部10aはこの例では円筒管であるが、矩形管であってもよい。
底板10bは、中空胴部10aの下部にシール材を介して嵌合し、共鳴空間9の底部を形成する。
また、上蓋10cは、中空胴部10aの上部にシール材を介して嵌合し、共鳴空間9の蓋部を形成する。底板10bおよび上蓋10cは互いに平行であり、かつそれぞれ中空胴部10aの軸線に沿って上下動可能に形成されている。シール材は、内部の気密を保持できる限りで、任意の材料からなる。
なお、この例において、可動壁は、底板10bと上蓋10cであるが、本発明はこれに限定されず、可動壁をいずれか一方としてもよい。
In this example, the hollow resonance container 10 includes a hollow body 10a, a bottom plate 10b, and an upper lid 10c.
The hollow body portion 10a is a cylindrical tube in this example, but may be a rectangular tube.
The bottom plate 10b is fitted to the lower portion of the hollow body portion 10a via a sealing material to form the bottom portion of the resonance space 9.
Further, the upper lid 10c is fitted to the upper portion of the hollow body portion 10a via a sealing material to form a lid portion of the resonance space 9. The bottom plate 10b and the upper lid 10c are parallel to each other and are formed to be movable up and down along the axis of the hollow body 10a. The sealing material is made of any material as long as the internal airtightness can be maintained.
In this example, the movable walls are the bottom plate 10b and the upper lid 10c, but the present invention is not limited to this, and the movable wall may be either one.

マイクロ波供給装置12は、中空共鳴容器10内に所定の周波数(例えば2.45GHz)のマイクロ波2を供給する。
この例において、マイクロ波供給装置12は、所定の周波数のマイクロ波2を発生するマイクロ波発生装置12aと、発生したマイクロ波2を中空共鳴容器12内に供給する導波管12bと、反射電力計13とを備える。
導波管12bは、マイクロ波2を低損失で中空共鳴容器12内まで伝播させる形状であり、かつ中空共鳴容器10内の共鳴空間9にマイクロ波2の共鳴状態を形成できる位置に連結されている。この位置は、予めシミュレーション等で決定するが、底板10bを移動して調整してもよい。
反射電力計13は、導波管12bに取付けられ、中空共鳴容器10から反射されるマイクロ波強度を計測する。共鳴空間9にマイクロ波2の共鳴状態が形成されると、反射されるマイクロ波強度が最も弱くなる。
The microwave supply device 12 supplies the microwave 2 having a predetermined frequency (for example, 2.45 GHz) into the hollow resonance container 10.
In this example, the microwave supply device 12 includes a microwave generation device 12a that generates a microwave 2 having a predetermined frequency, a waveguide 12b that supplies the generated microwave 2 into the hollow resonance container 12, and a reflected power. A total of 13.
The waveguide 12b is shaped to propagate the microwave 2 into the hollow resonance container 12 with low loss, and is connected to a position where the resonance state of the microwave 2 can be formed in the resonance space 9 in the hollow resonance container 10. Yes. This position is determined in advance by simulation or the like, but may be adjusted by moving the bottom plate 10b.
The reflected wattmeter 13 is attached to the waveguide 12 b and measures the intensity of the microwave reflected from the hollow resonant container 10. When the resonance state of the microwave 2 is formed in the resonance space 9, the reflected microwave intensity becomes the weakest.

壁駆動装置16は、可動壁(この例では底板10bおよび上蓋10c)を共鳴空間9の形状を変化させるために移動する。
この例において、壁駆動装置16は、底板10bを駆動する底板駆動装置16aと、上蓋10cを駆動する上蓋駆動装置16bとからなる。壁駆動装置16(底板駆動装置16aと上蓋駆動装置16b)は、例えばスクリュージャッキ、直動シリンダ、ボールネジである。
なお、底板駆動装置16aと上蓋駆動装置16bの両方は不可欠ではなく、いずれか一方のみでもよい。
The wall driving device 16 moves the movable wall (in this example, the bottom plate 10b and the upper lid 10c) in order to change the shape of the resonance space 9.
In this example, the wall driving device 16 includes a bottom plate driving device 16a that drives the bottom plate 10b and an upper lid driving device 16b that drives the upper lid 10c. The wall drive device 16 (the bottom plate drive device 16a and the upper lid drive device 16b) is, for example, a screw jack, a linear motion cylinder, or a ball screw.
Note that both the bottom plate driving device 16a and the upper lid driving device 16b are not essential, and only one of them may be used.

共鳴制御装置18は、反射電力計13の出力信号を受信し、壁駆動装置16(この例では上蓋駆動装置16b)を制御する。
この共鳴制御装置18により、反射電力計13の出力信号が最小となる位置に可動壁(この例では上蓋10c)を移動させる。
The resonance control device 18 receives the output signal of the reflected wattmeter 13 and controls the wall driving device 16 (upper lid driving device 16b in this example).
The resonance control device 18 moves the movable wall (in this example, the upper lid 10c) to a position where the output signal of the reflected wattmeter 13 is minimized.

図2は、図1のA−A矢視図である。この図に示すように、本発明の高機能化炭素繊維製造装置は、さらに連続中空管20、炭素繊維供給装置22およびガス流通装置24を備える。   FIG. 2 is an AA arrow view of FIG. As shown in this figure, the highly functionalized carbon fiber production apparatus of the present invention further includes a continuous hollow tube 20, a carbon fiber supply device 22, and a gas flow device 24.

連続中空管20は、中空共鳴容器10の外部から、中空共鳴容器内の共鳴空間9を通って、中空共鳴容器の外部まで連続して延びる。この連続中空管20は1300℃以上の高温に耐える耐熱性石英管であるのがよい。
また、連続中空管20の入口部と出口部は、共鳴状態におけるマイクロ波強度の低い領域に設けるのがよい。
また、この連続中空管20は、共鳴空間9のマイクロ波強度の高い領域(後述する)を通りかつ内部を炭素繊維がスムースに通過できるように形成された螺旋管であるのがよい。
なお、この例で連続中空管20の螺旋を直径の異なる3重螺旋管で示しているが、本発明はこの構成に限定されず、直径とピッチを任意に設定することができる。
The continuous hollow tube 20 continuously extends from the outside of the hollow resonance container 10 to the outside of the hollow resonance container through the resonance space 9 in the hollow resonance container. The continuous hollow tube 20 is preferably a heat-resistant quartz tube that can withstand high temperatures of 1300 ° C. or higher.
Moreover, it is preferable to provide the inlet part and outlet part of the continuous hollow tube 20 in a region where the microwave intensity is low in the resonance state.
The continuous hollow tube 20 is preferably a spiral tube formed so as to pass through a region having a high microwave intensity (described later) in the resonance space 9 and allow carbon fibers to smoothly pass therethrough.
In this example, the spiral of the continuous hollow tube 20 is shown as a triple spiral tube having a different diameter, but the present invention is not limited to this configuration, and the diameter and pitch can be arbitrarily set.

炭素繊維供給装置22は、処理前の炭素繊維1を巻き戻す巻戻し装置23aと、処理後の炭素繊維1を巻き取る巻取り装置23bとからなる。またこの例で、巻戻し装置23aと巻取り装置23bは、不活性ガスが充填された気密容器21内に収容され、炭素繊維1の変質を防ぐようになっている。
炭素繊維1は、石炭ピッチ、石油ピッチから製造した単結晶構造を有する炭素繊維である。炭素繊維1の直径は、連続中空管を通せる可撓性を有する限りで任意であり、例えば0.1μmから100μmである。
The carbon fiber supply device 22 includes a rewinding device 23a that rewinds the carbon fiber 1 before processing, and a winding device 23b that winds the carbon fiber 1 after processing. Further, in this example, the rewinding device 23a and the winding device 23b are accommodated in an airtight container 21 filled with an inert gas to prevent the carbon fiber 1 from being altered.
The carbon fiber 1 is a carbon fiber having a single crystal structure manufactured from coal pitch or petroleum pitch. The diameter of the carbon fiber 1 is arbitrary as long as it has the flexibility which can pass a continuous hollow tube, for example, is 0.1 micrometer-100 micrometers.

ガス流通装置24は、連続中空管の一端から他端まで、高機能化処理物質を含む高機能化処理ガス3を流通させる。高機能化処理物質は、例えば、B,P,N等である。
この例において、ガス流通装置24は、供給管24aを介して高機能化処理ガス3を供給するガス供給装置25aと、排気管24bを介して高機能化処理ガス3を排気するガス排気装置25bとを備える。
供給管24aと排気管24bは、上述した連続中空管20の側面に取付けられるのが好ましいが、その他の箇所、例えば気密容器21に取付けてもよい。
The gas distribution device 24 distributes the highly functionalized processing gas 3 containing the highly functionalized processing substance from one end to the other end of the continuous hollow tube. Examples of the highly functional processing substance include B, P, and N 2 .
In this example, the gas distribution device 24 includes a gas supply device 25a that supplies the highly functionalized processing gas 3 through the supply pipe 24a, and a gas exhaust device 25b that exhausts the highly functionalized processing gas 3 through the exhaust pipe 24b. With.
The supply pipe 24a and the exhaust pipe 24b are preferably attached to the side surface of the continuous hollow pipe 20 described above, but may be attached to other locations, for example, the airtight container 21.

上述した装置を用い、本発明の高機能化炭素繊維の製造方法は、以下のステップからなる。
(1)まず、内部にマイクロ波2が共鳴可能な共鳴空間9を有し、マイクロ波の吸収が少ない材料からなる中空共鳴容器10内に、その外部から、共鳴空間9を通って、その外部まで連続して延びる連続中空管20を備える。
この際、連続中空管20の中間部分を共鳴状態におけるマイクロ波強度の高い領域内に保持する。このマイクロ波強度の高い領域は、予め実験又はシミュレーションにより決定することができる。
(2)次に、中空共鳴容器10内に所定の周波数のマイクロ波2を供給して共鳴空間9にマイクロ波2の共鳴状態を形成する。共鳴状態の形成とその確認は、上述した壁駆動装置16と反射電力計13を用いることでできる。
(3)次に、連続中空管20の一端から他端まで、炭素繊維1と高機能化処理物質を含む高機能化処理ガス3を連続的に供給する。
この方法により、炭素繊維1をマイクロ波2で高温(例えば2000℃以上)に加熱しながら、高機能化処理物質をドーピングして、炭素繊維1を高機能化することができる。
Using the apparatus described above, the method for producing a highly functionalized carbon fiber of the present invention comprises the following steps.
(1) First, a resonance space 9 in which the microwave 2 can resonate is provided, and the hollow resonance vessel 10 made of a material with little microwave absorption is passed from the outside through the resonance space 9 to the outside. A continuous hollow tube 20 extending continuously.
At this time, an intermediate portion of the continuous hollow tube 20 is held in a region having a high microwave intensity in a resonance state. This region having a high microwave intensity can be determined in advance by experiment or simulation.
(2) Next, the microwave 2 having a predetermined frequency is supplied into the hollow resonance container 10 to form a resonance state of the microwave 2 in the resonance space 9. Formation and confirmation of the resonance state can be performed by using the wall driving device 16 and the reflection wattmeter 13 described above.
(3) Next, from one end of the continuous hollow tube 20 to the other end, the highly functional processing gas 3 containing the carbon fiber 1 and the highly functional processing substance is continuously supplied.
By this method, while the carbon fiber 1 is heated to a high temperature (for example, 2000 ° C. or more) with the microwave 2, the carbon fiber 1 can be highly functionalized by doping with the high-functionality processing substance.

図3は、本発明における中空共鳴容器内の電界強度分布図である。この例は、マイクロ波の周波数が2.45GHzであり、共鳴モードはTM011モードである。また、その条件は直径208mm,高さ69mmである。このときの導波管部との結合部の中心高さは25mmとなる。   FIG. 3 is an electric field intensity distribution diagram in the hollow resonance container according to the present invention. In this example, the frequency of the microwave is 2.45 GHz, and the resonance mode is the TM011 mode. The conditions are a diameter of 208 mm and a height of 69 mm. At this time, the center height of the coupling portion with the waveguide portion is 25 mm.

図3において、斜線部分Aで電界強度が大きくなっている。従って、上述したように、連続中空管20の中間部分は、中空共鳴容器10の外周部中間高さに位置するのがよい。   In FIG. 3, the electric field strength is increased in the shaded area A. Therefore, as described above, the intermediate portion of the continuous hollow tube 20 is preferably positioned at the intermediate height of the outer peripheral portion of the hollow resonant container 10.

マイクロ波の周波数と共鳴器形状の関係は、数1の式(1)で決定される直径と高さの組み合わせで上記分布(TM011モード)が成立する。
なお、導波管12bと共鳴器10の結合部の底面からの高さは,共鳴器10の直径と高さにより任意に変化するため解析により決定するのがよい。
Regarding the relationship between the frequency of the microwave and the resonator shape, the above distribution (TM011 mode) is established by the combination of the diameter and the height determined by Equation (1) of Formula 1.
It should be noted that the height from the bottom surface of the coupling portion between the waveguide 12b and the resonator 10 is arbitrarily determined depending on the diameter and height of the resonator 10 and is preferably determined by analysis.

Figure 2009001468
Figure 2009001468

上述した本発明の装置および方法によれば、内部にマイクロ波が共鳴可能な共鳴空間を有し、マイクロ波の吸収が少ない材料からなる中空共鳴容器内に所定の周波数のマイクロ波を供給してマイクロ波の共鳴状態を形成するので、この共鳴状態において中空共鳴容器内にマイクロ波の電界強度の高い領域を少ないエネルギー損失で形成することができる。   According to the above-described apparatus and method of the present invention, a microwave having a predetermined frequency is supplied into a hollow resonance vessel made of a material that has a resonance space in which microwaves can resonate and has little microwave absorption. Since a microwave resonance state is formed, in this resonance state, a region having a high microwave field strength can be formed in the hollow resonance container with a small energy loss.

また中空共鳴容器10の外部から、共鳴空間9を通って、その外部まで連続して延びる連続中空管20を備え、その一端から他端まで、炭素繊維1と高機能化処理物質を含む高機能化処理ガス3を連続的に供給することで、マイクロ波の良好な吸収物質である炭素繊維に選択的にマイクロ波を照射し、2000℃を超える高温に炭素繊維を効率よく加熱することができ、この高温において高機能化処理物質をドーピングして、連続的に炭素繊維1を高機能化することができる。
また、マイクロ波を吸収して高温に加熱されるのは、炭素繊維自体であり、その他の構成部材は、マイクロ波の吸収が少なく加熱されない。
In addition, a continuous hollow tube 20 continuously extending from the outside of the hollow resonant container 10 to the outside through the resonant space 9 is provided, and from one end to the other end, the carbon fiber 1 and the high-functionality processing substance containing the high-functionality processing substance are included. By continuously supplying the functionalized treatment gas 3, it is possible to selectively irradiate the carbon fiber, which is a good microwave absorbing material, with microwaves and efficiently heat the carbon fiber to a high temperature exceeding 2000 ° C. In addition, the carbon fiber 1 can be continuously enhanced in function by doping with a highly functionalized substance at this high temperature.
Further, it is the carbon fiber itself that absorbs the microwave and is heated to a high temperature, and the other constituent members absorb little microwave and are not heated.

従って中空共鳴容器やその他の構成機材を炭素繊維より低温の比較的穏和な条件に維持出来るため、炉体への負荷をあまりかけずに、炭素繊維を高機能化できる。
また、照射するマイクロ波の波長、出力と防止した炭素繊維の化学成分を調整することにより結晶組織、メソフェースの大きさ、比表面積等を制御することができる。
Therefore, since the hollow resonance vessel and other components can be maintained at relatively mild conditions at a lower temperature than the carbon fiber, the carbon fiber can be highly functionalized without applying much load to the furnace body.
In addition, the crystal structure, mesophase size, specific surface area, and the like can be controlled by adjusting the wavelength of the irradiated microwave, the output, and the chemical components of the prevented carbon fiber.

さらに本発明の装置および方法は、連続式であるので、従来のバッチ式に比べて生産性を大幅に高めることができる。   Furthermore, since the apparatus and method of the present invention are continuous, productivity can be significantly increased compared to conventional batch processes.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明による高機能化炭素繊維製造装置の全体構成図である。It is a whole block diagram of the highly functional carbon fiber manufacturing apparatus by this invention. 図1のA−A矢視図である。It is an AA arrow line view of FIG. 本発明における中空共鳴容器内の電界強度分布図である。It is an electric field strength distribution map in the hollow resonance container in the present invention. 特許文献1の装置の模式図である。It is a schematic diagram of the apparatus of patent document 1. FIG.

符号の説明Explanation of symbols

1 ワーク(黒鉛材料)、2 マイクロ波、3 高機能化処理ガス、9共鳴空間、
10 中空共鳴容器、10a 中空胴部、10b 底板、10c 上蓋、
12 マイクロ波供給装置、
12a マイクロ波発生装置、12b 導波管、13 反射電力計、
16 壁駆動装置、16a 底板駆動装置、16b 上蓋駆動装置、
18 共鳴制御装置、20 連続中空管、21 気密容器、
22 炭素繊維供給装置、23a巻戻し装置、23b巻取り装置、
24 ガス流通装置、24a供給管、24b排気管、
25a ガス供給装置、25b ガス排気装置
1 work (graphite material), 2 microwave, 3 highly functional gas, 9 resonance space,
10 hollow resonance vessel, 10a hollow body, 10b bottom plate, 10c upper lid,
12 microwave supply device,
12a microwave generator, 12b waveguide, 13 reflection wattmeter,
16 wall drive device, 16a bottom plate drive device, 16b upper lid drive device,
18 resonance control device, 20 continuous hollow tube, 21 airtight container,
22 carbon fiber supply device, 23a rewinding device, 23b winding device,
24 gas distribution device, 24a supply pipe, 24b exhaust pipe,
25a gas supply device, 25b gas exhaust device

Claims (5)

内部にマイクロ波が共鳴可能な共鳴空間を有し、マイクロ波の吸収が少ない材料からなる中空共鳴容器と、
該中空共鳴容器内に所定の周波数のマイクロ波を供給して前記共鳴空間にマイクロ波の共鳴状態を形成するマイクロ波供給装置と、
前記中空共鳴容器の外部から、前記共鳴空間を通って、その外部まで連続して延びる連続中空管と、
該連続中空管の一端から他端まで、炭素繊維を連続的に供給する炭素繊維供給装置と、
前記連続中空管の一端から他端まで、高機能化処理物質を含む高機能化処理ガスを流通させるガス流通装置とを備えた、ことを特徴とする高機能化炭素繊維の製造装置。
A hollow resonant container made of a material that has a resonance space in which microwaves can resonate and has little microwave absorption;
A microwave supply device for supplying a microwave of a predetermined frequency into the hollow resonance container to form a resonance state of the microwave in the resonance space;
A continuous hollow tube continuously extending from the outside of the hollow resonance vessel, through the resonance space, to the outside;
A carbon fiber supply device for continuously supplying carbon fibers from one end to the other end of the continuous hollow tube;
An apparatus for producing a highly functionalized carbon fiber, comprising: a gas distribution device that distributes a highly functionalized processing gas containing a highly functionalized processing substance from one end to the other end of the continuous hollow tube.
前記中空共鳴容器は、前記共鳴空間の形状を変化させマイクロ波の共鳴状態を形成するための可動壁を有し、
さらに、前記可動壁を前記共鳴空間の形状を変化させるために移動する壁駆動装置を備える、ことを特徴とする請求項1に記載の高機能化炭素繊維の製造装置。
The hollow resonance container has a movable wall for changing the shape of the resonance space to form a resonance state of microwaves,
The apparatus for producing a highly functional carbon fiber according to claim 1, further comprising a wall driving device that moves the movable wall so as to change a shape of the resonance space.
前記マイクロ波供給装置は、所定の周波数のマイクロ波を発生するマイクロ波発生装置と、
発生したマイクロ波を前記中空共鳴容器内に供給する導波管と、
該導波管に取付けられ、中空共鳴容器から反射されるマイクロ波強度を計測する反射電力計とを備える、ことを特徴とする請求項2に記載の高機能化炭素繊維の製造装置。
The microwave supply device is a microwave generator for generating microwaves of a predetermined frequency;
A waveguide for supplying the generated microwave into the hollow resonant container;
The apparatus for producing a highly functionalized carbon fiber according to claim 2, further comprising a reflection wattmeter that is attached to the waveguide and measures a microwave intensity reflected from the hollow resonance vessel.
前記反射電力計の出力信号を受信し前記壁駆動装置を制御する共鳴制御装置を備え、
該共鳴制御装置により前記出力信号が最小となる位置に前記可動壁を移動させる、ことを特徴とする請求項3に記載の高機能化炭素繊維の製造装置。
A resonance control device for receiving the output signal of the reflected wattmeter and controlling the wall driving device;
4. The apparatus for producing a highly functionalized carbon fiber according to claim 3, wherein the movable wall is moved to a position where the output signal is minimized by the resonance control device.
内部にマイクロ波が共鳴可能な共鳴空間を有し、マイクロ波の吸収が少ない材料からなる中空共鳴容器内に、その外部から、前記共鳴空間を通って、その外部まで連続して延びる連続中空管を備え、
該中空共鳴容器内に所定の周波数のマイクロ波を供給して前記共鳴空間にマイクロ波の共鳴状態を形成し、
前記連続中空管の一端から他端まで、炭素繊維と高機能化処理物質を含む高機能化ガスを連続的に供給して、炭素繊維をマイクロ波で高温に加熱しながら、高機能化処理物質をドーピングして、炭素繊維を高機能化する、ことを特徴とする高機能化炭素繊維の製造方法。
A continuous hollow that continuously extends from the outside to the outside through the resonance space in a hollow resonance vessel made of a material that has a resonance space in which microwaves can resonate and has little microwave absorption. With a tube,
A microwave having a predetermined frequency is supplied into the hollow resonance vessel to form a resonance state of the microwave in the resonance space,
High-functionalization treatment is performed by continuously supplying a high-performance gas containing carbon fiber and a high-functionality treatment substance from one end to the other end of the continuous hollow tube, and heating the carbon fiber to a high temperature with microwaves. A method for producing a highly functional carbon fiber, comprising doping a substance to enhance the function of a carbon fiber.
JP2007166535A 2007-06-25 2007-06-25 Apparatus and method for producing highly functional carbon fiber Expired - Fee Related JP5029949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166535A JP5029949B2 (en) 2007-06-25 2007-06-25 Apparatus and method for producing highly functional carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166535A JP5029949B2 (en) 2007-06-25 2007-06-25 Apparatus and method for producing highly functional carbon fiber

Publications (3)

Publication Number Publication Date
JP2009001468A true JP2009001468A (en) 2009-01-08
JP2009001468A5 JP2009001468A5 (en) 2010-04-30
JP5029949B2 JP5029949B2 (en) 2012-09-19

Family

ID=40318289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166535A Expired - Fee Related JP5029949B2 (en) 2007-06-25 2007-06-25 Apparatus and method for producing highly functional carbon fiber

Country Status (1)

Country Link
JP (1) JP5029949B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001469A (en) * 2007-06-25 2009-01-08 Ihi Corp Apparatus and method for highly purifying graphite
JP2014182930A (en) * 2013-03-19 2014-09-29 Saida Fds Inc Circulation tube and microwave device having the same
JP2014194955A (en) * 2014-06-20 2014-10-09 Saida Fds Inc Microwave device
KR20160137526A (en) 2014-03-31 2016-11-30 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Carbon fiber manufacturing device and carbon fiber manufacturing method
JP2017031051A (en) * 2011-11-30 2017-02-09 ノックス,マイケル,アール. Single mode microwave device for producing exfoliated graphite
KR101914974B1 (en) * 2017-05-25 2018-12-28 재단법인 철원플라즈마 산업기술연구원 Apparatus and Method manufacturing carbon fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245725A (en) * 1986-08-15 1987-02-27 Hirochiku:Kk Production of carbon fiber
JPH07235374A (en) * 1994-02-15 1995-09-05 Internatl Business Mach Corp <Ibm> Equipment and method to apply microwave energy in occasion that processes sheet-form material
JP2005350307A (en) * 2004-06-11 2005-12-22 Shinano Kenshi Co Ltd Modified carbon material and method for manufacturing the same
WO2006101084A1 (en) * 2005-03-23 2006-09-28 Bridgestone Corporation Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber
JP2009001890A (en) * 2007-06-25 2009-01-08 Ihi Corp Surface treatment device for nanoparticle, and method therefor
JP2009544863A (en) * 2006-07-21 2009-12-17 ポステック アカデミー−インダストリー ファンデーション Modification of carbon fiber by electromagnetic radiation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245725A (en) * 1986-08-15 1987-02-27 Hirochiku:Kk Production of carbon fiber
JPH07235374A (en) * 1994-02-15 1995-09-05 Internatl Business Mach Corp <Ibm> Equipment and method to apply microwave energy in occasion that processes sheet-form material
JP2005350307A (en) * 2004-06-11 2005-12-22 Shinano Kenshi Co Ltd Modified carbon material and method for manufacturing the same
WO2006101084A1 (en) * 2005-03-23 2006-09-28 Bridgestone Corporation Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber
JP2009544863A (en) * 2006-07-21 2009-12-17 ポステック アカデミー−インダストリー ファンデーション Modification of carbon fiber by electromagnetic radiation
JP2009001890A (en) * 2007-06-25 2009-01-08 Ihi Corp Surface treatment device for nanoparticle, and method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001469A (en) * 2007-06-25 2009-01-08 Ihi Corp Apparatus and method for highly purifying graphite
JP2017031051A (en) * 2011-11-30 2017-02-09 ノックス,マイケル,アール. Single mode microwave device for producing exfoliated graphite
JP2014182930A (en) * 2013-03-19 2014-09-29 Saida Fds Inc Circulation tube and microwave device having the same
KR20160137526A (en) 2014-03-31 2016-11-30 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Carbon fiber manufacturing device and carbon fiber manufacturing method
US10260173B2 (en) 2014-03-31 2019-04-16 Teijin Limited Carbon fiber manufacturing device and carbon fiber manufacturing method
JP2014194955A (en) * 2014-06-20 2014-10-09 Saida Fds Inc Microwave device
KR101914974B1 (en) * 2017-05-25 2018-12-28 재단법인 철원플라즈마 산업기술연구원 Apparatus and Method manufacturing carbon fiber

Also Published As

Publication number Publication date
JP5029949B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5029949B2 (en) Apparatus and method for producing highly functional carbon fiber
CN100336156C (en) Plasma-assisted gas generation
CN106410136B (en) A kind of layer structure molybdenum disulfide/carbon composite and the preparation method and application thereof
CZ306935B6 (en) A device with atmosphere with a low-oxygen content for soldering aluminium products
JP2014522480A (en) Renewable energy generation process using resonant nano-particle plasma, electromagnetic cavity resonator and acoustic resonator
US20080271778A1 (en) Use of electromagnetic excitation or light-matter interactions to generate or exchange thermal, kinetic, electronic or photonic energy
JP5604516B2 (en) Method for stabilizing carbon-containing fibers and method for producing carbon fibers
TWI384098B (en) High module carbon fiber and fabricating method thereof
CN110073041B (en) Apparatus for manufacturing carbon fiber using microwave
CN102510654A (en) Atmospheric-pulse-modulated microwave plasma generation device
JP2007145674A (en) Method for manufacturing fibrous carbon material
JPWO2015152019A1 (en) Carbon fiber manufacturing apparatus and carbon fiber manufacturing method
US20150299861A1 (en) Device for Synthesising Core-Shell Nanoparticles by Laser Pyrolysis and Associated Method
JP2008063169A (en) Method for producing carbonized product and decomposed product
US20060081567A1 (en) Plasma-assisted processing in a manufacturing line
JP2012041253A (en) Aluminum nitride-based particle, method for producing the same, and apparatus for producing aluminum nitride-based particle
RU2648315C1 (en) Method of producing thermally expanded graphite
CN115196621A (en) Method and device for preparing graphene by catalyst-assisted microwave excitation metal discharge
CN101076221A (en) Multiple radiation sources plasma generating and processing
JP2009001469A (en) Apparatus and method for highly purifying graphite
CN109966913A (en) A kind of microwave discharge plasma catalytic reforming greenhouse gases device and method
JP2009001890A (en) Surface treatment device for nanoparticle, and method therefor
US20090212015A1 (en) Plasma-Assisted Processing in a Manufacturing Line
US20150321919A1 (en) System and method for producing carbon nanofibers via radio-frequency induction heating
CN209612932U (en) A kind of single mold microwave multipurpose reaction unit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R151 Written notification of patent or utility model registration

Ref document number: 5029949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees