WO2006101084A1 - Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber - Google Patents

Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber Download PDF

Info

Publication number
WO2006101084A1
WO2006101084A1 PCT/JP2006/305571 JP2006305571W WO2006101084A1 WO 2006101084 A1 WO2006101084 A1 WO 2006101084A1 JP 2006305571 W JP2006305571 W JP 2006305571W WO 2006101084 A1 WO2006101084 A1 WO 2006101084A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
polymer
continuous
fibrillated
catalyst
Prior art date
Application number
PCT/JP2006/305571
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinori Iwabuchi
Shinichiro Sugi
Shinichi Toyosawa
Masato Yoshikawa
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005083968A external-priority patent/JP2006265761A/en
Priority claimed from JP2005094003A external-priority patent/JP2006273645A/en
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2006101084A1 publication Critical patent/WO2006101084A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • B01J35/58
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Carbon fiber and its (continuous) production method Carbon fiber and its (continuous) production method, catalyst structure using the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
  • the present invention relates to a carbon fiber and a (continuous) production method thereof, a catalyst structure using the carbon fiber, an electrode for a polymer electrolyte fuel cell, and a polymer electrolyte fuel cell. This relates to a (continuous) production method of carbon fiber.
  • carbon fibers include pitch-based carbon fibers by liquid phase carbonization, polyacrylonitrile-based and rayon-based carbon fibers by solid-phase carbonization, vapor-grown carbon fibers by vapor-phase carbonization, and laser methods, Carbon nanotubes by the arc discharge method are known.
  • pitch-based carbon fiber, polyacrylonitrile-based carbon fiber, and rayon-based carbon fiber a spinning process is necessary to obtain a fibrous precursor, and the manufacturing process becomes complicated. It is difficult to obtain finer fibers.
  • vapor-grown carbon fiber there is a problem that a mass production method is not necessarily established because the production equipment is expensive and the yield is not high.
  • the production of carbon nanotubes has the problem that the production equipment is expensive and efficient mass production technology is under investigation, and it is difficult to obtain a fiber diameter exceeding 0.1 / im.
  • Japanese Patent Application Laid-Open No. 5-178603 discloses a carbon that does not require an infusibilization step, can control electric characteristics such as conductivity, has a high residual carbon ratio, and has excellent conductivity.
  • a polyaniline powder is used as a raw material, so that carbon fibers cannot be obtained without going through a spinning process.
  • the pamphlet of International Publication No. 2004/063438 does not require a spinning step and an infusibilization step, has a high residual carbon ratio and is excellent in electrical conductivity, and particularly has a fiber diameter of 30 to several hundred nm.
  • a carbon fiber production method is disclosed in which the carbon fiber can be efficiently obtained, and the electrical properties such as conductivity of the obtained carbon fiber can be controlled. According to the method For example, a compound having an aromatic ring can be electropolymerized to obtain a fibril-like polymer, and the fibril-like polymer can be baked in a non-oxidizing atmosphere to obtain a three-dimensional continuous carbon fiber.
  • the fibrillated polymer is formed by external heating such as a heater in an inert gas (Ar, N, etc.) atmosphere in a firing furnace.
  • an external heating type furnace represented by an electric heater is generally used.
  • an electric heater When heating a fibrillar polymer in a furnace of the type, there is a problem that the heating time of the fibrillar polymer, which is the object to be heated, has to rely on heat conduction, and the firing time becomes difficult because rapid heating is difficult.
  • a temperature difference occurs between the surface and the inside of the fibril polymer that is the object to be heated, making it difficult to heat uniformly. There is also.
  • the input energy is used in addition to the temperature increase of the fibril polymer that is the object to be heated.
  • the fibrillated polymer is continuously fired in the furnace of the above external heating method, for example, there are more problems, for example, the limit of the temperature level due to heat escape, and the arrangement of heat insulating material to prevent heat escape.
  • an object of the present invention is to solve the above-mentioned problems of the conventional technique, and to improve productivity, which can produce carbon fibers having a three-dimensional continuous structure by firing fibrillar polymers in a short time.
  • An object of the present invention is to provide an excellent method for producing carbon fiber and a continuous method for producing carbon fiber.
  • Another object of the present invention is to provide a catalyst structure using the carbon fiber, an electrode for a polymer electrolyte fuel cell using the catalyst structure, and a polymer electrolyte fuel cell provided with the electrode. It is to provide.
  • the inventors of the present invention have made it possible that the fibrillated polymer absorbs the microwave and self-heats by firing the fibrillated polymer by microwave irradiation.
  • the fibrillated polymer can be heated and carbonized with high efficiency, and the fibrillated polymer is continuously carried into and out of the heating chamber, and the microwave irradiation is performed in the chamber to burn the fibrillated polymer. Then, it was found that carbon fiber can be continuously produced by carbonization, and the present invention has been completed.
  • carbon having a three-dimensional continuous structure is obtained by irradiating a fibrillar polymer having a three-dimensional continuous structure with microwaves to heat and carbonize the polymer. It is characterized by producing fibers.
  • the carbon fiber continuous production method of the present invention is a carbon fiber continuous production method using a continuous firing device including a heating chamber, a microwave generation device, and a transport mechanism.
  • a fibrillated polymer having a sheet-like or plate-like three-dimensional continuous structure is carried into the heating chamber of the continuous baking apparatus, and the fibrillated polymer is irradiated with microwaves generated by the microwave generating apparatus.
  • the polymer is calcined and carbonized to produce carbon fibers having a three-dimensional continuous structure.
  • the fibrillated polymer When continuous calcination is performed by irradiating the fibrillated polymer with microwaves using the continuous baking apparatus, the fibrillated polymer absorbs the microwave and self-heats, so that the fibrillated polymer is heated with high efficiency and carbonized. Can be made.
  • the fibrillated polymer is irradiated with microwaves in a vacuum or in an inert gas atmosphere. In this case, disappearance of the fibrillated polymer due to microwave irradiation can be suppressed.
  • the microwave The frequency of is 28GHz (millimeter wave).
  • the fibrillar polymer sufficiently absorbs microwaves (millimeter wave with a frequency of 28 GHz), enables uniform heating without thermal runaway, and also prevents arcing. .
  • the fibrillar polymer is a polymer obtained by electrolytic polymerization of a compound having an aromatic ring. That is, the carbon fiber production method of the present invention includes a step of electropolymerizing a compound having an aromatic ring to produce a fibrillated polymer, and irradiating the fibrillated polymer with microwaves to heat the polymer. And carbonizing to produce a carbon fiber having a three-dimensional continuous structure.
  • the fibrillar polymer strength is more preferably composed of polyaniline, polypyrrole, polythiophene or derivatives thereof.
  • the fibrillated polymer is supported on a conductive substrate. More preferably, the fibrillated polymer is a polymer obtained by electropolymerizing a compound having an aromatic ring on a conductive substrate. That is, the method for producing carbon fiber of the present invention comprises a compound having an aromatic ring. It is preferable to include a step of performing the electrolytic polymerization on a conductive substrate and generating a fibrillated polymer on the conductive substrate.
  • carbon paper is preferred as the conductive substrate.
  • the shape of the conductive substrate is preferably a sheet shape or a plate shape.
  • the fibrillar polymer is a sheet
  • the transport mechanism is a roll-to-roll system transport mechanism.
  • the fibrillar polymer is plate-shaped, and the transport mechanism is composed of a plurality of drive rolls.
  • the heating chamber 1 has a heat insulating material or a vacuum heat insulating layer above and below the passage position of the fibrillated polymer.
  • a heater is provided in the heat insulating material.
  • the temperature can be raised quickly.
  • a microwave absorber layer is further disposed on the surface of the heat insulating material facing the fibrillar polymer. It is also preferable. In this case, it is possible to easily control the heating temperature of the fibril polymer by limiting the amount of microwave absorption of the fibril polymer.
  • the continuous firing apparatus further includes a cooling chamber for cooling the carbon fiber generated by microwave irradiation at the subsequent stage of the heating chamber. It is preferable. Since the carbon fiber that has passed through the heating chamber is at a high temperature, the carbon fiber may be oxidized when exposed to the air atmosphere.
  • the continuous firing apparatus includes a cooling chamber, and the carbon fiber is contained in the cooling chamber. By sufficiently cooling, it is possible to prevent the carbon fibers from being oxidized in an air atmosphere.
  • the continuous firing apparatus further generates a fibrillar polymer by electropolymerizing a compound having an aromatic ring in the previous stage of the heating chamber. It is preferable to provide an electrolytic polymerization tank. Here, the produced polymer 1 is carried into the heating chamber 1 as the fibrillated polymer. Further, when the continuous baking apparatus includes an electrolytic polymerization tank, it is preferable to further include a cleaning apparatus and a drying apparatus for the polymer between the electrolytic polymerization tank and the heating chamber.
  • the carbon fiber of the present invention is characterized by being produced by the above-described method, and has a three-dimensional continuous structure
  • the catalyst structure of the present invention comprises a catalyst supported on the carbon fiber. It is characterized by this.
  • the catalyst structure of the present invention has a catalyst structure comprising a continuous firing device including a heating chamber, a microwave generator, and a transport mechanism, and a catalyst support device disposed at a subsequent stage of the heating chamber of the continuous firing device. It can also be produced continuously by supporting the catalyst on carbon fiber using a continuous body production apparatus.
  • the continuous production apparatus for the catalyst structure further includes a carbon fiber cleaning apparatus and a drying apparatus in which a catalyst is supported downstream of the catalyst supporting apparatus.
  • an electrode for a polymer electrolyte fuel cell according to the present invention includes a gas diffusion layer and a catalyst layer disposed on the gas diffusion layer, and the catalyst structure is used for the catalyst layer. It is characterized by this. Furthermore, the polymer electrolyte fuel cell of the present invention is characterized by comprising the above electrode.
  • a fibrillated polymer is irradiated with microwaves to be heated and carbonized.
  • a carbon fiber having a three-dimensional continuous structure can be produced in a short time.
  • a fibrillated polymer having a sheet-like or plate-like three-dimensional continuous structure is continuously formed by using a continuous baking apparatus having a heating chamber, a microwave generator, and a transport mechanism. Carrying into the heating chamber of the firing device, irradiating the fibrillar polymer with the microwave generated by the microwave generator, firing and carbonizing the polymer, continuous carbon fibers having a three-dimensional continuous structure Can be manufactured automatically.
  • carbon fibers produced by these methods, catalyst structures using the carbon fibers, electrodes for solid polymer fuel cells using the catalyst structures, and solid polymer fuel cells including the electrodes Can be provided.
  • FIG. 1 is a schematic view of an example of a continuous firing apparatus suitable for carrying out the present invention.
  • FIG. 2 is a schematic view showing an example of a continuous baking apparatus suitable for continuous baking of a sheet-like fibril polymer.
  • FIG. 3 is a schematic view showing an example of a continuous firing apparatus suitable for continuous firing of a plate-like fibril polymer.
  • FIG. 4 is a schematic view showing another preferred example of a continuous baking apparatus suitable for carrying out the present invention.
  • FIG. 5 is a schematic view showing an example of a continuous production apparatus for a catalyst structure suitable for carrying out the present invention.
  • FIG. 6 is a cross-sectional view of an example of a polymer electrolyte fuel cell of the present invention.
  • the carbon fiber production method of the present invention is characterized in that a fibrillated polymer having a three-dimensional continuous structure is irradiated with microwaves, and the polymer is heated and carbonized to produce a carbon fiber having a three-dimensional continuous structure.
  • the fibrillated polymer absorbs the microwave and self-heats by irradiating the fibrillated polymer with microwaves, whereby the fibrillated polymer is heated and carbonized with high efficiency. Can do.
  • the carbon fiber production method of the present invention does not rely on heat conduction from a heat source, the temperature can be increased in a short time.
  • the microwave heating used in the present invention has the advantages of excellent temperature controllability and high responsiveness. Furthermore, since microwave heating is performed by self-heating of the fibrillar polymer, uniform heating is possible, and this prevents the sample from warping and stress generation due to firing, which was a problem in the conventional method. Monkey.
  • the fibrillar polymer used as a raw material has a three-dimensional continuous structure.
  • the fibril-like polymer can be obtained by polymerizing a compound having an aromatic ring, preferably electrolytic polymerization, more preferably electrolytic oxidation polymerization.
  • examples of the compound having an aromatic ring include a compound having a benzene ring and a compound having an aromatic heterocyclic ring.
  • aniline and aniline derivatives are preferred.
  • pyrrole, thiophene, and derivatives thereof are preferable as the compound having an aromatic heterocyclic ring.
  • These compounds having an aromatic ring may be used singly or as a mixture of two or more.
  • the fibrillated polymer is preferably composed of polyaniline, polypyrrole, polythiophene or their derivatives.
  • the fibrillar polymer has a diameter of 30 nm to several hundreds of nm, preferably 40 nm to 500 nm, and a length of 0.5 ⁇ m to 100 mm, preferably 1 ⁇ m to 10 mm.
  • the fibrillated polymer is produced by electrolytic oxidation polymerization
  • the negative ion of the acid is taken into the fibril polymer synthesized as a dopant to obtain a fibril polymer excellent in conductivity, and the carbon fiber finally obtained by using this fibril polymer is obtained.
  • the electrical conductivity of can be improved.
  • the acid mixed during the polymerization is not particularly limited, and examples thereof include HBF, HSO, HC1, and HCIO.
  • the acid concentration is preferably in the range of 0.1 to 3 mol / L, more preferably in the range of 0.5 to 2.5 mol / L.
  • the working electrode and the counter electrode are immersed in a solution containing a compound having an aromatic ring, and the compound having the aromatic ring is sandwiched between both electrodes. A voltage higher than the oxidation potential is applied, or the compound having the aromatic ring is polymerized. It is only necessary to pass an electric current under such a condition that a sufficient voltage can be secured, and a fibrillated polymer is formed on the working electrode.
  • the working electrode and the counter electrode it is possible to use a plate or a porous material made of a highly conductive material such as stainless steel, platinum or carbon.
  • the concentration of the electrolytic solution of the compound with a 0.1-1000111 eight I 111 2 ranges preferably tool 0.2 ⁇ 100mA N of m 2 range is more preferably tool aromatic ring, 0.05
  • the range of ⁇ 3 mol / L is preferred.
  • the range of 0.25 to 1.5 mol / L is even more preferred.
  • a soluble salt or the like may be appropriately added to the electrolytic solution in order to adjust the pH.
  • the fibrillated polymer obtained on the working electrode as described above can be suitably used in the production method of the present invention by washing with a solvent such as water or an organic solvent and drying.
  • a fibrillar polymer can be obtained.
  • the drying method is not particularly limited, and examples thereof include a method using a fluid bed dryer, a flash dryer, a spray dryer, etc. in addition to air drying and vacuum drying.
  • the fibrillated polymer is irradiated with microwaves.
  • the frequency of the irradiated microwave is usually in the range of 300 MHz to 300 GHz, and 28 GHz (millimeter wave) is particularly preferable.
  • Microwaves with a frequency of 2.45 GHz typified by microwave ovens are widely used.
  • microwaves with a frequency of 2.45 GHz there are the following problems.
  • the fibrillar polymer hardly absorbs 2.45 GHz microwaves.
  • Ii When the fibrillar polymer has a complicated shape, an electric field is concentrated on the protrusions, causing thermal runaway and making uniform heating difficult.
  • the heating temperature of the fibrillated polymer by microwave irradiation is determined from the fibrillated polymer. It is also possible to set the temperature to 2000 ° C or higher by suppressing the heat dissipation of heat with a heat insulating material.
  • a heat insulating material alumina can be preferably used up to about 1800 ° C, and boron nitride (BN) or the like can be suitably used above 1800 ° C.
  • a microwave generator used to generate microwaves it is possible to use a general one that is not particularly limited.
  • microwave irradiation on the fibrillated polymer in a vacuum or in an inert gas atmosphere.
  • disappearance of the polymer due to combustion can be suppressed.
  • microwave irradiation is performed in a vacuum, it is preferable to set the system to 3 ⁇ 10 2 Pa or less.
  • an inert gas atmosphere a nitrogen atmosphere, an argon atmosphere, a helium atmosphere, or the like is used. Can be mentioned.
  • the fibrillated polymer is preferably supported on a conductive substrate.
  • a fibrillated polymer supported on a conductive substrate is heated by microwaves, the conductive substrate efficiently absorbs microwaves and generates heat, so that it conducts from the conductive substrate in addition to the self-heating of the fibril polymer. Heat is applied, so to speak hybrid heating, and more efficient firing is possible.
  • the conductive substrate include carbon paper, carbon non-woven fabric, carbon cloth, carbon net, and mesh-like carbon. Among these, carbon paper is preferred.
  • FIG. 1 is an example of a continuous firing apparatus suitable for the practice of the present invention.
  • the continuous firing apparatus shown in Fig. 1 is a heating chamber 11 and a microwave generator for firing a sheet-like or plate-like fibril-like polymer by microwave irradiation and carbonizing it into carbon fibers in the heating chamber.
  • a transport mechanism 3 for transporting the fibrillated polymer into the heating chamber and transporting the carbon fiber generated by microwave irradiation from the heating chamber.
  • Conveying mechanism 3 of the continuous firing apparatus shown in (A) of Fig. 1 is a conveying mechanism of a roll 'toe' roll system, and roll 3A in which a sheet-like fibril polymer is sprinkled and microwave irradiation A roll 3B on which the generated sheet-like carbon fiber is wound.
  • the continuous baking apparatus shown in FIG. 1A connects the heating chamber 1 and the microwave generator 2 to guide the microwave generated by the microphone mouth wave generator 2 to the heating chamber 11.
  • a sheet-like fibril polymer is supplied from a roll 3A to a heating chamber 11, and is generated by a microwave generator 2 in the heating chamber 11.
  • the irradiated microwave is irradiated to the sheet-like fibril polymer, and the sheet-like fibril polymer is carbonized to form a sheet-like carbon fiber, and the sheet-like carbon fiber is scraped off by the roll 3B, and the roll tow 'The ability to continuously produce sheet-like carbon fibers in a roll system is possible.
  • the sheet-like fibrillated polymer may be stacked on a sheet-like substrate, where carbon paper or the like is preferred as the sheet-like substrate.
  • the transport mechanism 3 of the continuous firing apparatus shown in FIG. 1B is composed of a plurality of drive rolls 3C, and the plate-like fibrillar polymer is transported by the drive rolls 3C.
  • the continuous firing apparatus shown in FIG. 1B also includes a waveguide 4A, an introduction line 4B, and an exhaust line 4C, as in the apparatus shown in FIG.
  • a plate-like fibril polymer is supplied to the heating chamber 11 by the drive roll 3C, and the microwave generator 2 is provided in the heating chamber 11.
  • the microwaves generated in the plate are irradiated to the plate-like fibrillar polymer, and the plate-like fibrils are irradiated.
  • the brittle polymer is carbonized to form plate-like carbon fibers, and the plate-like carbon fibers are continuously carried out of the heating chamber 11 by the drive roller 3C, thereby continuously forming the plate-like carbon fibers.
  • the plate-like fibrillated polymer may be stacked on a plate-like substrate, and examples of the plate-like substrate include a glass substrate.
  • the fibrillated polymer When continuous firing is performed by irradiating the fibrillated polymer with microwaves using the continuous firing apparatus, the fibrillated polymer absorbs the microwave and self-heats, so that the fibrillated polymer can be obtained with high efficiency. It can be heated and carbonized. In addition, since it does not rely on heat conduction from the heat source, the temperature can be raised in a short time, and it is possible to realize a short time and energy saving process. Furthermore, in microwave heating, since heating is performed by self-heating of the fibrillar polymer, uniform heating is possible. Furthermore, the fibrillated polymer absorbs microwaves as the temperature rises and the carbonization progresses and can be heated well. Furthermore, microwave heating is also characterized by excellent temperature controllability and high responsiveness.
  • the frequency of the microphone mouth wave to be irradiated is usually in the range of 300 MHz to 300 GHz, and 28 GHz (millimeter wave) is particularly preferable.
  • a microwave with a frequency of 2.45 GHz typified by a microwave oven is widely used.
  • a microwave with a frequency of 2.45 GHz is used, there are the following problems.
  • the fibrillar polymer hardly absorbs 2.45 GHz microwaves.
  • Fibrils When the polymer has a complicated shape, the electric field concentrates on the protrusions, causing thermal runaway and uniform heating is difficult.
  • the heating chamber 11 of the continuous baking apparatus transmits microwaves above and below the passing position of the fibrillated polymer in order to avoid a temperature drop due to heat dissipation from the fibrillated polymer that is a sampnore. It is preferable to have a heat insulating material 5.
  • alumina is preferably used up to about 1800 ° C, and boron nitride (BN) or the like can be suitably used at 1800 ° C or higher.
  • BN boron nitride
  • the plate-like fibrillar polymer is made of carbon fiber by placing the heat insulating material 5 on the top, as shown in FIG.
  • the heat insulating material 5 By disposing the heat insulating material 5 below the driving roll 3C on which the plate-like fibril polymer is placed, the temperature drop due to heat radiation from the fibril polymer is suppressed, and the heating temperature of the fibril polymer due to microwave irradiation is reduced. Can be raised easily.
  • the heating chamber 11 of the continuous baking apparatus has a vacuum heat insulating layer 6 above and below the passing position of the fibrillated polymer.
  • a vacuum heat insulating layer made of quartz or the like that transmits microwaves can be used.
  • a sheet-like fibril polymer is made into a sheet-like carbon fiber by a roll-to-roll method, as shown in Fig. 2 (B), above and below the passing position of the sheet-like fibril polymer.
  • the plate-like fibrillar polymer is made of carbon fiber by arranging the vacuum heat insulating layer 6 on the top, as shown in FIG.
  • the vacuum heat insulating layer 6 By disposing the vacuum heat insulating layer 6 below the driving roll 3C on which the plate-like fibril-like polymer is placed, the temperature drop due to heat radiation from the fibril-like polymer is suppressed, and the fibril-like polymer caused by microwave irradiation is suppressed.
  • the heating temperature can be easily raised.
  • the heating chamber 1 may have both the heat insulating material 5 and the vacuum heat insulating layer 6.
  • the heater 7 is embedded in the heat insulating material 5.
  • the fibrillar polymer which is a sampnore, absorbs microwaves, and even if it is rapidly heated, the surrounding heat insulating material 5 may be deprived of heat.
  • the heater 7 by embedding the heater 7 in the heat insulating material 5, the temperature can be raised quickly, and the power S can be stabilized more quickly.
  • a sheet-like fibril polymer is made into a sheet-like carbon fiber by the roll 'toe' roll method, as shown in Fig.
  • a microwave absorber layer 8 is further disposed on the surface of the heat insulating material 5 facing the fibrillated polymer.
  • the microwave absorption rate of the fibrillated polymer is limited, the heating temperature can be easily controlled, and thermal runaway can be prevented.
  • the microwave absorber layer a carbon thin film, a SiC thin film, or the like can be used. For example, when a sheet-like fibril polymer is made into a sheet-like carbon fiber by the roll 'toe' roll method, as shown in Fig. 2 (D), above and below the passage position of the sheet-like fibril polymer.
  • the heat insulating material 5 having the microwave absorber layer 8 disposed on the surface facing the fibril polymer is disposed, and when the plate-like fibril polymer is made of carbon fiber, the carbon fiber shown in FIG. As shown in (D), the microwave absorber layer is placed on the surface facing the fibril-like polymer above the passing position of the plate-like fibril-like polymer and below the driving roll 3C on which the plate-like fibril-like polymer is placed.
  • the firing temperature is not particularly limited and can be appropriately set according to the purpose, and can be controlled by adjusting the microwave power.
  • the fibrillated polymer is continuously baked using the continuous baking apparatus, it is preferable to perform microwave irradiation on the fibrillated polymer in the heating chamber 11 under a vacuum or an inert gas atmosphere.
  • the introduction line 4B can be used for introducing the inert gas
  • the exhaust line 4C can be used for exhausting the inert gas.
  • the heating chamber 1 may be depressurized by connecting a vacuum pump or the like to the exhaust line 4C.
  • microwave irradiation is performed in a vacuum, it is preferable to maintain the heating chamber 1 at 3 ⁇ 10 2 Pa or lower.
  • the inert gas atmosphere a nitrogen atmosphere, an argon atmosphere, a helium atmosphere, or the like is used. Can be mentioned.
  • the rolls 3A and 3B can be made into a normal air atmosphere.
  • the heating chamber 1 is evacuated by a large-capacity vacuum exhaust pump, so that only the heating chamber 1 is evacuated, and in the case of a roll-to-roll system, roll 3A,
  • the part 3B may be a normal air atmosphere, and air, tow, and air may be used.
  • the rolls 3A and 3B may also be installed in a vacuum or in an inert gas atmosphere as in the heating chamber 11.
  • the continuous baking apparatus further includes a cooling chamber 9 for cooling the carbon fiber generated by the microwave irradiation at the subsequent stage of the heating chamber 11.
  • a cooling chamber 9 for cooling the carbon fiber generated by the microwave irradiation at the subsequent stage of the heating chamber 11.
  • the cooling chamber By blowing the inert gas cold air in the cooling chamber 9, the carbon fiber can be sufficiently cooled and the carbon fiber can be prevented from being oxidized in the air atmosphere.
  • the cooling chamber By filling the carbon fiber with a cooling drum or the like while filling it with a vacuum or an inert gas, it is possible to sufficiently cool the carbon fiber and prevent the carbon fiber from being oxidized in the atmosphere.
  • the inert gas to be circulated through the cooling chamber 9 the same inert gas as that of the heating chamber 1 can be used.
  • the cooling chamber 9 is evacuated, the degree of vacuum is the same as that of the heating chamber 11. Similar levels can be achieved.
  • FIG. 4 (A) For example, when a sheet-like fibril polymer is made into a sheet-like carbon fiber by a roll 'toe' roll method, as shown in FIG. 4 (A), the sheet-like fibril polymer is fired.
  • a cooling chamber 9 that cools the sheet-like carbon fiber that has been heated to a high temperature after the heating chamber 1 is provided, and an inert gas is circulated through the cooling chamber 9.
  • a cooling chamber 9 is provided after the heating chamber 11 and the generated carbon fiber is sufficiently cooled by flowing an inert gas through the cooling chamber 9. be able to.
  • the cooling chamber 9 shown in FIG. 4A is similar to the heating chamber 1 in that the introduction line 10A for introducing a gas such as an inert gas into the cooling chamber 9 and the cooling chamber 9 And an exhaust line 10B for exhausting gas from.
  • a roll 3B for scraping the sheet-like carbon fiber may be disposed in the cooling chamber 9.
  • a cooling chamber is provided after the heating chamber 1 and the cooling chamber 1 is filled with vacuum or an inert gas, and the carbon fiber is supplied to the cooling plate. By making it contact, the produced
  • the cooling chamber 9 shown in FIG. 4B includes an exhaust line 10B for exhausting gas from the cooling chamber 9.
  • the conveyance of the sheet-like or plate-like fibril polymer may be continuous conveyance at a constant speed, or may be stopped and fired after conveyance for a certain length, and then conveyed again. It may be a process of repeating the transfer and firing (stop).
  • a load lock chamber (not shown) is provided before and after the heating chamber 1 to perform preliminary exhaust and gas replacement. And the heating chamber 11 may be kept under desired conditions.
  • the fibrillated polymer includes a polymer obtained by electrolytic polymerization of a compound having an aromatic ring, and the polymer is usually It is fibrillar and has a three-dimensional continuous structure.
  • the diameter and length of the fibril-like polymer having a three-dimensional continuous structure are as described above, and the compound having an aromatic ring as a raw material is also as described above.
  • the fibrillated polymer is preferably supported on a sheet-like or plate-like conductive substrate.
  • a fibrillar polymer supported on a sheet-like or plate-like conductive substrate is heated by microwaves, the conductive substrate efficiently absorbs microwaves and generates heat. The heat conducted from the substrate is applied, so to speak, hybrid heating, enabling more efficient firing.
  • the conductive substrate include force-bon paper, carbon non-woven fabric, carbon cloth, carbon net, mesh-like force, and the like, and among these, carbon paper is preferable. It is also preferable to electropolymerize a compound having an aromatic ring on a conductive substrate to produce a polymer on the conductive substrate, and to supply the polymer 'conductive substrate composite as a sample to a continuous baking apparatus.
  • the continuous baking apparatus further includes an electrolytic polymerization tank 12 for generating a polymer by electrolytic polymerization of a compound having an aromatic ring at the front stage of the heating chamber 11. It is preferable that the fibrillated polymer can be carried into the heating chamber 11.
  • an acid it is preferable to mix an acid together with a raw material compound having an aromatic ring, in the same manner as in the carbon fiber production method.
  • the kind of acid mixed in the polymerization and the concentration of the acid are as described above.
  • the working electrode and the counter electrode are immersed in a solution containing a compound having an aromatic ring, and the oxidation potential of the compound having the aromatic ring between both electrodes
  • the above voltage may be applied, or a current having a condition sufficient to secure a voltage sufficient to polymerize the compound having an aromatic ring may be applied, and a polymer is formed on the working electrode.
  • the working electrode and the counter electrode it is possible to use a plate or a porous material having a good conductive material force such as stainless steel, platinum, and carbon.
  • a polymer can be continuously produced on the sheet-like substrate to produce a sheet-like polymer substrate composite.
  • the current density in the electropolymerization and the concentration of the compound having an aromatic ring in the electrolytic solution are as described above.
  • the electrolytic solution contains a soluble salt or the like in order to adjust the pH. It may be added appropriately.
  • the continuous baking apparatus includes an electrolytic polymerization tank 12, as shown in Fig. 5, a polymer washing apparatus and a drying apparatus 13A are further provided between the electrolytic polymerization tank 12 and the heating chamber 11. In this case, it is possible to prevent the residue and moisture derived from electrolytic polymerization from adhering to the polymer.
  • a cleaning device a general device can be used.
  • the drying device include a vacuum dryer, a fluidized bed dryer, an air flow dryer, and a spray dryer.
  • the carbon fiber produced by the method of the present invention has a fibril-like and three-dimensional continuous structure, and preferably has a diameter of 30 nm to several hundreds of nm, more preferably 40 nm to 500 nm, Length force 0 ⁇ 5 ⁇ ⁇ ! ⁇ 100m is preferred ⁇ ⁇ ⁇ ! Is further preferably les, it is further preferable device is preferably a surface resistance 10 6 ⁇ 10- 2 ⁇ tool 10 4 ⁇ 10- 2 ⁇ it is ⁇ 10 mm.
  • the carbon fiber has a residual carbon ratio of 95 to 30%, preferably 90 to 40%.
  • the remaining charcoal rate is expressed by the following formula:
  • Residual carbon ratio (mass of carbon fiber after firing) ⁇ (mass of polymer before firing) X 100 force, etc.
  • the carbon fiber obtained as described above has higher conductivity than granular carbon because the entire carbon has a three-dimensional continuous structure.
  • the catalyst structure of the present invention is formed by supporting a metal, preferably a noble metal, on the carbon fiber having the three-dimensional continuous structure described above.
  • the catalyst structure is a catalyst layer of a polymer electrolyte fuel cell.
  • it can be used as a catalyst for various chemical reactions such as hydrogenation reactions.
  • Pt is particularly preferable as the noble metal supported on the carbon fiber.
  • Pt is preferably used alone, or is preferably used as an alloy with other metals such as Ru.
  • the metal supported on the carbon fiber is preferably in the form of fine particles, and the particle diameter of the fine particles is preferably in the range of 0.5 to 100 nm, more preferably in the range of 1 to 50 nm.
  • the metal loading is preferably in the range of 0.05 to 5 g with respect to the carbon fiber lg.
  • the method for supporting the metal on the carbon fiber is not particularly limited, and examples thereof include an impregnation method, an electro plating method (electrolytic reduction method), an electroless plating method, and a sputtering method.
  • the catalyst structure includes a continuous firing device including a heating chamber, a microwave generator, and a transport mechanism, and a catalyst support device disposed at a subsequent stage of the heating chamber of the continuous firing device. It can also be produced continuously by supporting the catalyst on carbon fiber using a continuous body production apparatus.
  • FIG. 5 shows an example of a continuous production apparatus for a catalyst structure suitable for carrying out the present invention.
  • the continuous production apparatus for the catalyst structure includes the above-mentioned continuous calcining apparatus and a catalyst supporting unit for supporting the catalyst on the carbon fiber in the chambers 1 and 9 of the continuous calcining apparatus, preferably in the subsequent stage of the cooling chamber 9. And a device (14).
  • the continuous production apparatus for the catalyst structure preferably includes a cleaning device and a drying device 13B for the carbon fiber (that is, the catalyst structure) on which the catalyst is supported after the catalyst supporting device 14. In this case, it is possible to prevent the residue derived from catalyst loading and water from adhering to the catalyst structure.
  • the fibrous polymer produced in the electrolytic polymerization tank 12 is supplied to the heating chamber 11 through the cleaning device and the drying device 13A, and the heating chamber 1 Microwave irradiation at 1 makes carbon fiber.
  • the produced carbon fiber is sent to the cooling chamber 9 and cooled in the cooling chamber 9, and then the catalyst supporting device. 14, the catalyst is supported on the carbon fiber by the catalyst supporting device 14, and the catalyst structure is manufactured. Thereafter, the produced catalyst structure is washed and dried by the washing device and the drying device 13B, and the sheet-like catalyst structure is scraped off on the roll 3B.
  • An electrode for a polymer electrolyte fuel cell of the present invention comprises a gas diffusion layer and a catalyst layer disposed on the gas diffusion layer, wherein the catalyst structure described above is used for the catalyst layer. To do.
  • the catalyst layer It is preferable to impregnate the catalyst layer with a polymer electrolyte.
  • a polymer electrolyte an ion conductive polymer can be used, and as the ion conductive polymer, a sulfonic acid can be used. And polymers having an ion exchange group such as carboxylic acid, phosphonic acid, and phosphonous acid, and the polymer may or may not contain fluorine.
  • the ion conductive polymer is preferably a perfluorocarbon sulfonic acid polymer such as Nafion (registered trademark).
  • the amount of the polymer electrolyte impregnated is preferably in the range of 10 to 500 parts by mass with respect to 100 parts by mass of carbon fibers in the catalyst layer.
  • the thickness of the catalyst layer is not particularly limited, but is preferably in the range of 0.1 to 100 ⁇ .
  • the amount of metal supported on the catalyst layer is determined by the loading rate and the thickness of the catalyst layer, and is preferably in the range of 0.001 to 0.8 mg ⁇ m 2 .
  • the gas diffusion layer is a layer for supplying hydrogen gas or an oxidant gas such as oxygen or air to the catalyst layer to exchange generated electrons, and has a function as a gas diffusion layer. It functions as a current collector.
  • the material used for the gas diffusion layer is particularly preferably carbon paper, which is preferably the conductive substrate described above.
  • a compound having an aromatic ring is electropolymerized on a conductive substrate to form a fibril polymer, and the fibril polymer is irradiated with a micro mouth wave to form a carbon having a three-dimensional continuous structure on the conductive substrate.
  • An electrode for a polymer electrolyte fuel cell can be produced by producing fibers and further supporting a metal, preferably a noble metal such as Pt, on the carbon fiber portion.
  • the polymer electrolyte fuel cell of the present invention comprises the above electrode for a polymer electrolyte fuel cell.
  • the illustrated polymer electrolyte fuel cell includes a membrane electrode assembly (MEA) 21 and separators 22 positioned on both sides thereof.
  • the membrane electrode assembly (MEA) 21 includes a solid polymer electrolyte membrane 23, and a fuel electrode 24A and an air electrode 24B located on both sides thereof.
  • a reaction represented by 2H ⁇ 4H ++ 4e— occurs, and the generated H + is solid.
  • the polymer electrolyte membrane 23 reaches the air electrode 24B, and the generated e- is taken out to become an electric current.
  • At least one of the fuel electrode 24A and the air electrode 24B is the above-described polymer electrolyte fuel cell electrode of the present invention.
  • the fuel electrode 24A and the air electrode 24B include a catalyst layer 25 and a gas diffusion layer 26, respectively, and are arranged so that the catalyst layer 25 is in contact with the solid polymer electrolyte membrane 23.
  • the polymer electrolyte fuel cell of the present invention is characterized in that the electrode for a polymer electrolyte fuel cell described above is used for at least one of the fuel electrode 24A and the air electrode 24B. Since the electrode has high electronic conductivity, it is possible to effectively extract electric energy without increasing the internal resistance of the fuel cell.
  • an ion conductive polymer can be used, and the ion conductive polymer is exemplified as a high molecular electrolyte that can be impregnated in the catalyst layer. Can be used. Further, as the separator 22, a normal separator having a surface (not shown) formed with a flow path of fuel, air, generated water and the like can be used.
  • the obtained fired product was taken out and observed with SEM, and it was confirmed that the carbon fiber strength S having a diameter of 40 to 100 nm was obtained on carbon paper.
  • the residual carbon ratio of this carbon fiber was measured and found to be 43.7%.
  • the sample was warped due to the shrinkage and carbonization process in the heating process of polyaniline.
  • a three-dimensional continuous structure of polyaniline was produced on carbon paper in a continuous electrolytic polymerization tank, and a long roll of polyaniline / carbon paper structure was produced.
  • a carbon paper as a working electrode in an acidic aqueous solution containing a Anirinmonoma 0.5 mol / L and HBF 1.0 mol / L, using a platinum plate as the counter electrode, N 15mA at room temperature m 2
  • the carbon paper transport speed was adjusted so that electropolymerization could be performed at a constant current of 3 minutes, and polyaniline was electrodeposited on the working electrode (on the carbon paper), then washed with ion-exchanged water and dried.
  • the obtained long roll sample with a width of 30 cm The gyrotron oscillator was set in a continuous firing device connected by a waveguide, and nitrogen gas was introduced into the heating chamber to replace the gas.
  • the microwave power was adjusted so that the maximum temperature force was 50 ° C, and the sheet-like long roll sample was conveyed at a speed of 0.25 m / min and scraped off.
  • a long carbon fiber sheet could be obtained by this firing.
  • carbon fibers having a diameter of 40 to 20 Onm were obtained on carbon paper in the same manner as in the conventional firing method that was not continuous, and the carbon fibers Was confirmed to have a three-dimensional continuous structure.
  • the carbon residue rate of this carbon fiber was measured and found to be 40.5%. It was confirmed that the carbon residue rate was the same as that of sampnore fired by batch processing using a conventional furnace, and carbonization was possible even during continuous firing.

Abstract

The invention relates to processes for the (continuous) production of carbon fiber which enable the production of carbon fiber having three-dimensional continuous structure in a short time, more specifically, a process (A) for the production of carbon fiber, characterized by heating a fibrilliform polymer having three-dimensional continuous structure by irradiation with a microwave to carbonize the polymer, and thus obtaining carbon fiber having three-dimensional continuous structure; and a process (B) for the continuous production of carbon fiber with a continuous baking apparatus equipped with a heating chamber (1), a microwave generator (2), and a conveyor (3), characterized by conveying a sheet- or plate-like fibrilliform polymer having three-dimensional continuous structure into the heating chamber (1), irradiating the polymer with a microwave generated by the microwave generator (2) to bake and carbonize the polymer, and thus obtaining carbon fiber having three-dimensional continuous structure.

Description

明 細 書  Specification
炭素繊維及びその(連続)製造方法、並びにそれを用いた触媒構造体、 固体高分子型燃料電池用電極及び固体高分子型燃料電池  Carbon fiber and its (continuous) production method, catalyst structure using the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
技術分野  Technical field
[0001] 本発明は、炭素繊維及びその(連続)製造方法、並びに該炭素繊維を用いた触媒 構造体、固体高分子型燃料電池用電極及び固体高分子型燃料電池に関し、特に 生産性の高レ、炭素繊維の(連続)製造方法に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a carbon fiber and a (continuous) production method thereof, a catalyst structure using the carbon fiber, an electrode for a polymer electrolyte fuel cell, and a polymer electrolyte fuel cell. This relates to a (continuous) production method of carbon fiber.
背景技術  Background art
[0002] 従来、炭素繊維としては、液相炭素化によるピッチ系炭素繊維、固相炭素化による ポリアクリロニトリル系及びレーヨン系炭素繊維、気相炭素化による気相成長炭素繊 維、並びにレーザー法やアーク放電法によるカーボンナノチューブ類等が知られて いる。これらのうち、ピッチ系炭素繊維、ポリアクリロニトリル系炭素繊維及びレーヨン 系炭素繊維の製造工程においては、繊維状の前駆体を得るために紡糸工程が必要 であり、製造工程が複雑となると共に、 l x mより細い繊維を得ることが困難である。ま た、気相成長炭素繊維の製造においては、製造設備が高価で且つ収率が高くない など量産方法が必ずしも確立されているとはいえないという問題がある。更に、カー ボンナノチューブ類の製造についても製造設備が高価である上、効率的な量産技術 は検討段階にあり、 0.1 /i mを超える繊維径のものを得ることが難しいという問題があ る。  Conventionally, carbon fibers include pitch-based carbon fibers by liquid phase carbonization, polyacrylonitrile-based and rayon-based carbon fibers by solid-phase carbonization, vapor-grown carbon fibers by vapor-phase carbonization, and laser methods, Carbon nanotubes by the arc discharge method are known. Among these, in the manufacturing process of pitch-based carbon fiber, polyacrylonitrile-based carbon fiber, and rayon-based carbon fiber, a spinning process is necessary to obtain a fibrous precursor, and the manufacturing process becomes complicated. It is difficult to obtain finer fibers. In addition, in the production of vapor-grown carbon fiber, there is a problem that a mass production method is not necessarily established because the production equipment is expensive and the yield is not high. Furthermore, the production of carbon nanotubes has the problem that the production equipment is expensive and efficient mass production technology is under investigation, and it is difficult to obtain a fiber diameter exceeding 0.1 / im.
[0003] 一方、特開平 5— 178603号公報には、不融化工程を必要とせず、導電率等の電 気特性を制御することが可能で、残炭率が高く且つ導電性に優れた炭素質粉末を得 る方法が記載されているが、該方法ではポリア二リン粉末を原料とするため、紡糸ェ 程を経ずに炭素繊維を得ることができなレ、。  [0003] On the other hand, Japanese Patent Application Laid-Open No. 5-178603 discloses a carbon that does not require an infusibilization step, can control electric characteristics such as conductivity, has a high residual carbon ratio, and has excellent conductivity. In this method, a polyaniline powder is used as a raw material, so that carbon fibers cannot be obtained without going through a spinning process.
[0004] これに対して、国際公開第 2004/063438号パンフレットには、紡糸工程及び不 融化工程を必要とせず、残炭率が高く且つ導電性に優れ、特に 30〜数百 nmの繊維 径の炭素繊維を効率良く得ることができ、更に得られる炭素繊維の導電率等の電気 特性を制御することが可能な炭素繊維の製造方法が開示されている。該方法によれ ば、芳香環を有する化合物を電解重合してフィブリル状ポリマーを得、該フイブリル状 ポリマーを非酸化性雰囲気中で焼成することで 3次元連続状の炭素繊維を得ること ができる。 [0004] On the other hand, the pamphlet of International Publication No. 2004/063438 does not require a spinning step and an infusibilization step, has a high residual carbon ratio and is excellent in electrical conductivity, and particularly has a fiber diameter of 30 to several hundred nm. A carbon fiber production method is disclosed in which the carbon fiber can be efficiently obtained, and the electrical properties such as conductivity of the obtained carbon fiber can be controlled. According to the method For example, a compound having an aromatic ring can be electropolymerized to obtain a fibril-like polymer, and the fibril-like polymer can be baked in a non-oxidizing atmosphere to obtain a three-dimensional continuous carbon fiber.
発明の開示  Disclosure of the invention
[0005] 上述のように、国際公開第 2004Z063438号パンフレットに記載の方法によれば、 残炭率が高く且つ導電性に優れた 3次元連続状の炭素繊維を得ることができるが、 該方法では、フィブリル状ポリマーを焼成して 3次元連続状の炭素繊維とするのに非 常に時間がかかり、生産性の点で問題があった。より具体的には、国際公開第 2004 /063438号に記載の焼成プロセスでは、焼成炉中、不活性ガス (Ar、 N等)雰囲 気下にて、ヒータ等の外部加熱によってフィブリル状ポリマーを加熱する力 S、例えば、 850°Cでフイブリル状ポリマーを焼成する場合、昇温に 2時間、焼成に 1時間、更に、 冷却及び取り出しに数時間を要していた。また、ヒータ等による外部加熱では、フイブ リル状ポリマーを均一に加熱することが難しぐ更に、焼成によって反りが発生する等 といった問題も有った。  [0005] As described above, according to the method described in the pamphlet of International Publication No. 2004Z063438, a three-dimensional continuous carbon fiber having a high residual carbon ratio and excellent conductivity can be obtained. However, it took a very long time to sinter the fibril-like polymer into a three-dimensional continuous carbon fiber, which was problematic in terms of productivity. More specifically, in the firing process described in International Publication No. 2004/063438, the fibrillated polymer is formed by external heating such as a heater in an inert gas (Ar, N, etc.) atmosphere in a firing furnace. When the fibrillated polymer was calcined at a heating force S, for example, 850 ° C., it took 2 hours to raise the temperature, 1 hour to calcine, and several hours to cool and take out. In addition, external heating with a heater or the like has a problem that it is difficult to uniformly heat the fibril-like polymer, and warping is caused by firing.
[0006] また、従来、上記フィブリル状ポリマーを加熱し、分解させて炭素繊維を製造するた めには、電気ヒータに代表される外部加熱方式の炉が一般に使用されているが、該 外部加熱方式の炉でフイブリル状ポリマーを加熱する場合、被加熱体であるフイブリ ル状ポリマーの加熱を熱伝導に頼らざるを得ないため、急速加熱が難しぐ焼成時間 が長くなるという問題がある。また、外部加熱方式の炉でフイブリル状ポリマーを加熱 する場合、加熱中に、被加熱体であるフィブリル状ポリマーの表面と内部とで温度差 が生じてしまい、均一に加熱することが難しいという問題もある。更に、外部加熱方式 の炉でフイブリル状ポリマーを加熱する場合、投入エネルギーが被加熱体であるフィ ブリル状ポリマーの温度上昇以外にも用いられ、例えば、周辺雰囲気全体の加熱に 費やされるため、エネルギー効率が悪いという問題もある。また更に、上記外部加熱 方式の炉でフイブリル状ポリマーを連続焼成する場合には、さらに問題が多ぐ例え ば、熱の逃げによる温度レベルの限界や、熱の逃げを防ぐための断熱材の配置や、 ヒータとの位置関係等を詳細に検討する必要があり、装置が複雑化するといった問 題もある。 [0007] そこで、本発明の目的は、上記従来技術の問題を解決し、短時間でフィブリル状ポ リマーを焼成して 3次元連続構造を有する炭素繊維を生成させることが可能な、生産 性に優れた炭素繊維の製造方法、及び炭素繊維の連続製造方法を提供することに ある。また、本発明の他の目的は、該炭素繊維を用いた触媒構造体、該触媒構造体 を用いた固体高分子型燃料電池用電極、並びに該電極を備えた固体高分子型燃 料電池を提供することにある。 [0006] Conventionally, in order to heat and decompose the fibrillated polymer to produce carbon fiber, an external heating type furnace represented by an electric heater is generally used. When heating a fibrillar polymer in a furnace of the type, there is a problem that the heating time of the fibrillar polymer, which is the object to be heated, has to rely on heat conduction, and the firing time becomes difficult because rapid heating is difficult. In addition, when heating a fibril polymer in an external heating furnace, a temperature difference occurs between the surface and the inside of the fibril polymer that is the object to be heated, making it difficult to heat uniformly. There is also. Furthermore, when the fibril polymer is heated in an external heating furnace, the input energy is used in addition to the temperature increase of the fibril polymer that is the object to be heated. There is also a problem of inefficiency. Furthermore, when the fibrillated polymer is continuously fired in the furnace of the above external heating method, for example, there are more problems, for example, the limit of the temperature level due to heat escape, and the arrangement of heat insulating material to prevent heat escape. In addition, it is necessary to examine the positional relationship with the heater in detail, and there is a problem that the device becomes complicated. [0007] Therefore, an object of the present invention is to solve the above-mentioned problems of the conventional technique, and to improve productivity, which can produce carbon fibers having a three-dimensional continuous structure by firing fibrillar polymers in a short time. An object of the present invention is to provide an excellent method for producing carbon fiber and a continuous method for producing carbon fiber. Another object of the present invention is to provide a catalyst structure using the carbon fiber, an electrode for a polymer electrolyte fuel cell using the catalyst structure, and a polymer electrolyte fuel cell provided with the electrode. It is to provide.
[0008] 本発明者らは、上記目的を達成するために鋭意検討した結果、フィブリル状ポリマ 一の焼成をマイクロ波照射で行うことで、フィブリル状ポリマーがマイクロ波を吸収し、 自己発熱することで、高い効率で加熱及び炭化させることができ、また、加熱用のチ ヤンバーにフィブリル状ポリマーを連続的に搬入及び搬出し、該チャンバ一内でマイ クロ波照射を行い、フィブリル状ポリマーを焼成し炭化させることで、炭素繊維を連続 的に製造できることを見出し、本発明を完成させるに至つた。  [0008] As a result of intensive studies to achieve the above object, the inventors of the present invention have made it possible that the fibrillated polymer absorbs the microwave and self-heats by firing the fibrillated polymer by microwave irradiation. The fibrillated polymer can be heated and carbonized with high efficiency, and the fibrillated polymer is continuously carried into and out of the heating chamber, and the microwave irradiation is performed in the chamber to burn the fibrillated polymer. Then, it was found that carbon fiber can be continuously produced by carbonization, and the present invention has been completed.
[0009] 即ち、本発明の炭素繊維の製造方法は、 3次元連続構造を有するフィブリル状ポリ マーにマイクロ波を照射して、該ポリマーを加熱し炭化させて 3次元連続構造を有す る炭素繊維を生成させることを特徴とする。  That is, in the method for producing a carbon fiber of the present invention, carbon having a three-dimensional continuous structure is obtained by irradiating a fibrillar polymer having a three-dimensional continuous structure with microwaves to heat and carbonize the polymer. It is characterized by producing fibers.
[0010] また、本発明の炭素繊維の連続製造方法は、加熱チャンバ一と、マイクロ波発生装 置と、搬送機構とを備えた連続焼成装置を用いた炭素繊維の連続製造方法であつ て、シート状又は板状の 3次元連続構造を有するフィブリル状ポリマーを前記連続焼 成装置の前記加熱チャンバ一に搬入し、該フイブリル状ポリマーに前記マイクロ波発 生装置で発生させたマイクロ波を照射して、該ポリマーを焼成し炭化させて 3次元連 続構造を有する炭素繊維を生成させることを特徴とする。上記連続焼成装置を用い て、フィブリル状ポリマーにマイクロ波を照射して連続焼成する場合、フィブリル状ポリ マーがマイクロ波を吸収し自己発熱することで、高い効率でフィブリル状ポリマーをカロ 熱し、炭化させることができる。  [0010] Further, the carbon fiber continuous production method of the present invention is a carbon fiber continuous production method using a continuous firing device including a heating chamber, a microwave generation device, and a transport mechanism. A fibrillated polymer having a sheet-like or plate-like three-dimensional continuous structure is carried into the heating chamber of the continuous baking apparatus, and the fibrillated polymer is irradiated with microwaves generated by the microwave generating apparatus. The polymer is calcined and carbonized to produce carbon fibers having a three-dimensional continuous structure. When continuous calcination is performed by irradiating the fibrillated polymer with microwaves using the continuous baking apparatus, the fibrillated polymer absorbs the microwave and self-heats, so that the fibrillated polymer is heated with high efficiency and carbonized. Can be made.
[0011] 本発明の炭素繊維の(連続)製造方法の好適例においては、前記フィブリル状ポリ マーに対するマイクロ波照射を真空中又は不活性ガス雰囲気中で行う。この場合、 マイクロ波照射によるフィブリル状ポリマーの消失を抑制することができる。  In a preferred example of the (continuous) production method of carbon fiber of the present invention, the fibrillated polymer is irradiated with microwaves in a vacuum or in an inert gas atmosphere. In this case, disappearance of the fibrillated polymer due to microwave irradiation can be suppressed.
[0012] 本発明の炭素繊維の(連続)製造方法の他の好適例においては、前記マイクロ波 の周波数が 28GHz (ミリ波)である。この場合、フィブリル状ポリマーがマイクロ波(周波 数 28GHzのミリ波)を十分に吸収し、また、熱暴走することがなぐ均一な加熱が可能 であり、更に、アーキングの発生も防止することができる。 [0012] In another preferred embodiment of the carbon fiber (continuous) production method of the present invention, the microwave The frequency of is 28GHz (millimeter wave). In this case, the fibrillar polymer sufficiently absorbs microwaves (millimeter wave with a frequency of 28 GHz), enables uniform heating without thermal runaway, and also prevents arcing. .
[0013] 本発明の炭素繊維の(連続)製造方法の他の好適例においては、前記フィブリル状 ポリマーが芳香環を有する化合物を電解重合して得たポリマーである。即ち、本発明 の炭素繊維の製造方法は、芳香環を有する化合物を電解重合してフィブリル状ポリ マーを生成させる工程と、該フイブリル状ポリマーにマイクロ波を照射して、該ポリマ 一を加熱し炭化させて 3次元連続構造を有する炭素繊維を生成させる工程とを含む ことが好ましレ、。ここで、該フイブリル状ポリマー力 ポリア二リン、ポリピロール、ポリチ ォフェン又はそれらの誘導体からなることが更に好ましい。  [0013] In another preferred embodiment of the carbon fiber (continuous) production method of the present invention, the fibrillar polymer is a polymer obtained by electrolytic polymerization of a compound having an aromatic ring. That is, the carbon fiber production method of the present invention includes a step of electropolymerizing a compound having an aromatic ring to produce a fibrillated polymer, and irradiating the fibrillated polymer with microwaves to heat the polymer. And carbonizing to produce a carbon fiber having a three-dimensional continuous structure. Here, the fibrillar polymer strength is more preferably composed of polyaniline, polypyrrole, polythiophene or derivatives thereof.
[0014] 本発明の炭素繊維の(連続)製造方法においては、前記フィブリル状ポリマーが導 電性基板上に支持されていることが好ましい。また、前記フィブリル状ポリマーが導電 性基板上で芳香環を有する化合物を電解重合して得たポリマーであることが更に好 ましぐ即ち、本発明の炭素繊維の製造方法は、芳香環を有する化合物の電解重合 を導電性基板上で行い、該導電性基板上にフィブリル状ポリマーを生成させる工程 を含むことが好ましい。ここで、前記導電性基板としては、カーボンペーパーが好まし レ、。また、導電性基板の形状としては、シート状又は板状が好ましい。  [0014] In the (continuous) method for producing carbon fiber of the present invention, it is preferable that the fibrillated polymer is supported on a conductive substrate. More preferably, the fibrillated polymer is a polymer obtained by electropolymerizing a compound having an aromatic ring on a conductive substrate. That is, the method for producing carbon fiber of the present invention comprises a compound having an aromatic ring. It is preferable to include a step of performing the electrolytic polymerization on a conductive substrate and generating a fibrillated polymer on the conductive substrate. Here, carbon paper is preferred as the conductive substrate. The shape of the conductive substrate is preferably a sheet shape or a plate shape.
[0015] 本発明の炭素繊維の連続製造方法の他の好適例においては、前記フィブリル状ポ リマーがシート状であって、前記搬送機構がロール'トウ ·ロール方式の搬送機構であ る。  [0015] In another preferred embodiment of the method for continuously producing carbon fibers of the present invention, the fibrillar polymer is a sheet, and the transport mechanism is a roll-to-roll system transport mechanism.
[0016] 本発明の炭素繊維の連続製造方法の他の好適例においては、前記フィブリル状ポ リマーが板状であって、前記搬送機構が複数の駆動ロールから構成されている。  [0016] In another preferred embodiment of the method for continuously producing carbon fibers of the present invention, the fibrillar polymer is plate-shaped, and the transport mechanism is composed of a plurality of drive rolls.
[0017] 本発明の炭素繊維の連続製造方法の他の好適例においては、前記加熱チャンバ 一が、前記フィブリル状ポリマーの通過位置の上方及び下方に断熱材又は真空断熱 層を有する。この場合、サンプノレであるフィブリル状ポリマーからの放熱による温度低 下を避けることができる。ここで、前記断熱材中に加熱ヒータが坦設されていることが 更に好ましぐこの場合、速やかに昇温することができる。また、前記断熱材の前記フ イブリル状ポリマーに対面する側の表面上に、更にマイクロ波吸収体層が配設されて レ、ることも好ましい。この場合、フィブリル状ポリマーのマイクロ波吸収量を制限して、 フィブリル状ポリマーの加熱温度を容易にコントロールすることができる。 [0017] In another preferred embodiment of the method for continuously producing carbon fibers of the present invention, the heating chamber 1 has a heat insulating material or a vacuum heat insulating layer above and below the passage position of the fibrillated polymer. In this case, it is possible to avoid a temperature decrease due to heat radiation from the fibrillar polymer which is a sampnore. Here, it is more preferable that a heater is provided in the heat insulating material. In this case, the temperature can be raised quickly. A microwave absorber layer is further disposed on the surface of the heat insulating material facing the fibrillar polymer. It is also preferable. In this case, it is possible to easily control the heating temperature of the fibril polymer by limiting the amount of microwave absorption of the fibril polymer.
[0018] 本発明の炭素繊維の連続製造方法においては、前記連続焼成装置が、更に、前 記加熱チャンバ一の後段に、マイクロ波照射によって生成した炭素繊維を冷却する ための冷却チャンバ一を備えることが好ましい。加熱チャンバ一を通過した炭素繊維 は高温であるため、大気雰囲気下にさらすと該炭素繊維が酸化するおそれがあるが 、連続焼成装置が冷却チャンバ一を備え、該冷却チャンバ一内で炭素繊維を十分に 冷却することで、大気雰囲気下において炭素繊維が酸化するのを防止することがで きる。  [0018] In the continuous production method of carbon fiber of the present invention, the continuous firing apparatus further includes a cooling chamber for cooling the carbon fiber generated by microwave irradiation at the subsequent stage of the heating chamber. It is preferable. Since the carbon fiber that has passed through the heating chamber is at a high temperature, the carbon fiber may be oxidized when exposed to the air atmosphere. However, the continuous firing apparatus includes a cooling chamber, and the carbon fiber is contained in the cooling chamber. By sufficiently cooling, it is possible to prevent the carbon fibers from being oxidized in an air atmosphere.
[0019] 本発明の炭素繊維の連続製造方法においては、前記連続焼成装置が、更に、前 記加熱チャンバ一の前段に芳香環を有する化合物を電解重合してフィブリル状ポリ マーを生成させるための電解重合槽を備えることが好ましい。ここで、生成したポリマ 一は、前記フィブリル状ポリマーとして加熱チャンバ一に搬入される。また、前記連続 焼成装置が電解重合槽を備える場合、該電解重合槽と前記加熱チャンバ一との間 に、更に前記ポリマーの洗浄装置及び乾燥装置を備えることが好ましい。  [0019] In the continuous production method of carbon fiber of the present invention, the continuous firing apparatus further generates a fibrillar polymer by electropolymerizing a compound having an aromatic ring in the previous stage of the heating chamber. It is preferable to provide an electrolytic polymerization tank. Here, the produced polymer 1 is carried into the heating chamber 1 as the fibrillated polymer. Further, when the continuous baking apparatus includes an electrolytic polymerization tank, it is preferable to further include a cleaning apparatus and a drying apparatus for the polymer between the electrolytic polymerization tank and the heating chamber.
[0020] また、本発明の炭素繊維は、上記の方法で製造されたことを特徴とし、 3次元連続 構造を有し、本発明の触媒構造体は、該炭素繊維に触媒を担持してなることを特徴 とする。本発明の触媒構造体は、加熱チャンバ一、マイクロ波発生装置及び搬送機 構を備えた連続焼成装置と、該連続焼成装置の加熱チャンバ一の後段に配置され た触媒担持装置とを備える触媒構造体の連続製造装置を用いて、炭素繊維に触媒 を担持することで、連続的に製造することもできる。ここで、前記触媒構造体の連続製 造装置は、更に、前記触媒担持装置の後段に触媒が担持された炭素繊維の洗浄装 置及び乾燥装置を備えることが好ましレ、。  [0020] Further, the carbon fiber of the present invention is characterized by being produced by the above-described method, and has a three-dimensional continuous structure, and the catalyst structure of the present invention comprises a catalyst supported on the carbon fiber. It is characterized by this. The catalyst structure of the present invention has a catalyst structure comprising a continuous firing device including a heating chamber, a microwave generator, and a transport mechanism, and a catalyst support device disposed at a subsequent stage of the heating chamber of the continuous firing device. It can also be produced continuously by supporting the catalyst on carbon fiber using a continuous body production apparatus. Here, it is preferable that the continuous production apparatus for the catalyst structure further includes a carbon fiber cleaning apparatus and a drying apparatus in which a catalyst is supported downstream of the catalyst supporting apparatus.
[0021] 更に、本発明の固体高分子型燃料電池用電極は、ガス拡散層と、該ガス拡散層の 上に配置された触媒層とからなり、該触媒層に上記触媒構造体を用いたことを特徴と する。また更に、本発明の固体高分子型燃料電池は、上記電極を備えることを特徴と する。  Furthermore, an electrode for a polymer electrolyte fuel cell according to the present invention includes a gas diffusion layer and a catalyst layer disposed on the gas diffusion layer, and the catalyst structure is used for the catalyst layer. It is characterized by this. Furthermore, the polymer electrolyte fuel cell of the present invention is characterized by comprising the above electrode.
[0022] 本発明によれば、フィブリル状ポリマーにマイクロ波を照射して加熱し炭化させるこ とで、短時間で 3次元連続構造を有する炭素繊維を製造することができる。また、本 発明によれば、加熱チャンバ一と、マイクロ波発生装置と、搬送機構とを備えた連続 焼成装置を用いて、シート状又は板状の 3次元連続構造を有するフィブリル状ポリマ 一を連続焼成装置の加熱チャンバ一に搬入し、該フイブリル状ポリマーにマイクロ波 発生装置で発生させたマイクロ波を照射して、該ポリマーを焼成し炭化させることで、 3次元連続構造を有する炭素繊維を連続的に製造することが可能となる。また、これ らの方法で製造した炭素繊維、該炭素繊維を用いた触媒構造体、該触媒構造体を 用いた固体高分子型燃料電池用電極、並びに該電極を備えた固体高分子型燃料 電池を提供することができる。 [0022] According to the present invention, a fibrillated polymer is irradiated with microwaves to be heated and carbonized. Thus, a carbon fiber having a three-dimensional continuous structure can be produced in a short time. Further, according to the present invention, a fibrillated polymer having a sheet-like or plate-like three-dimensional continuous structure is continuously formed by using a continuous baking apparatus having a heating chamber, a microwave generator, and a transport mechanism. Carrying into the heating chamber of the firing device, irradiating the fibrillar polymer with the microwave generated by the microwave generator, firing and carbonizing the polymer, continuous carbon fibers having a three-dimensional continuous structure Can be manufactured automatically. In addition, carbon fibers produced by these methods, catalyst structures using the carbon fibers, electrodes for solid polymer fuel cells using the catalyst structures, and solid polymer fuel cells including the electrodes Can be provided.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]本発明の実施に好適な連続焼成装置の一例の概略図である。  FIG. 1 is a schematic view of an example of a continuous firing apparatus suitable for carrying out the present invention.
[図 2]シート状のフィブリル状ポリマーの連続焼成に好適な連続焼成装置の一例を示 す概略図である。  FIG. 2 is a schematic view showing an example of a continuous baking apparatus suitable for continuous baking of a sheet-like fibril polymer.
[図 3]板状のフィブリル状ポリマーの連続焼成に好適な連続焼成装置の一例を示す 概略図である。  FIG. 3 is a schematic view showing an example of a continuous firing apparatus suitable for continuous firing of a plate-like fibril polymer.
[図 4]本発明の実施に好適な連続焼成装置のその他の好適例を示す概略図である。  FIG. 4 is a schematic view showing another preferred example of a continuous baking apparatus suitable for carrying out the present invention.
[図 5]本発明の実施に好適な触媒構造体の連続製造装置の一例を示す概略図であ る。  FIG. 5 is a schematic view showing an example of a continuous production apparatus for a catalyst structure suitable for carrying out the present invention.
[図 6]本発明の固体高分子型燃料電池の一例の断面図である。  FIG. 6 is a cross-sectional view of an example of a polymer electrolyte fuel cell of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] <炭素繊維の製造方法 > <Method for producing carbon fiber>
以下に、本発明の炭素繊維の製造方法を詳細に説明する。本発明の炭素繊維の 製造方法は、 3次元連続構造を有するフィブリル状ポリマーにマイクロ波を照射して、 該ポリマーを加熱し炭化させて 3次元連続構造を有する炭素繊維を生成させることを 特徴とする。本発明の炭素繊維の製造方法では、フィブリル状ポリマーにマイクロ波 を照射することにより、フィブリル状ポリマーがマイクロ波を吸収し自己発熱することで 、高い効率でフィブリル状ポリマーを加熱し、炭化させることができる。また、本発明の 炭素繊維の製造方法は、熱源からの熱伝導に頼らないために、短時間で昇温が可 能であり、短時間 ·省エネルギープロセスでもある。更に、本発明で利用するマイクロ 波加熱は、温度の制御性にも優れ、応答性が高い利点もある。また更に、マイクロ波 加熱では、フィブリル状ポリマーの自己発熱で加熱されるため、均一加熱が可能であ り、従来法で問題となっていた焼成によるサンプルの反りや応力発生を防止すること あでさる。 Below, the manufacturing method of the carbon fiber of this invention is demonstrated in detail. The carbon fiber production method of the present invention is characterized in that a fibrillated polymer having a three-dimensional continuous structure is irradiated with microwaves, and the polymer is heated and carbonized to produce a carbon fiber having a three-dimensional continuous structure. To do. In the method for producing carbon fiber of the present invention, the fibrillated polymer absorbs the microwave and self-heats by irradiating the fibrillated polymer with microwaves, whereby the fibrillated polymer is heated and carbonized with high efficiency. Can do. In addition, since the carbon fiber production method of the present invention does not rely on heat conduction from a heat source, the temperature can be increased in a short time. It is also a short-time and energy-saving process. Furthermore, the microwave heating used in the present invention has the advantages of excellent temperature controllability and high responsiveness. Furthermore, since microwave heating is performed by self-heating of the fibrillar polymer, uniform heating is possible, and this prevents the sample from warping and stress generation due to firing, which was a problem in the conventional method. Monkey.
[0025] 本発明の炭素繊維の製造方法において、原料として用いるフィブリル状ポリマーは 、 3次元連続構造を有する。該フイブリル状ポリマーは、芳香環を有する化合物を重 合、好ましくは、電解重合、より好ましくは、電解酸化重合させて得ることができる。こ こで、芳香環を有する化合物としては、ベンゼン環を有する化合物、芳香族複素環を 有する化合物を挙げることができ、ベンゼン環を有する化合物として、具体的には、 ァニリン及びァニリン誘導体が好まぐ芳香族複素環を有する化合物として、具体的 には、ピロール、チオフヱン及びこれらの誘導体が好ましい。これら芳香環を有する 化合物は、一種単独で用いてもよいし、二種以上の混合物として用いてもよい。また 、フィブリル状ポリマーは、ポリア二リン、ポリピロール、ポリチォフェン又はそれらの誘 導体からなることが好ましレ、。  [0025] In the carbon fiber production method of the present invention, the fibrillar polymer used as a raw material has a three-dimensional continuous structure. The fibril-like polymer can be obtained by polymerizing a compound having an aromatic ring, preferably electrolytic polymerization, more preferably electrolytic oxidation polymerization. Here, examples of the compound having an aromatic ring include a compound having a benzene ring and a compound having an aromatic heterocyclic ring. Specifically, as the compound having a benzene ring, aniline and aniline derivatives are preferred. Specifically, pyrrole, thiophene, and derivatives thereof are preferable as the compound having an aromatic heterocyclic ring. These compounds having an aromatic ring may be used singly or as a mixture of two or more. The fibrillated polymer is preferably composed of polyaniline, polypyrrole, polythiophene or their derivatives.
[0026] 上記フィブリル状ポリマーは、直径が 30nm〜数百 nmで、好ましくは 40nm〜500nmで あり、長さが 0.5 μ m〜100mmで、好ましくは 1 μ m〜10mmである。  [0026] The fibrillar polymer has a diameter of 30 nm to several hundreds of nm, preferably 40 nm to 500 nm, and a length of 0.5 μm to 100 mm, preferably 1 μm to 10 mm.
[0027] 例えば、上記フィブリル状ポリマーを電解酸化重合法で製造する場合、原料の芳香 環を有する化合物と共に、酸を混在させることが好ましい。この場合、酸の負イオンが ドーパントとして合成されるフイブリル状ポリマー中に取り込まれ、導電性に優れたフィ ブリル状ポリマーが得られ、このフィブリル状ポリマーを用いることにより最終的に得ら れる炭素繊維の導電性を向上させることができる。なお、重合の際に混在させる酸と しては、特に限定されるものではなぐ HBF、 H SO、 HC1、 HCIO等を例示するこ  [0027] For example, when the fibrillated polymer is produced by electrolytic oxidation polymerization, it is preferable to mix an acid together with the raw material compound having an aromatic ring. In this case, the negative ion of the acid is taken into the fibril polymer synthesized as a dopant to obtain a fibril polymer excellent in conductivity, and the carbon fiber finally obtained by using this fibril polymer is obtained. The electrical conductivity of can be improved. The acid mixed during the polymerization is not particularly limited, and examples thereof include HBF, HSO, HC1, and HCIO.
4 2 4 4  4 2 4 4
とができ、該酸の濃度は、 0.1〜3mol/Lの範囲が好ましぐ 0.5〜2.5mol/Lの範囲力 S更 に好ましい。  The acid concentration is preferably in the range of 0.1 to 3 mol / L, more preferably in the range of 0.5 to 2.5 mol / L.
[0028] 上記電解酸化重合によりフィブリル状ポリマーを得る場合には、芳香環を有する化 合物を含む溶液中に、作用極及び対極を浸漬し、両極間に上記芳香環を有する化 合物の酸化電位以上の電圧を印加するか、または該芳香環を有する化合物が重合 するのに充分な電圧が確保できるような条件の電流を通電すればよぐこれにより作 用極上にフィブリル状ポリマーが生成する。ここで、作用極及び対極としては、ステン レススチール、白金、カーボン等の良導電性物質からなる板や多孔質材などを用い ること力 Sできる。また、電解酸化重合における電流密度は、 0.1〜1000111八ん1112の範囲 が好ましぐ 0.2〜100mAん m2の範囲が更に好ましぐ芳香環を有する化合物の電解 溶液中の濃度は、 0.05〜3mol/Lの範囲が好ましぐ 0.25〜1.5mol/Lの範囲が更に好 ましレ、。なお、電解溶液には、上記成分に加え、 pHを調製するために可溶性塩等を 適宜添加してもよい。 [0028] In the case of obtaining a fibrillated polymer by electrolytic oxidation polymerization, the working electrode and the counter electrode are immersed in a solution containing a compound having an aromatic ring, and the compound having the aromatic ring is sandwiched between both electrodes. A voltage higher than the oxidation potential is applied, or the compound having the aromatic ring is polymerized. It is only necessary to pass an electric current under such a condition that a sufficient voltage can be secured, and a fibrillated polymer is formed on the working electrode. Here, as the working electrode and the counter electrode, it is possible to use a plate or a porous material made of a highly conductive material such as stainless steel, platinum or carbon. Also, the current density in the electrolytic oxidation polymerization, the concentration of the electrolytic solution of the compound with a 0.1-1000111 eight I 111 2 ranges preferably tool 0.2~100mA N of m 2 range is more preferably tool aromatic ring, 0.05 The range of ~ 3 mol / L is preferred. The range of 0.25 to 1.5 mol / L is even more preferred. In addition to the above components, a soluble salt or the like may be appropriately added to the electrolytic solution in order to adjust the pH.
[0029] 上記のようにして作用極上に得られたフィブリル状ポリマーを、水や有機溶剤等の 溶媒で洗浄し、乾燥させることで、本発明の製造方法に好適に用レ、ることができるフ イブリル状ポリマーを得ることができる。ここで、乾燥方法としては、特に制限されるも のではないが、風乾、真空乾燥の他、流動床乾燥装置、気流乾燥機、スプレードライ ヤー等を使用した方法を例示することができる。  [0029] The fibrillated polymer obtained on the working electrode as described above can be suitably used in the production method of the present invention by washing with a solvent such as water or an organic solvent and drying. A fibrillar polymer can be obtained. Here, the drying method is not particularly limited, and examples thereof include a method using a fluid bed dryer, a flash dryer, a spray dryer, etc. in addition to air drying and vacuum drying.
[0030] 本発明の炭素繊維の製造方法では、上記フィブリル状ポリマーにマイクロ波を照射 する。ここで、照射するマイクロ波の周波数は、通常、 300MHz〜300GHzの範囲であ り、 28GHz (ミリ波)が特に好ましい。マイクロ波としては、電子レンジに代表される周波 数 2.45GHzのものが広く普及している力 2.45GHzのマイクロ波を用いた場合は、以 下のような問題がある。(i)フィブリル状ポリマーが 2.45GHzのマイクロ波をほとんど吸 収しない。(ii)フィブリル状ポリマーが複雑な形状を有する場合に、突起部に電界が集 中し、熱暴走して均一な加熱が難しい。(m)導電性材料ではアーキングが発生する( 電子レンジでアルミホイル力 火花が飛ぶ現象)。これらのデメリットを解決すべく銳 意検討した結果、マイクロ波の周波数を高めることで上記問題を解決することができ 、 28GHzのマイクロ波(ミリ波)が特に好適に使用できることが分かった。また、 28GHz のマイクロ波を用いた場合、フィブリル状ポリマー自体の加熱も可能となり、その他の 特長としては、導電性材料であってもアーキングが極めて生じ難い点が挙げられる。 なお、本発明の製造方法では、ポリマーが炭化して導電性グラフアイト化した場合で も、 28GHzのマイクロ波を用いることで、アーキングの発生を防止できる。  [0030] In the method for producing carbon fiber of the present invention, the fibrillated polymer is irradiated with microwaves. Here, the frequency of the irradiated microwave is usually in the range of 300 MHz to 300 GHz, and 28 GHz (millimeter wave) is particularly preferable. Microwaves with a frequency of 2.45 GHz typified by microwave ovens are widely used. When microwaves with a frequency of 2.45 GHz are used, there are the following problems. (I) The fibrillar polymer hardly absorbs 2.45 GHz microwaves. (Ii) When the fibrillar polymer has a complicated shape, an electric field is concentrated on the protrusions, causing thermal runaway and making uniform heating difficult. (M) Arcing occurs in conductive materials (a phenomenon in which aluminum foil power sparks fly in a microwave oven). As a result of intensive studies to solve these disadvantages, it was found that the above problem can be solved by increasing the frequency of the microwave, and that a 28 GHz microwave (millimeter wave) can be used particularly suitably. In addition, when microwaves of 28 GHz are used, it is possible to heat the fibrillated polymer itself. Another feature is that arcing is extremely difficult to occur even with conductive materials. In the production method of the present invention, even when the polymer is carbonized to become conductive graphite, the occurrence of arcing can be prevented by using a 28 GHz microwave.
[0031] マイクロ波照射によるフィブリル状ポリマーの加熱温度は、フィブリル状ポリマーから の放熱を断熱材等により抑制することにより、 2000°C以上とすることも可能である。ここ で、使用する断熱材としては、 1800°C程度まではアルミナが好適に使用でき、 1800°C 以上では、ボロンナイトライド(BN)等が好適に使用できる。また、マイクロ波を発生さ せるために用いるマイクロ波発生装置としては、特に制限は無ぐ一般的なものを使 用すること力 Sできる。 [0031] The heating temperature of the fibrillated polymer by microwave irradiation is determined from the fibrillated polymer. It is also possible to set the temperature to 2000 ° C or higher by suppressing the heat dissipation of heat with a heat insulating material. Here, as the heat insulating material to be used, alumina can be preferably used up to about 1800 ° C, and boron nitride (BN) or the like can be suitably used above 1800 ° C. In addition, as a microwave generator used to generate microwaves, it is possible to use a general one that is not particularly limited.
[0032] 本発明の製造方法においては、上記フィブリル状ポリマーに対するマイクロ波照射 を真空中又は不活性ガス雰囲気中で行うことが好ましい。この場合、ポリマーの燃焼 による消失を抑制することができる。なお、ここで、真空中でマイクロ波照射を行う場 合、系を 3 X 102Pa以下とすることが好ましぐまた、不活性ガス雰囲気としては、窒素 雰囲気、アルゴン雰囲気、ヘリウム雰囲気等を挙げることができる。 [0032] In the production method of the present invention, it is preferable to perform microwave irradiation on the fibrillated polymer in a vacuum or in an inert gas atmosphere. In this case, disappearance of the polymer due to combustion can be suppressed. Here, when microwave irradiation is performed in a vacuum, it is preferable to set the system to 3 × 10 2 Pa or less. Also, as an inert gas atmosphere, a nitrogen atmosphere, an argon atmosphere, a helium atmosphere, or the like is used. Can be mentioned.
[0033] 本発明の炭素繊維の製造方法においては、上記フィブリル状ポリマーが導電性基 板上に支持されていることが好ましい。導電性基板上に支持されたフイブリル状ポリ マーをマイクロ波加熱する場合、導電性基板が効率よくマイクロ波を吸収し発熱する ため、フィブリルポリマーの自己発熱以外に、導電性基板から伝導してくる熱が加わり 、いわばハイブリッド加熱となり、更に効率的な焼成が可能となる。ここで、導電性基 板としては、カーボンペーパー、カーボン不織布、カーボンクロス、カーボンネット及 びメッシュ状カーボン等が挙げられ、これらの中でも、カーボンペーパーが好ましレ、。  [0033] In the carbon fiber production method of the present invention, the fibrillated polymer is preferably supported on a conductive substrate. When a fibrillated polymer supported on a conductive substrate is heated by microwaves, the conductive substrate efficiently absorbs microwaves and generates heat, so that it conducts from the conductive substrate in addition to the self-heating of the fibril polymer. Heat is applied, so to speak hybrid heating, and more efficient firing is possible. Here, examples of the conductive substrate include carbon paper, carbon non-woven fabric, carbon cloth, carbon net, and mesh-like carbon. Among these, carbon paper is preferred.
[0034] 例えば、カーボンペーパー上で電解重合したフィブリル状ポリア二リンをマイクロ波 照射により焼成した場合、数分で容易に 850°Cまで昇温でき、 10分程度の保持時間 で従来法と同等の残炭率の炭素繊維が得られ、短時間で炭化プロセスを完了できる ことが確認された。また、焼成後の冷却時間についても、従来法では炉全体が高温 で、冷却に長時間を要していたのに対し、本発明の方法ではサンプノレおよび周辺断 熱材の限られた部分のみが加熱されるため、冷却時間の短縮も可能となる。そのた め、本発明の炭素繊維の製造方法は、従来法に対して非常に短時間で炭素繊維を 製造することができ、また、省エネルギーなプロセスであり、生産性に非常に優れる利 点を有している。  [0034] For example, when fibrillar polyaniline electropolymerized on carbon paper is baked by microwave irradiation, the temperature can be easily raised to 850 ° C in a few minutes, and the retention time of about 10 minutes is equivalent to the conventional method It was confirmed that carbon fibers with a residual carbon ratio of 5% were obtained and the carbonization process could be completed in a short time. Also, with regard to the cooling time after firing, in the conventional method, the entire furnace was high temperature and required a long time for cooling, whereas in the method of the present invention, only a limited portion of the sampnore and the peripheral heat insulating material was limited. Since it is heated, the cooling time can be shortened. For this reason, the carbon fiber production method of the present invention can produce carbon fiber in a very short time compared to the conventional method, is an energy-saving process, and has the advantages of excellent productivity. Have.
[0035] ぐ炭素繊維の連続製造方法 >  [0035] Continuous carbon fiber production method>
以下に、図を参照しながら本発明の炭素繊維の連続製造方法を詳細に説明する。 図 1は、本発明の実施に好適な連続焼成装置の一例である。図 1に示す連続焼成装 置は、加熱チャンバ一 1と、該加熱チャンバ一中でシート状又は板状のフィブリル状 ポリマーをマイクロ波照射により焼成し炭化させて炭素繊維とするためのマイクロ波発 生装置 2と、前記加熱チャンバ一に前記フィブリル状ポリマーを搬入し該加熱チャン バーからマイクロ波照射によって生成した炭素繊維を搬出するための搬送機構 3とを 備える。 Below, the continuous manufacturing method of the carbon fiber of this invention is demonstrated in detail, referring a figure. FIG. 1 is an example of a continuous firing apparatus suitable for the practice of the present invention. The continuous firing apparatus shown in Fig. 1 is a heating chamber 11 and a microwave generator for firing a sheet-like or plate-like fibril-like polymer by microwave irradiation and carbonizing it into carbon fibers in the heating chamber. And a transport mechanism 3 for transporting the fibrillated polymer into the heating chamber and transporting the carbon fiber generated by microwave irradiation from the heating chamber.
[0036] 図 1の (A)に示す連続焼成装置の搬送機構 3は、ロール 'トウ'ロール方式の搬送 機構であり、シート状のフィブリル状ポリマーが卷かれたロール 3Aと、マイクロ波照射 によって生成したシート状の炭素繊維が卷かれるロール 3Bとを備える。また、図 1の( A)に示す連続焼成装置は、加熱チャンバ一 1とマイクロ波発生装置 2とを連結し、マ イク口波発生装置 2で発生したマイクロ波を加熱チャンバ一 1に導くための導波管 4A と、加熱チャンバ一 1に不活性ガス等のガスを導入するための導入ライン 4Bと、加熱 チャンバ一 1からガスを排気するための排気ライン 4Cとを備える。  [0036] Conveying mechanism 3 of the continuous firing apparatus shown in (A) of Fig. 1 is a conveying mechanism of a roll 'toe' roll system, and roll 3A in which a sheet-like fibril polymer is sprinkled and microwave irradiation A roll 3B on which the generated sheet-like carbon fiber is wound. In addition, the continuous baking apparatus shown in FIG. 1A connects the heating chamber 1 and the microwave generator 2 to guide the microwave generated by the microphone mouth wave generator 2 to the heating chamber 11. Waveguide 4A, an introduction line 4B for introducing a gas such as an inert gas into the heating chamber 11, and an exhaust line 4C for exhausting the gas from the heating chamber 11.
[0037] 図 1の(A)に示す連続焼成装置においては、ロール 3Aからシート状のフィブリル状 ポリマーが加熱チャンバ一 1に供給され、該加熱チャンバ一 1内でマイクロ波発生装 置 2で発生したマイクロ波がシート状のフィブリル状ポリマーに照射され、シート状の フィブリル状ポリマーが炭化してシート状の炭素繊維となり、該シート状の炭素繊維が 、ロール 3Bに卷き取られ、ロール 'トウ'ロール方式でシート状の炭素繊維を連続的に 製造すること力 Sできる。上記シート状のフィブリル状ポリマーは、シート状の基板に積 層されていてもよぐここで、シート状の基板としては、カーボンペーパー等が好まし レ、。  [0037] In the continuous firing apparatus shown in Fig. 1 (A), a sheet-like fibril polymer is supplied from a roll 3A to a heating chamber 11, and is generated by a microwave generator 2 in the heating chamber 11. The irradiated microwave is irradiated to the sheet-like fibril polymer, and the sheet-like fibril polymer is carbonized to form a sheet-like carbon fiber, and the sheet-like carbon fiber is scraped off by the roll 3B, and the roll tow 'The ability to continuously produce sheet-like carbon fibers in a roll system is possible. The sheet-like fibrillated polymer may be stacked on a sheet-like substrate, where carbon paper or the like is preferred as the sheet-like substrate.
[0038] また、図 1の(B)に示す連続焼成装置の搬送機構 3は、複数の駆動ロール 3Cから 構成されており、該駆動ロール 3Cによって、板状のフィブリル状ポリマーが搬送され る。なお、図 1の(B)に示す連続焼成装置も、図 1の (A)に示す装置と同様に、導波 管 4Aと、導入ライン 4Bと、排気ライン 4Cとを備える。  [0038] Further, the transport mechanism 3 of the continuous firing apparatus shown in FIG. 1B is composed of a plurality of drive rolls 3C, and the plate-like fibrillar polymer is transported by the drive rolls 3C. Note that the continuous firing apparatus shown in FIG. 1B also includes a waveguide 4A, an introduction line 4B, and an exhaust line 4C, as in the apparatus shown in FIG.
[0039] 図 1の(B)に示す連続焼成装置においては、駆動ロール 3Cによって板状のフイブ リル状ポリマーが加熱チャンバ一 1に供給され、該加熱チャンバ一 1内でマイクロ波発 生装置 2で発生したマイクロ波が板状のフィブリル状ポリマーに照射され、板状のフィ ブリル状ポリマーが炭化して板状の炭素繊維となり、該板状の炭素繊維が、駆動ロー ノレ 3Cによって加熱チャンバ一 1の外部へ搬出されることにより、板状の炭素繊維を連 続的に製造することができる。上記板状のフィブリル状ポリマーは、板状の基板に積 層されていてもよぐここで、板状の基板としては、ガラス基板等が挙げられる。 In the continuous baking apparatus shown in FIG. 1 (B), a plate-like fibril polymer is supplied to the heating chamber 11 by the drive roll 3C, and the microwave generator 2 is provided in the heating chamber 11. The microwaves generated in the plate are irradiated to the plate-like fibrillar polymer, and the plate-like fibrils are irradiated. The brittle polymer is carbonized to form plate-like carbon fibers, and the plate-like carbon fibers are continuously carried out of the heating chamber 11 by the drive roller 3C, thereby continuously forming the plate-like carbon fibers. Can be manufactured. The plate-like fibrillated polymer may be stacked on a plate-like substrate, and examples of the plate-like substrate include a glass substrate.
[0040] 上記連続焼成装置を用いて、フィブリル状ポリマーにマイクロ波を照射して連続焼 成する場合、フィブリル状ポリマーがマイクロ波を吸収し自己発熱することで、高い効 率でフィブリル状ポリマーを加熱し、炭化させることができる。また、熱源からの熱伝導 に頼らないために、短時間で昇温が可能であり、短時間 ·省エネルギープロセスを実 現すること力 Sできる。更に、マイクロ波加熱では、フィブリル状ポリマーの自己発熱で 加熱されるため、均一加熱が可能である。また更に、フィブリル状ポリマーは温度が 上がる程、また炭化が進む程マイクロ波を吸収するようになり良好に加熱が出来る。 更にまた、マイクロ波加熱は、温度の制御性にも優れ応答性が高いことも特徴といえ る。 [0040] When continuous firing is performed by irradiating the fibrillated polymer with microwaves using the continuous firing apparatus, the fibrillated polymer absorbs the microwave and self-heats, so that the fibrillated polymer can be obtained with high efficiency. It can be heated and carbonized. In addition, since it does not rely on heat conduction from the heat source, the temperature can be raised in a short time, and it is possible to realize a short time and energy saving process. Furthermore, in microwave heating, since heating is performed by self-heating of the fibrillar polymer, uniform heating is possible. Furthermore, the fibrillated polymer absorbs microwaves as the temperature rises and the carbonization progresses and can be heated well. Furthermore, microwave heating is also characterized by excellent temperature controllability and high responsiveness.
[0041] 上記連続焼成装置を用いてフィブリル状ポリマーを連続焼成する場合、照射するマ イク口波の周波数は、通常、 300MHz〜300GHzの範囲であり、 28GHz (ミリ波)が特に 好ましレ、。マイクロ波としては、電子レンジに代表される周波数 2.45GHzのものが広く 普及している力 2.45GHzのマイクロ波を用いた場合は、以下のような問題がある。 (i) フィブリル状ポリマーが 2.45GHzのマイクロ波をほとんど吸収しなレ、。(ii)フィブリル状 ポリマーが複雑な形状を有する場合に、突起部に電界が集中し、熱暴走して均一な 加熱が難しい。(iii)導電性材料ではアーキングが発生する(電子レンジでアルミホイ ルから火花が飛ぶ現象)。これらのデメリットを解決すべく鋭意検討した結果、マイクロ 波の周波数を高めることで上記問題を解決することができ、 28GHzのマイクロ波(ミリ 波)が特に好適に使用できることが分かった。また、 28GHzのマイクロ波を用いた場合 、フィブリル状ポリマー自体の加熱も容易となり、その他の特長としては、導電性材料 であってもアーキングが極めて生じ難い点が挙げられる。なお、フィブリル状ポリマー が炭化して導電性グラフアイトイ匕した場合でも、 28GHzのマイクロ波を用いることで、ァ 一キングの発生を防止できる。また、投入電力やラインスピードを調整することで、フ イブリル状ポリマーの連続焼成条件を最適化することができる。なお、マイクロ波を発 生させるために用いるマイクロ波発生装置 2としては、特に制限は無ぐ一般的なもの を使用することができ、例えば、ジャイロトロン発振機等を例示することができる。 [0041] When the fibrillated polymer is continuously baked using the above continuous baking apparatus, the frequency of the microphone mouth wave to be irradiated is usually in the range of 300 MHz to 300 GHz, and 28 GHz (millimeter wave) is particularly preferable. . A microwave with a frequency of 2.45 GHz typified by a microwave oven is widely used. When a microwave with a frequency of 2.45 GHz is used, there are the following problems. (i) The fibrillar polymer hardly absorbs 2.45 GHz microwaves. (Ii) Fibrils When the polymer has a complicated shape, the electric field concentrates on the protrusions, causing thermal runaway and uniform heating is difficult. (Iii) Arcing occurs in conductive materials (a phenomenon in which sparks fly from aluminum wheels in a microwave oven). As a result of intensive studies to solve these disadvantages, it was found that the above problem can be solved by increasing the frequency of the microwave, and that a 28 GHz microwave (millimeter wave) can be used particularly suitably. In addition, when a 28 GHz microwave is used, the fibrillated polymer itself can be easily heated. Another feature is that arcing is extremely difficult to occur even with a conductive material. Even when the fibrillated polymer is carbonized to form a conductive graph, it is possible to prevent the occurrence of marking by using a 28 GHz microwave. In addition, the continuous firing conditions for the fibrillar polymer can be optimized by adjusting the input power and line speed. Note that microwaves are emitted. As the microwave generator 2 used for generation, a general one without particular limitation can be used, and examples thereof include a gyrotron oscillator.
[0042] 上記連続焼成装置の加熱チャンバ一 1は、サンプノレであるフィブリル状ポリマーか らの放熱による温度低下をさけるために、前記フィブリル状ポリマーの通過位置の上 方及び下方にマイクロ波を透過する断熱材 5を有することが好ましい。使用する断熱 材としては、 1800°C程度まではアルミナが好適に使用でき、 1800°C以上では、ボロン ナイトライド(BN)等が好適に使用できる。例えば、シート状のフィブリル状ポリマーを ロール ·トウ ·ロール方式でシート状の炭素繊維にする場合は、図 2の(A)に示すよう に、シート状のフィブリル状ポリマーの通過位置の上方及び下方に断熱材 5を配置す ることで、また、板状のフィブリル状ポリマーを炭素繊維にする場合は、図 3の (A)に 示すように、板状のフィブリル状ポリマーの通過位置の上方及び板状フイブリル状ポリ マーを載せた駆動ロール 3Cの下方に断熱材 5を配置することで、フィブリル状ポリマ 一からの放熱による温度低下を抑制して、マイクロ波照射によるフィブリル状ポリマー の加熱温度を容易に上昇させることができる。 [0042] The heating chamber 11 of the continuous baking apparatus transmits microwaves above and below the passing position of the fibrillated polymer in order to avoid a temperature drop due to heat dissipation from the fibrillated polymer that is a sampnore. It is preferable to have a heat insulating material 5. As the heat insulating material to be used, alumina is preferably used up to about 1800 ° C, and boron nitride (BN) or the like can be suitably used at 1800 ° C or higher. For example, when a sheet-like fibril polymer is made into a sheet-like carbon fiber by roll-to-roll method, as shown in Fig. 2 (A), above and below the passage position of the sheet-like fibril polymer. If the plate-like fibrillar polymer is made of carbon fiber by placing the heat insulating material 5 on the top, as shown in FIG. By disposing the heat insulating material 5 below the driving roll 3C on which the plate-like fibril polymer is placed, the temperature drop due to heat radiation from the fibril polymer is suppressed, and the heating temperature of the fibril polymer due to microwave irradiation is reduced. Can be raised easily.
[0043] 上記連続焼成装置の加熱チャンバ一 1は、前記フィブリル状ポリマーの通過位置の 上方及び下方に真空断熱層 6を有することも好ましい。この場合も、真空断熱 (魔法 瓶の原理)により、サンプルであるフィブリル状ポリマーからの放熱による温度低下を 防止することができる。該真空断熱層としては、マイクロ波を透過する石英等で構成 された真空断熱層等を用いることができる。例えば、シート状のフィブリル状ポリマー をロール ·トウ ·ロール方式でシート状の炭素繊維にする場合は、図 2の(B)に示すよ うに、シート状のフィブリル状ポリマーの通過位置の上方及び下方に真空断熱層 6を 配置することで、また、板状のフィブリル状ポリマーを炭素繊維にする場合は、図 3の (B)に示すように、板状のフィブリル状ポリマーの通過位置の上方及び板状のフイブ リル状ポリマーを載せた駆動ロール 3Cの下方に真空断熱層 6を配置することで、フィ ブリル状ポリマーからの放熱による温度低下を抑制して、マイクロ波照射によるフイブ リル状ポリマーの加熱温度を容易に上昇させることができる。なお、上記加熱チャン バー 1は、断熱材 5と真空断熱層 6の両方を有してもよい。  [0043] It is also preferable that the heating chamber 11 of the continuous baking apparatus has a vacuum heat insulating layer 6 above and below the passing position of the fibrillated polymer. In this case as well, temperature reduction due to heat radiation from the fibrillar polymer sample can be prevented by vacuum insulation (the principle of thermos). As the vacuum heat insulating layer, a vacuum heat insulating layer made of quartz or the like that transmits microwaves can be used. For example, when a sheet-like fibril polymer is made into a sheet-like carbon fiber by a roll-to-roll method, as shown in Fig. 2 (B), above and below the passing position of the sheet-like fibril polymer. When the plate-like fibrillar polymer is made of carbon fiber by arranging the vacuum heat insulating layer 6 on the top, as shown in FIG. By disposing the vacuum heat insulating layer 6 below the driving roll 3C on which the plate-like fibril-like polymer is placed, the temperature drop due to heat radiation from the fibril-like polymer is suppressed, and the fibril-like polymer caused by microwave irradiation is suppressed. The heating temperature can be easily raised. The heating chamber 1 may have both the heat insulating material 5 and the vacuum heat insulating layer 6.
[0044] 上記連続焼成装置において、上記加熱チャンバ一 1が断熱材 5を有する場合、該 断熱材 5中には加熱ヒータ 7が埋設されてレ、ることが好ましレ、。連続焼成装置の稼動 時にはサンプノレであるフィブリル状ポリマーがマイクロ波を吸収するため、急速加熱し ても周囲の断熱材 5に熱を奪われてしまうことがある。これに対し、断熱材 5中に加熱 ヒータ 7を埋設することで、速やかに昇温することができ、装置をより速やかに安定化 すること力 Sできる。例えば、シート状のフィブリル状ポリマーをロール 'トウ'ロール方式 でシート状の炭素繊維にする場合は、図 2の(C)に示すように、シート状のフィブリル 状ポリマーの通過位置の上方及び下方に加熱ヒータ 7が埋設された断熱材 5を配置 することで、また、板状のフィブリル状ポリマーを炭素繊維にする場合は、図 3の(C) に示すように、板状のフィブリル状ポリマーの通過位置の上方及び板状のフイブリノレ 状ポリマーを載せた駆動ロール 3Cの下方に加熱ヒータ 7が埋設された断熱材 5を配 置することで、加熱チャンバ一 1内のフィブリル状ポリマーにマイクロ波が照射される 部分の温度を速やかに上昇させて、装置を速やかに安定化することができる。 [0044] In the continuous baking apparatus, when the heating chamber 11 has a heat insulating material 5, It is preferable that the heater 7 is embedded in the heat insulating material 5. When the continuous firing equipment is in operation, the fibrillar polymer, which is a sampnore, absorbs microwaves, and even if it is rapidly heated, the surrounding heat insulating material 5 may be deprived of heat. On the other hand, by embedding the heater 7 in the heat insulating material 5, the temperature can be raised quickly, and the power S can be stabilized more quickly. For example, when a sheet-like fibril polymer is made into a sheet-like carbon fiber by the roll 'toe' roll method, as shown in Fig. 2 (C), above and below the passing position of the sheet-like fibril polymer. In the case where the heat insulating material 5 with the heater 7 embedded therein is disposed, and when the plate-like fibril polymer is made of carbon fiber, the plate-like fibril polymer is shown in FIG. By placing a heat insulating material 5 with a heater 7 embedded under the driving roll 3C placed above the plate passing position and below the driving roll 3C on which the plate-like fibrinole polymer is placed, microwaves are applied to the fibril polymer in the heating chamber 11. The temperature of the portion irradiated with can be quickly raised to stabilize the device quickly.
[0045] 上記連続焼成装置を用いてフィブリル状ポリマーを連続焼成する場合において、 前記断熱材 5の前記フィブリル状ポリマーに対面する側の表面上に、更にマイクロ波 吸収体層 8を配設することが好ましい。この場合、フィブリル状ポリマーのマイクロ波吸 収量を制限して、加熱温度のコントロールが容易になり、熱暴走を防止することがで きる。該マイクロ波吸収体層としては、カーボン薄膜や SiC薄膜等を用いることができ る。例えば、シート状のフィブリル状ポリマーをロール 'トウ'ロール方式でシート状の 炭素繊維にする場合は、図 2の(D)に示すように、シート状のフィブリル状ポリマーの 通過位置の上方及び下方に、フィブリル状ポリマーと対向する面にマイクロ波吸収体 層 8が配設された断熱材 5を配置することで、また、板状のフィブリル状ポリマーを炭 素繊維にする場合は、図 3の(D)に示すように、板状のフィブリル状ポリマーの通過 位置の上方及び板状のフィブリル状ポリマーを載せた駆動ロール 3Cの下方に、フィ ブリル状ポリマーと対向する面にマイクロ波吸収体層 8が配設された断熱材 5を配置 することで、フィブリル状ポリマーのマイクロ波吸収量を制限して、加熱温度を容易に コントロールすることができる。 [0045] In the case where the fibrillated polymer is continuously fired using the continuous firing apparatus, a microwave absorber layer 8 is further disposed on the surface of the heat insulating material 5 facing the fibrillated polymer. Is preferred. In this case, the microwave absorption rate of the fibrillated polymer is limited, the heating temperature can be easily controlled, and thermal runaway can be prevented. As the microwave absorber layer, a carbon thin film, a SiC thin film, or the like can be used. For example, when a sheet-like fibril polymer is made into a sheet-like carbon fiber by the roll 'toe' roll method, as shown in Fig. 2 (D), above and below the passage position of the sheet-like fibril polymer. In addition, when the heat insulating material 5 having the microwave absorber layer 8 disposed on the surface facing the fibril polymer is disposed, and when the plate-like fibril polymer is made of carbon fiber, the carbon fiber shown in FIG. As shown in (D), the microwave absorber layer is placed on the surface facing the fibril-like polymer above the passing position of the plate-like fibril-like polymer and below the driving roll 3C on which the plate-like fibril-like polymer is placed. By disposing the heat insulating material 5 in which 8 is disposed, the microwave absorption amount of the fibrillated polymer can be limited, and the heating temperature can be easily controlled.
[0046] また、加熱チャンバ一 1の断熱材 5に開口を設け、非接触温度計で加熱チャンバ一  [0046] Further, an opening is provided in the heat insulating material 5 of the heating chamber 11, and the heating chamber
1の温度を計測し、マイクロ波電力にフィードバックする制御機構を設けることで、様 々な処理条件に適宜対応することが容易となる。なお、焼成温度は、特に制限される ものでなく、 目的に応じて適宜設定でき、マイクロ波電力を調整する等してコントロー ノレすること力 Sできる。 By providing a control mechanism that measures the temperature of 1 and feeds it back to the microwave power It becomes easy to appropriately cope with various processing conditions. The firing temperature is not particularly limited and can be appropriately set according to the purpose, and can be controlled by adjusting the microwave power.
[0047] 上記連続焼成装置を用いてフィブリル状ポリマーを連続焼成する場合、上記加熱 チャンバ一 1中におけるフィブリル状ポリマーに対するマイクロ波照射を、真空下又は 不活性ガス雰囲気下で行うことが好ましい。この場合、フィブリル状ポリマーの燃焼に よる消失を抑制することができる。ここで、不活性ガスの導入には、上記導入ライン 4B を、不活性ガスの排気には、上記排気ライン 4Cを用いることができる。また、加熱チヤ ンバ一 1を真空にする場合は、上記排気ライン 4Cに真空ポンプ等を連結して加熱チ ヤンバー 1を減圧すればよい。なお、真空中でマイクロ波照射を行う場合、加熱チヤ ンバー 1を 3 X 102Pa以下に維持することが好ましぐまた、不活性ガス雰囲気としては 、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気等を挙げることができる。 [0047] When the fibrillated polymer is continuously baked using the continuous baking apparatus, it is preferable to perform microwave irradiation on the fibrillated polymer in the heating chamber 11 under a vacuum or an inert gas atmosphere. In this case, disappearance due to combustion of the fibrillar polymer can be suppressed. Here, the introduction line 4B can be used for introducing the inert gas, and the exhaust line 4C can be used for exhausting the inert gas. Further, when the heating chamber 1 is evacuated, the heating chamber 1 may be depressurized by connecting a vacuum pump or the like to the exhaust line 4C. When microwave irradiation is performed in a vacuum, it is preferable to maintain the heating chamber 1 at 3 × 10 2 Pa or lower. In addition, as the inert gas atmosphere, a nitrogen atmosphere, an argon atmosphere, a helium atmosphere, or the like is used. Can be mentioned.
[0048] 不活性ガス雰囲気下でマイクロ波照射を行う場合には、加熱チャンバ一 1に一定流 量の不活性ガスを流し、ガス置換しながら焼成することで、ロール 'トウ'ロール方式で シート状のフィブリル状ポリマーを焼成する場合は、ロール 3A, 3Bの部分を通常の 大気雰囲気とすることもできる。また、真空下の場合も同様で、加熱チャンバ一 1を大 容量の真空排気ポンプで排気することにより、加熱チャンバ一 1のみを真空とし、ロー ル.トウ ·ロール方式の場合は、ロール 3A, 3Bの部分を通常の大気雰囲気とし、エア 一 ·トウ ·エアーとすることもできる。なお、当然のことながら、ロール 3A, 3B部分も加 熱チャンバ一 1と同様に真空下又は不活性ガス雰囲気下に設置してもよい。また、板 状サンプノレの場合も同様であり、加熱チャンバ一 1を真空下又は不活性ガス雰囲気 下にすることで、フィブリル状ポリマーの燃焼による消失を抑制することができる。  [0048] When microwave irradiation is performed in an inert gas atmosphere, a constant flow rate of inert gas is passed through the heating chamber 11, and firing is performed while replacing the gas. When the fibrillar polymer is calcined, the rolls 3A and 3B can be made into a normal air atmosphere. The same applies to the case of under vacuum, and the heating chamber 1 is evacuated by a large-capacity vacuum exhaust pump, so that only the heating chamber 1 is evacuated, and in the case of a roll-to-roll system, roll 3A, The part 3B may be a normal air atmosphere, and air, tow, and air may be used. As a matter of course, the rolls 3A and 3B may also be installed in a vacuum or in an inert gas atmosphere as in the heating chamber 11. The same applies to a plate-shaped sampnore, and the disappearance of the fibrillated polymer due to combustion can be suppressed by setting the heating chamber 11 under a vacuum or an inert gas atmosphere.
[0049] 上記加熱チャンバ一 1を通過した炭素繊維は高温であるため、大気にさらした場合 には該炭素繊維が酸化してしまうおそれがある。そのため、上記連続焼成装置は、 前記加熱チャンバ一 1の後段に、更に、マイクロ波照射によって生成した炭素繊維を 冷却するための冷却チャンバ一 9を備えることが好ましい。冷却チャンバ一 9におい て、不活性ガス冷風の吹きつけを行うことで、炭素繊維を十分に冷却し、大気雰囲気 下において炭素繊維が酸化するのを防止することができる。また、冷却チャンバ一 9 を真空あるいは不活性ガスを充填しつつ、冷却ドラム等へ炭素繊維を接触させること で、炭素繊維を十分に冷却し、大気雰囲気下において炭素繊維が酸化するのを防 止すること力 Sできる。なお、冷却チャンバ一 9に流通させる不活性ガスとしては、加熱 チャンバ一 1と同様の不活性ガスを用いることができ、冷却チャンバ一 9を真空にする 場合の真空度は、加熱チャンバ一 1と同様のレベルにすることができる。 [0049] Since the carbon fiber that has passed through the heating chamber 11 has a high temperature, the carbon fiber may be oxidized when exposed to the atmosphere. Therefore, it is preferable that the continuous baking apparatus further includes a cooling chamber 9 for cooling the carbon fiber generated by the microwave irradiation at the subsequent stage of the heating chamber 11. By blowing the inert gas cold air in the cooling chamber 9, the carbon fiber can be sufficiently cooled and the carbon fiber can be prevented from being oxidized in the air atmosphere. In addition, the cooling chamber By filling the carbon fiber with a cooling drum or the like while filling it with a vacuum or an inert gas, it is possible to sufficiently cool the carbon fiber and prevent the carbon fiber from being oxidized in the atmosphere. As the inert gas to be circulated through the cooling chamber 9, the same inert gas as that of the heating chamber 1 can be used. When the cooling chamber 9 is evacuated, the degree of vacuum is the same as that of the heating chamber 11. Similar levels can be achieved.
[0050] 例えば、シート状のフィブリル状ポリマーをロール 'トウ'ロール方式でシート状の炭 素繊維にする場合は、図 4の (A)に示すように、シート状のフィブリル状ポリマーを焼 成する加熱チャンバ一 1の後段に、焼成によって高温となったシート状の炭素繊維を 冷却する冷却チャンバ一 9を設け、該冷却チャンバ一 9に不活性ガスを流通させるこ とで、また、図示しないが、フィブリル状ポリマーが板状の場合も、加熱チャンバ一 1の 後段に冷却チャンバ一 9を設け、該冷却チャンバ一 9に不活性ガスを流通させること で、生成した炭素繊維を十分に冷却することができる。なお、図 4の (A)に示す冷却 チャンバ一 9は、加熱チャンバ一 1と同様に、冷却チャンバ一 9に不活性ガス等のガ スを導入するための導入ライン 10Aと、冷却チャンバ一 9からガスを排気するための 排気ライン 10Bとを備える。  [0050] For example, when a sheet-like fibril polymer is made into a sheet-like carbon fiber by a roll 'toe' roll method, as shown in FIG. 4 (A), the sheet-like fibril polymer is fired. A cooling chamber 9 that cools the sheet-like carbon fiber that has been heated to a high temperature after the heating chamber 1 is provided, and an inert gas is circulated through the cooling chamber 9. However, even when the fibrillar polymer is plate-shaped, a cooling chamber 9 is provided after the heating chamber 11 and the generated carbon fiber is sufficiently cooled by flowing an inert gas through the cooling chamber 9. be able to. The cooling chamber 9 shown in FIG. 4A is similar to the heating chamber 1 in that the introduction line 10A for introducing a gas such as an inert gas into the cooling chamber 9 and the cooling chamber 9 And an exhaust line 10B for exhausting gas from.
[0051] また、図 4の(B)に示すように、シート状のフィブリル状ポリマーを焼成する加熱チヤ ンバー 1の後段に、焼成によって高温となったシート状の炭素繊維を冷却する冷却チ ヤンバー 9を設け、該冷却チャンバ一 9を真空、あるいは不活性ガスで充填し、炭素 繊維を冷却ドラム 11へ接触させることで、生成した炭素繊維を十分に冷却することが できる。なお、上記連続焼成装置においては、図 4の(B)に示すように、冷却チャン バー 9中にシート状の炭素繊維を卷き取るロール 3Bを配置してもよレ、。また、図示し ないが、フィブリル状ポリマーが板状の場合も、加熱チャンバ一の後段に冷却チャン バーを設け、該冷却チャンバ一を真空、あるいは不活性ガスで充填し、炭素繊維を 冷却板へ接触させることで、生成した炭素繊維を十分に冷却することができる。なお 、図 4の(B)に示す冷却チャンバ一 9は、冷却チャンバ一 9からガスを排気するための 排気ライン 10Bを備える。  [0051] Further, as shown in FIG. 4B, a cooling chamber for cooling the sheet-like carbon fiber that has been heated to a high temperature after the heating chamber 1 for firing the sheet-like fibril-like polymer. 9, the cooling chamber 9 is filled with a vacuum or an inert gas, and the carbon fibers are brought into contact with the cooling drum 11, whereby the produced carbon fibers can be sufficiently cooled. In the above continuous firing apparatus, as shown in FIG. 4 (B), a roll 3B for scraping the sheet-like carbon fiber may be disposed in the cooling chamber 9. Although not shown, when the fibrillated polymer is plate-shaped, a cooling chamber is provided after the heating chamber 1 and the cooling chamber 1 is filled with vacuum or an inert gas, and the carbon fiber is supplied to the cooling plate. By making it contact, the produced | generated carbon fiber can fully be cooled. The cooling chamber 9 shown in FIG. 4B includes an exhaust line 10B for exhausting gas from the cooling chamber 9.
[0052] シート状又は板状のフィブリル状ポリマーの搬送は、一定スピードの連続搬送であ つてもよいし、あるいは一定長搬送後に停止させ焼成し、その後、再び搬送するよう な搬送'焼成 (停止)を繰り返すプロセスであってもよい。搬送'停止を繰り返す方式 では、加熱チャンバ一 1を真空下や不活性ガス雰囲気下に保っために、加熱チャン バー 1の前後にロードロック室(図示せず)を設けて、予備排気やガス置換を行い、加 熱チャンバ一 1を所望の条件下に保つ方式を採ってもよい。 [0052] The conveyance of the sheet-like or plate-like fibril polymer may be continuous conveyance at a constant speed, or may be stopped and fired after conveyance for a certain length, and then conveyed again. It may be a process of repeating the transfer and firing (stop). In the method of repeatedly carrying 'stopping', in order to keep the heating chamber 1 in a vacuum or an inert gas atmosphere, a load lock chamber (not shown) is provided before and after the heating chamber 1 to perform preliminary exhaust and gas replacement. And the heating chamber 11 may be kept under desired conditions.
[0053] 上記連続焼成装置を用いて炭素繊維を連続製造する場合、上記フィブリル状ポリ マーとしては、芳香環を有する化合物を電解重合して得たポリマーが挙げられ、該ポ リマーは、通常、フィブリル状で且つ 3次元連続構造を有する。該フイブリル状で且つ 3次元連続構造を有するポリマーの直径及び長さは、上述の通りであり、また、原料 の芳香環を有する化合物についても、上述の通りである。  [0053] When carbon fibers are continuously produced using the continuous firing apparatus, the fibrillated polymer includes a polymer obtained by electrolytic polymerization of a compound having an aromatic ring, and the polymer is usually It is fibrillar and has a three-dimensional continuous structure. The diameter and length of the fibril-like polymer having a three-dimensional continuous structure are as described above, and the compound having an aromatic ring as a raw material is also as described above.
[0054] 上記連続焼成装置を用いてフィブリル状ポリマーを連続焼成する場合、該フイブリ ル状ポリマーは、シート状又は板状の導電性基板上に支持されていることが好ましい 。シート状又は板状の導電性基板上に支持されたフイブリル状ポリマーをマイクロ波 加熱する場合、導電性基板が効率よくマイクロ波を吸収し発熱するため、フイブリノレ 状ポリマーの自己発熱以外に、導電性基板から伝導してくる熱が加わり、いわばハイ ブリツド加熱となり、更に効率的な焼成が可能となる。ここで、導電性基板としては、力 一ボンペーパー、カーボン不織布、カーボンクロス、カーボンネット及びメッシュ状力 一ボン等が挙げられ、これらの中でも、カーボンペーパーが好ましい。なお、導電性 基板上で芳香環を有する化合物を電解重合してポリマーを導電性基板上に生成さ せ、ポリマー '導電性基板複合体をサンプルとして、連続焼成装置に供給することも 好ましい。  [0054] When the fibrillated polymer is continuously baked using the continuous baking apparatus, the fibrillated polymer is preferably supported on a sheet-like or plate-like conductive substrate. When a fibrillar polymer supported on a sheet-like or plate-like conductive substrate is heated by microwaves, the conductive substrate efficiently absorbs microwaves and generates heat. The heat conducted from the substrate is applied, so to speak, hybrid heating, enabling more efficient firing. Here, examples of the conductive substrate include force-bon paper, carbon non-woven fabric, carbon cloth, carbon net, mesh-like force, and the like, and among these, carbon paper is preferable. It is also preferable to electropolymerize a compound having an aromatic ring on a conductive substrate to produce a polymer on the conductive substrate, and to supply the polymer 'conductive substrate composite as a sample to a continuous baking apparatus.
[0055] 上記連続焼成装置は、図 5に示すように、更に、前記加熱チャンバ一 1の前段に芳 香環を有する化合物を電解重合してポリマーを生成させる電解重合槽 12を備え、生 成したフィブリル状ポリマーを前記加熱チャンバ一 1に搬入できることが好ましい。な お、電解重合でポリマーを製造する場合、上記炭素繊維の製造方法と同様に、原料 の芳香環を有する化合物と共に酸を混在させることが好ましい。ここで、重合の際に 混在させる酸の種類及び酸の濃度は、上述の通りである。  [0055] As shown in FIG. 5, the continuous baking apparatus further includes an electrolytic polymerization tank 12 for generating a polymer by electrolytic polymerization of a compound having an aromatic ring at the front stage of the heating chamber 11. It is preferable that the fibrillated polymer can be carried into the heating chamber 11. In the case of producing a polymer by electrolytic polymerization, it is preferable to mix an acid together with a raw material compound having an aromatic ring, in the same manner as in the carbon fiber production method. Here, the kind of acid mixed in the polymerization and the concentration of the acid are as described above.
[0056] 上記電解重合によりポリマーを得る場合には、芳香環を有する化合物を含む溶液 中に、作用極及び対極を浸漬し、両極間に上記芳香環を有する化合物の酸化電位 以上の電圧を印加するか、または該芳香環を有する化合物が重合するのに充分な 電圧が確保できるような条件の電流を通電すればよぐこれにより作用極上にポリマ 一が生成する。ここで、作用極及び対極としては、ステンレススチール、白金、カーボ ン等の良導電性物質力もなる板や多孔質材などを用いることができる。また、作用極 として、シート状の基板を用いることで、該シート状基板の上にポリマーを連続的に生 成させ、シート状のポリマー '基板複合体を製造することができる。なお、電解重合に おける電流密度及び電解溶液中の芳香環を有する化合物の濃度は、上述の通りで あり、また、電解溶液には、上記成分に加え、 pHを調製するために可溶性塩等を適 宜添加してもよい。 [0056] In the case of obtaining a polymer by electrolytic polymerization, the working electrode and the counter electrode are immersed in a solution containing a compound having an aromatic ring, and the oxidation potential of the compound having the aromatic ring between both electrodes The above voltage may be applied, or a current having a condition sufficient to secure a voltage sufficient to polymerize the compound having an aromatic ring may be applied, and a polymer is formed on the working electrode. Here, as the working electrode and the counter electrode, it is possible to use a plate or a porous material having a good conductive material force such as stainless steel, platinum, and carbon. In addition, by using a sheet-like substrate as a working electrode, a polymer can be continuously produced on the sheet-like substrate to produce a sheet-like polymer substrate composite. The current density in the electropolymerization and the concentration of the compound having an aromatic ring in the electrolytic solution are as described above. In addition to the above components, the electrolytic solution contains a soluble salt or the like in order to adjust the pH. It may be added appropriately.
[0057] また、上記連続焼成装置が電解重合槽 12を備える場合、図 5に示すように、電解 重合槽 12と加熱チャンバ一 1との間に、更に前記ポリマーの洗浄装置及び乾燥装置 13Aを配置してもよぐこの場合、ポリマーに電解重合に由来する残留物及び水分が 付着するのを防止することができる。洗浄装置としては、一般的なものを利用すること ができ、また、乾燥装置としては、真空乾燥機、流動床乾燥装置、気流乾燥機、スプ レードライヤー等が例示できる。  [0057] When the continuous baking apparatus includes an electrolytic polymerization tank 12, as shown in Fig. 5, a polymer washing apparatus and a drying apparatus 13A are further provided between the electrolytic polymerization tank 12 and the heating chamber 11. In this case, it is possible to prevent the residue and moisture derived from electrolytic polymerization from adhering to the polymer. As the cleaning device, a general device can be used. Examples of the drying device include a vacuum dryer, a fluidized bed dryer, an air flow dryer, and a spray dryer.
[0058] <炭素繊維 >  [0058] <Carbon fiber>
本発明の方法で製造される炭素繊維は、フィブリル状で且つ 3次元連続構造を有し 、直径が 30nm〜数百 nmであることが好ましぐ 40nm〜500nmであることが更に好まし く、長さ力 0·5 μ π!〜 100mであることが好ましぐ Ι μ π!〜 10mmであることが更に好まし ぐ表面抵抗力 106〜10— 2 Ωであることが好ましぐ 104〜10— 2 Ωであることが更に好まし レ、。また、該炭素繊維は、残炭率が 95〜30%、好ましくは 90〜40%である。ここで、残 炭率は、下記式: The carbon fiber produced by the method of the present invention has a fibril-like and three-dimensional continuous structure, and preferably has a diameter of 30 nm to several hundreds of nm, more preferably 40 nm to 500 nm, Length force 0 · 5 μ π! ~ 100m is preferred Ι μ π! Is further preferably les, it is further preferable device is preferably a surface resistance 10 6 ~10- 2 Ω tool 10 4 ~10- 2 Ω it is ~ 10 mm. The carbon fiber has a residual carbon ratio of 95 to 30%, preferably 90 to 40%. Here, the remaining charcoal rate is expressed by the following formula:
残炭率 = (焼成後の炭素繊維の質量) Ζ (焼成前のポリマーの質量) X 100 力、ら算出される。なお、上記のようにして得られる炭素繊維は、カーボン全体が 3次元 に連続した構造を有するため、粒状カーボンよりも導電性が高い。  Residual carbon ratio = (mass of carbon fiber after firing) Ζ (mass of polymer before firing) X 100 force, etc. The carbon fiber obtained as described above has higher conductivity than granular carbon because the entire carbon has a three-dimensional continuous structure.
[0059] ぐ触媒構造体 > [0059] Gu catalyst structure>
本発明の触媒構造体は、上述した 3次元連続構造を有する炭素繊維に金属、好ま しくは貴金属を担持してなる。該触媒構造体は、固体高分子型燃料電池の触媒層の 他、水素化反応等の種々の化学反応の触媒として用いることができる。ここで、炭素 繊維に担持される貴金属としては、 Ptが特に好ましい。なお、本発明においては、 Pt を単独で用いることも好ましいし、 Ru等の他の金属との合金として用いることも好まし レ、。貴金属として Ptを用い、本発明の触媒構造体を固体高分子型燃料電池の触媒 層として用いることで、 100°C以下の低温でも水素を高効率で酸化することができる。 また、 Ptと Ru等の合金を用いることで、 COによる Ptの被毒を防止して、触媒の活性 低下を防止することができる。なお、炭素繊維上に担持される金属は、微粒子状であ ることが好ましぐ該微粒子の粒径は、 0.5〜100nmの範囲が好ましぐ l〜50nmの範 囲がより好ましい。また、該金属の担持率は、炭素繊維 lgに対して 0.05〜5gの範囲が 好ましい。ここで、上記金属の炭素繊維上への担持法としては、特に限定されるもの ではなぐ例えば、含浸法、電気メツキ法(電解還元法)、無電解メツキ法、スパッタ法 等が挙げられる。 The catalyst structure of the present invention is formed by supporting a metal, preferably a noble metal, on the carbon fiber having the three-dimensional continuous structure described above. The catalyst structure is a catalyst layer of a polymer electrolyte fuel cell. In addition, it can be used as a catalyst for various chemical reactions such as hydrogenation reactions. Here, Pt is particularly preferable as the noble metal supported on the carbon fiber. In the present invention, Pt is preferably used alone, or is preferably used as an alloy with other metals such as Ru. By using Pt as a noble metal and using the catalyst structure of the present invention as a catalyst layer of a polymer electrolyte fuel cell, hydrogen can be oxidized with high efficiency even at a low temperature of 100 ° C or lower. In addition, by using an alloy such as Pt and Ru, it is possible to prevent poisoning of Pt by CO and prevent a decrease in the activity of the catalyst. The metal supported on the carbon fiber is preferably in the form of fine particles, and the particle diameter of the fine particles is preferably in the range of 0.5 to 100 nm, more preferably in the range of 1 to 50 nm. The metal loading is preferably in the range of 0.05 to 5 g with respect to the carbon fiber lg. Here, the method for supporting the metal on the carbon fiber is not particularly limited, and examples thereof include an impregnation method, an electro plating method (electrolytic reduction method), an electroless plating method, and a sputtering method.
[0060] 上記触媒構造体は、加熱チャンバ一、マイクロ波発生装置及び搬送機構を備えた 連続焼成装置と、該連続焼成装置の加熱チャンバ一の後段に配置された触媒担持 装置とを備える触媒構造体の連続製造装置を用いて、炭素繊維に触媒を担持するこ とで、連続的に製造することもできる。以下、本発明の触媒構造体の連続製造方法を 詳細に説明する。図 5に本発明の実施に好適な触媒構造体の連続製造装置の一例 を示す。該触媒構造体の連続製造装置は、上述した連続焼成装置と、該連続焼成 装置のチャンバ一 1 , 9、好ましくは、冷却チャンバ一 9の後段に炭素繊維に触媒を担 持するための触媒担持装置 14とを備えることを特徴とする。また、上記触媒構造体の 連続製造装置は、前記触媒担持装置 14の後段に、触媒が担持された炭素繊維 (即 ち、触媒構造体)の洗浄装置及び乾燥装置 13Bを備えることが好ましぐこの場合、 触媒構造体に触媒担持に由来する残留物及び水が付着するのを防止することがで きる。  [0060] The catalyst structure includes a continuous firing device including a heating chamber, a microwave generator, and a transport mechanism, and a catalyst support device disposed at a subsequent stage of the heating chamber of the continuous firing device. It can also be produced continuously by supporting the catalyst on carbon fiber using a continuous body production apparatus. Hereinafter, the continuous production method of the catalyst structure of the present invention will be described in detail. FIG. 5 shows an example of a continuous production apparatus for a catalyst structure suitable for carrying out the present invention. The continuous production apparatus for the catalyst structure includes the above-mentioned continuous calcining apparatus and a catalyst supporting unit for supporting the catalyst on the carbon fiber in the chambers 1 and 9 of the continuous calcining apparatus, preferably in the subsequent stage of the cooling chamber 9. And a device (14). In addition, the continuous production apparatus for the catalyst structure preferably includes a cleaning device and a drying device 13B for the carbon fiber (that is, the catalyst structure) on which the catalyst is supported after the catalyst supporting device 14. In this case, it is possible to prevent the residue derived from catalyst loading and water from adhering to the catalyst structure.
[0061] 図 5に示す触媒構造体の連続製造装置によれば、電解重合槽 12で生成したフイブ リ状ポリマーが洗浄装置及び乾燥装置 13Aを経て加熱チャンバ一 1に供給され、該 加熱チャンバ一 1でマイクロ波照射され、炭素繊維となる。また、生成した炭素繊維は 、冷却チャンバ一 9に送られ、該冷却チャンバ一 9で冷却された後に、触媒担持装置 14に送られ、該触媒担持装置 14で、炭素繊維に触媒が担持され、触媒構造体が製 造される。その後、製造された触媒構造体を洗浄装置及び乾燥装置 13Bで洗浄及 び乾燥し、ロール 3Bにシート状の触媒構造体を卷き取る。 [0061] According to the continuous production apparatus for the catalyst structure shown in Fig. 5, the fibrous polymer produced in the electrolytic polymerization tank 12 is supplied to the heating chamber 11 through the cleaning device and the drying device 13A, and the heating chamber 1 Microwave irradiation at 1 makes carbon fiber. The produced carbon fiber is sent to the cooling chamber 9 and cooled in the cooling chamber 9, and then the catalyst supporting device. 14, the catalyst is supported on the carbon fiber by the catalyst supporting device 14, and the catalyst structure is manufactured. Thereafter, the produced catalyst structure is washed and dried by the washing device and the drying device 13B, and the sheet-like catalyst structure is scraped off on the roll 3B.
[0062] <固体高分子型燃料電池用電極 > [0062] <Polymer Fuel Cell Electrode>
本発明の固体高分子型燃料電池用電極は、ガス拡散層と、該ガス拡散層の上に 配置された触媒層とからなり、該触媒層に上述した触媒構造体を用いたことを特徴と する。  An electrode for a polymer electrolyte fuel cell of the present invention comprises a gas diffusion layer and a catalyst layer disposed on the gas diffusion layer, wherein the catalyst structure described above is used for the catalyst layer. To do.
[0063] 上記触媒層には、高分子電解質を含浸させるのが好ましぐ該高分子電解質として は、イオン伝導性のポリマーを使用することができ、該イオン伝導性のポリマーとして は、スルホン酸、カルボン酸、ホスホン酸、亜ホスホン酸等のイオン交換基を有するポ リマーを挙げることができ、該ポリマーはフッ素を含んでも、含まなくてもよい。該ィォ ン伝導性のポリマーとして、具体的には、ナフイオン(登録商標)等のパーフルォロカ 一ボンスルホン酸系ポリマー等が好ましい。該高分子電解質の含浸量は、触媒層の 炭素繊維 100質量部に対して 10〜500質量部の範囲が好ましい。なお、触媒層の厚 さは、特に限定されるものではなレ、が、 0.1〜100 μ πιの範囲が好ましい。また、触媒 層の金属担持量は、前記担持率と触媒層の厚さにより定まり、 0.001〜0.8mgん m2の 範囲が好ましい。 [0063] It is preferable to impregnate the catalyst layer with a polymer electrolyte. As the polymer electrolyte, an ion conductive polymer can be used, and as the ion conductive polymer, a sulfonic acid can be used. And polymers having an ion exchange group such as carboxylic acid, phosphonic acid, and phosphonous acid, and the polymer may or may not contain fluorine. Specifically, the ion conductive polymer is preferably a perfluorocarbon sulfonic acid polymer such as Nafion (registered trademark). The amount of the polymer electrolyte impregnated is preferably in the range of 10 to 500 parts by mass with respect to 100 parts by mass of carbon fibers in the catalyst layer. The thickness of the catalyst layer is not particularly limited, but is preferably in the range of 0.1 to 100 μπι. The amount of metal supported on the catalyst layer is determined by the loading rate and the thickness of the catalyst layer, and is preferably in the range of 0.001 to 0.8 mg · m 2 .
[0064] 上記ガス拡散層は、上記触媒層へ水素ガス或いは、酸素や空気等の酸化剤ガスを 供給し、発生した電子の授受を行うための層であり、ガスの拡散層としての機能と集 電体としての機能を担う。ガス拡散層に用レ、る材質としては、上述した導電性基板が 好ましぐカーボンペーパーが特に好ましい。なお、導電性基板上で芳香環を有する 化合物を電解重合してフィブリル状ポリマーを生成させ、該フイブリル状ポリマーにマ イク口波を照射して、導電性基板上に 3次元連続構造を有する炭素繊維を生成させ 、更に、その炭素繊維部分に、金属、好ましくは、 Pt等の貴金属を担持することで、 固体高分子型燃料電池用電極を作製することができる。  [0064] The gas diffusion layer is a layer for supplying hydrogen gas or an oxidant gas such as oxygen or air to the catalyst layer to exchange generated electrons, and has a function as a gas diffusion layer. It functions as a current collector. The material used for the gas diffusion layer is particularly preferably carbon paper, which is preferably the conductive substrate described above. A compound having an aromatic ring is electropolymerized on a conductive substrate to form a fibril polymer, and the fibril polymer is irradiated with a micro mouth wave to form a carbon having a three-dimensional continuous structure on the conductive substrate. An electrode for a polymer electrolyte fuel cell can be produced by producing fibers and further supporting a metal, preferably a noble metal such as Pt, on the carbon fiber portion.
[0065] <固体高分子型燃料電池 >  [0065] <Polymer fuel cell>
本発明の固体高分子型燃料電池は、上記固体高分子型燃料電池用電極を備える ことを特徴とする。以下に、本発明の固体高分子型燃料電池を、図 6を参照しながら 詳細に説明する。図示例の固体高分子型燃料電池は、膜電極接合体 (MEA) 21と その両側にそれぞれ位置するセパレータ 22とを備える。膜電極接合体 (MEA) 21は 、固体高分子電解質膜 23とその両側に位置する燃料極 24A及び空気極 24Bとから なる。燃料極 24Aでは、 2H→4H+ + 4e—で表される反応が起こり、発生した H+は固 The polymer electrolyte fuel cell of the present invention comprises the above electrode for a polymer electrolyte fuel cell. Hereinafter, the solid polymer fuel cell of the present invention will be described with reference to FIG. This will be described in detail. The illustrated polymer electrolyte fuel cell includes a membrane electrode assembly (MEA) 21 and separators 22 positioned on both sides thereof. The membrane electrode assembly (MEA) 21 includes a solid polymer electrolyte membrane 23, and a fuel electrode 24A and an air electrode 24B located on both sides thereof. At the anode 24A, a reaction represented by 2H → 4H ++ 4e— occurs, and the generated H + is solid.
2  2
体高分子電解質膜 23を経て空気極 24Bに至り、また、発生した e—は外部に取り出さ れて電流となる。一方、空気極 24Bでは、 O +4H+ + 4e—→2H Oで表される反応が The polymer electrolyte membrane 23 reaches the air electrode 24B, and the generated e- is taken out to become an electric current. On the other hand, in the air electrode 24B, the reaction represented by O + 4H + + 4e— → 2H 2 O
2 2  twenty two
起こり、水が発生する。燃料極 24A及び空気極 24Bの少なくとも一方は、上述した本 発明の固体高分子型燃料電池用電極である。また、燃料極 24A及び空気極 24Bは 、それぞれ触媒層 25及びガス拡散層 26からなり、触媒層 25が固体高分子電解質膜 23に接触するように配置されている。  Occurs and water is generated. At least one of the fuel electrode 24A and the air electrode 24B is the above-described polymer electrolyte fuel cell electrode of the present invention. The fuel electrode 24A and the air electrode 24B include a catalyst layer 25 and a gas diffusion layer 26, respectively, and are arranged so that the catalyst layer 25 is in contact with the solid polymer electrolyte membrane 23.
[0066] ここで、本発明の固体高分子型燃料電池においては、燃料極 24A及び空気極 24 Bの少なくとも一方に、上述の固体高分子型燃料電池用電極を用いることを特徴とす る。上記電極は、電子伝導性が高いため、燃料電池の内部抵抗を増大させることが なぐ電気エネルギーを有効に取り出すことができる。  Here, the polymer electrolyte fuel cell of the present invention is characterized in that the electrode for a polymer electrolyte fuel cell described above is used for at least one of the fuel electrode 24A and the air electrode 24B. Since the electrode has high electronic conductivity, it is possible to effectively extract electric energy without increasing the internal resistance of the fuel cell.
[0067] なお、固体高分子電解質膜 23としては、イオン伝導性のポリマーを使用することが でき、該イオン伝導性のポリマーとしては、上記触媒層に含浸させることが可能な高 分子電解質として例示したものを用いることができる。また、セパレータ 22としては、 表面に燃料、空気及び生成した水等の流路(図示せず)が形成された通常のセパレ ータを用いることができる。  [0067] As the solid polymer electrolyte membrane 23, an ion conductive polymer can be used, and the ion conductive polymer is exemplified as a high molecular electrolyte that can be impregnated in the catalyst layer. Can be used. Further, as the separator 22, a normal separator having a surface (not shown) formed with a flow path of fuel, air, generated water and the like can be used.
[0068] <実施例 >  [0068] <Example>
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例 に何ら限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
[0069] (比較例 1) [0069] (Comparative Example 1)
ァニリンモノマー 0.5mol/Lと HBF 1.0mol/Lとを含む酸性水溶液中にカーボンぺ  Carbon acid in an acidic aqueous solution containing 0.5 mol / L of an aniline monomer and 1.0 mol / L of HBF.
4  Four
一パー [東レ製]からなる作用極を設置し、対極として白金板を使用し、室温にて 15m Aん m2の定電流で 3分間電解重合を行い、ポリア二リンを作用極上に電析させた。得 られたポリア二リンをイオン交換水で洗浄後、 24時間真空乾燥した後、焼成炉中にセ ットし Ar雰囲気中 7°C/分の昇温速度で 2時間で 850°Cまで昇温し、その後 850°Cで 1 時間保持して焼成処理した。 3時間の冷却時間を経て、得られた焼成物を取り出し S EMで観察したところ、直径が 40〜100nmの炭素繊維力 S、カーボンペーパー上に得ら れていることを確認した。この炭素繊維の残炭率を計測したところ 43.7%であった。ま た、サンプルにはポリア二リンの加熱工程での収縮.炭化プロセスに起因すると考えら れる反りが発生していた。 Install a working electrode consisting of one par [Toray], use a platinum plate as the counter electrode, perform electropolymerization for 3 minutes at a constant current of 15 mA m 2 at room temperature, and deposit polyaniline on the working electrode I let you. The obtained polyaniline is washed with ion-exchanged water, vacuum-dried for 24 hours, set in a firing furnace, and heated to 850 ° C in 2 hours at a heating rate of 7 ° C / min in an Ar atmosphere. Warm and then at 850 ° C 1 It was held for a time and fired. After the cooling time of 3 hours, the obtained fired product was taken out and observed with SEM, and it was confirmed that the carbon fiber strength S having a diameter of 40 to 100 nm was obtained on carbon paper. The residual carbon ratio of this carbon fiber was measured and found to be 43.7%. In addition, the sample was warped due to the shrinkage and carbonization process in the heating process of polyaniline.
[0070] (実施例 1) [0070] (Example 1)
比較例 1と同様の手法にてポリア二リンをカーボンペーパー上に電析、洗浄、乾燥 させた。次に、 28GHzのジャイラトロン発振機が導波管でつながったマイクロ波焼成 炉中に、厚さ 50mmのアルミナ断熱材で周囲を囲んで、ポリア二リン/カーボンぺーパ 一からなるサンプノレをセットし、真空ポンプにて約 10Paまで排気した。その後、サンプ ルにマイクロ波を照射して 85°C/分の昇温速度で 10分で 850°Cまで昇温し、その後 85 0°Cで 10分間保持して焼成処理した。 30分の冷却時間を経て、得られた焼成物を取 り出し、 SEMで観察したところ、従来の焼成法と同様に直径が 40〜100nmの炭素繊 維力 カーボンペーパー上に得られていることを確認した。この炭素繊維の残炭率を 計測したところ 40.5%であった。また、サンプルに反り等は発生しておらず、フラットな 形状を保っていた。  In the same manner as in Comparative Example 1, polyaniline was electrodeposited on carbon paper, washed and dried. Next, a sampler made of polyaniline / carbon paper was set in a microwave firing furnace with a 28 GHz gyrotron oscillator connected by a waveguide, surrounded by 50 mm thick alumina insulation. Then, it was evacuated to about 10Pa with a vacuum pump. Thereafter, the sample was irradiated with microwaves, heated to 85 ° C. in 10 minutes at a heating rate of 85 ° C./min, and then held at 850 ° C. for 10 minutes for firing treatment. After the cooling time of 30 minutes, the obtained fired product was taken out and observed by SEM. As a result of the conventional firing method, it was found that the carbon fiber strength was obtained on carbon paper having a diameter of 40 to 100 nm. confirmed. The carbon residue of this carbon fiber was measured and found to be 40.5%. In addition, the sample did not warp and maintained a flat shape.
[0071] 以上の結果から、 28GHzのマイクロ波(ミリ波)加熱により、アーキングを発生させる ことなぐ非常に短時間で、効率的に (省エネルギーで)フィブリル状ポリマーを焼成 して炭化させられ、プロセスの生産性を大幅に改善できることが分かる。また、焼成後 のサンプルの内部応力も緩和することができた。  [0071] From the above results, 28-GHz microwave (millimeter wave) heating allows the fibrillated polymer to be baked and carbonized efficiently (energy saving) in a very short time without generating arcing. It can be seen that the productivity of can be greatly improved. In addition, the internal stress of the sample after firing could be relaxed.
[0072] (実施例 2)  [Example 2]
連続電解重合槽にてカーボンペーパー上にポリア二リンの 3次元連続状構造体を 生成させ、ポリア二リン/カーボンペーパー構造の長尺ロールを作製した。なお、連 続電解重合槽では、ァニリンモノマー 0.5mol/Lと HBF 1.0mol/Lとを含む酸性水溶 液中にカーボンペーパーを作用極とし、対極として白金板を使用し、室温にて 15mA ん m2の定電流で 3分間電解重合が行えるように、カーボンペーパーの搬送スピードを 調整し、ポリア二リンを作用極上 (カーボンペーパー上)に電析させ、その後、イオン 交換水で洗浄、乾燥させた。得られた幅 30cmの長尺ロールサンプルを、 28GHzのジ ャイロトロン発振機が導波管で連結された連続焼成装置にセットし、加熱チャンバ一 に窒素ガスを導入してガス置換した。最高温度力 50°Cとなるようにマイクロ波電力を 調整し、 0.25m/minのスピードでシート状の長尺ロールサンプルを搬送し、卷き取った 。この焼成により長尺の炭素繊維シートを得ることができた。また、得られた焼成物を 取り出し SEMで観察したところ、連続式でない従来の焼成法と同様に直径が 40〜20 Onmの炭素繊維が、カーボンペーパー上に得られており、また、該炭素繊維が 3次元 連続構造を有することを確認した。この炭素繊維の残炭率を計測したところ 40.5%で あり、従来炉を用いてバッチ処理にて焼成したサンプノレと同等の残炭率となり、連続 焼成においても十分に炭化できることを確認した。 A three-dimensional continuous structure of polyaniline was produced on carbon paper in a continuous electrolytic polymerization tank, and a long roll of polyaniline / carbon paper structure was produced. In the continuous electrolytic polymerization tank, a carbon paper as a working electrode in an acidic aqueous solution containing a Anirinmonoma 0.5 mol / L and HBF 1.0 mol / L, using a platinum plate as the counter electrode, N 15mA at room temperature m 2 The carbon paper transport speed was adjusted so that electropolymerization could be performed at a constant current of 3 minutes, and polyaniline was electrodeposited on the working electrode (on the carbon paper), then washed with ion-exchanged water and dried. The obtained long roll sample with a width of 30 cm The gyrotron oscillator was set in a continuous firing device connected by a waveguide, and nitrogen gas was introduced into the heating chamber to replace the gas. The microwave power was adjusted so that the maximum temperature force was 50 ° C, and the sheet-like long roll sample was conveyed at a speed of 0.25 m / min and scraped off. A long carbon fiber sheet could be obtained by this firing. Further, when the obtained fired product was taken out and observed by SEM, carbon fibers having a diameter of 40 to 20 Onm were obtained on carbon paper in the same manner as in the conventional firing method that was not continuous, and the carbon fibers Was confirmed to have a three-dimensional continuous structure. The carbon residue rate of this carbon fiber was measured and found to be 40.5%. It was confirmed that the carbon residue rate was the same as that of sampnore fired by batch processing using a conventional furnace, and carbonization was possible even during continuous firing.

Claims

請求の範囲 The scope of the claims
[I] 3次元連続構造を有するフィブリル状ポリマーにマイクロ波を照射して、該ポリマー を加熱し炭化させて 3次元連続構造を有する炭素繊維を生成させることを特徴とする 炭素繊維の製造方法。  [I] A method for producing a carbon fiber, which comprises irradiating a fibrillated polymer having a three-dimensional continuous structure with microwaves and heating and carbonizing the polymer to produce a carbon fiber having a three-dimensional continuous structure.
[2] 前記フィブリル状ポリマーに対するマイクロ波照射を真空中又は不活性ガス雰囲気 中で行うことを特徴とする請求項 1に記載の炭素繊維の製造方法。  [2] The method for producing a carbon fiber according to [1], wherein the fibrillated polymer is irradiated with microwaves in a vacuum or in an inert gas atmosphere.
[3] 前記マイクロ波の周波数が 28GHzであることを特徴とする請求項 1に記載の炭素繊 維の製造方法。  [3] The method for producing a carbon fiber according to [1], wherein the frequency of the microwave is 28 GHz.
[4] 前記フィブリル状ポリマーが芳香環を有する化合物を電解重合して得たポリマーで あることを特徴とする請求項 1に記載の炭素繊維の製造方法。  4. The method for producing carbon fiber according to claim 1, wherein the fibrillated polymer is a polymer obtained by electrolytic polymerization of a compound having an aromatic ring.
[5] 前記フィブリル状ポリマーが、ポリア二リン、ポリピロール、ポリチォフェン又はそれら の誘導体力 なることを特徴とする請求項 4に記載の炭素繊維の製造方法。 [5] The method for producing a carbon fiber according to [4], wherein the fibrillar polymer is polyaniline, polypyrrole, polythiophene or a derivative thereof.
[6] 前記フィブリル状ポリマーが導電性基板上に支持されていることを特徴とする請求 項 1に記載の炭素繊維の製造方法。 6. The method for producing carbon fiber according to claim 1, wherein the fibrillated polymer is supported on a conductive substrate.
[7] 前記フィブリル状ポリマーが導電性基板上で芳香環を有する化合物を電解重合し て得たポリマーであることを特徴とする請求項 6に記載の炭素繊維の製造方法。 7. The method for producing carbon fiber according to claim 6, wherein the fibrillated polymer is a polymer obtained by electropolymerizing a compound having an aromatic ring on a conductive substrate.
[8] 前記導電性基板がカーボンペーパーであることを特徴とする請求項 6に記載の炭 素繊維の製造方法。 8. The method for producing carbon fiber according to claim 6, wherein the conductive substrate is carbon paper.
[9] 加熱チャンバ一と、マイクロ波発生装置と、搬送機構とを備えた連続焼成装置を用 いた炭素繊維の連続製造方法であって、  [9] A continuous production method of carbon fiber using a continuous firing apparatus including a heating chamber, a microwave generator, and a transport mechanism,
シート状又は板状の 3次元連続構造を有するフィブリル状ポリマーを前記連続焼成 装置の前記加熱チャンバ一に搬入し、該フイブリル状ポリマーに前記マイクロ波発生 装置で発生させたマイクロ波を照射して、該ポリマーを焼成し炭化させて 3次元連続 構造を有する炭素繊維を生成させることを特徴とする炭素繊維の連続製造方法。  A fibrillated polymer having a sheet-like or plate-like three-dimensional continuous structure is carried into the heating chamber of the continuous baking apparatus, and the fibrillated polymer is irradiated with microwaves generated by the microwave generator, A continuous production method of carbon fibers, characterized in that the polymer is calcined and carbonized to produce carbon fibers having a three-dimensional continuous structure.
[10] 前記加熱チャンバ一中における前記フィブリル状ポリマーに対するマイクロ波照射 を真空下又は不活性ガス雰囲気下で行うことを特徴とする請求項 9に記載の炭素繊 維の連続製造方法。  10. The continuous production method for carbon fiber according to claim 9, wherein microwave irradiation to the fibrillated polymer in the heating chamber is performed in a vacuum or in an inert gas atmosphere.
[II] 前記マイクロ波の周波数が 28GHzであることを特徴とする請求項 9に記載の炭素繊 維の連続製造方法。 [II] The carbon fiber according to claim 9, wherein the frequency of the microwave is 28 GHz. A continuous manufacturing method for textiles.
[12] 前記フィブリル状ポリマーが芳香環を有する化合物を電解重合して得たポリマーで あることを特徴とする請求項 9に記載の炭素繊維の連続製造方法。  12. The continuous production method of carbon fiber according to claim 9, wherein the fibrillar polymer is a polymer obtained by electrolytic polymerization of a compound having an aromatic ring.
[13] 前記フィブリル状ポリマーが、ポリア二リン、ポリピロール、ポリチォフェン又はそれら の誘導体力 なることを特徴とする請求項 9に記載の炭素繊維の連続製造方法。 [13] The continuous production method of carbon fiber according to [9], wherein the fibrillated polymer is polyaniline, polypyrrole, polythiophene or a derivative thereof.
[14] 前記フィブリル状ポリマーが導電性基板上に支持されていることを特徴とする請求 項 9に記載の炭素繊維の連続製造方法。 14. The continuous production method of carbon fiber according to claim 9, wherein the fibrillated polymer is supported on a conductive substrate.
[15] 前記フィブリル状ポリマーが、シート状又は板状の導電性基板上で芳香環を有する 化合物を電解重合して得たポリマーであることを特徴とする請求項 14に記載の炭素 繊維の連続製造方法。 15. The continuous carbon fiber according to claim 14, wherein the fibril polymer is a polymer obtained by electrolytic polymerization of a compound having an aromatic ring on a sheet-like or plate-like conductive substrate. Production method.
[16] 前記導電性基板がカーボンペーパーであることを特徴とする請求項 14に記載の炭 素繊維の連続製造方法。  16. The carbon fiber continuous production method according to claim 14, wherein the conductive substrate is carbon paper.
[17] 前記フィブリル状ポリマーがシート状であって、前記搬送機構がロール 'トウ'ロール 方式の搬送機構であることを特徴とする請求項 9に記載の炭素繊維の連続製造方法 [17] The continuous production method of carbon fiber according to [9], wherein the fibrillated polymer is in a sheet form, and the transport mechanism is a roll 'toe' roll type transport mechanism.
[18] 前記フィブリル状ポリマーが板状であって、前記搬送機構が複数の駆動ロールから 構成されていることを特徴とする請求項 9に記載の炭素繊維の連続製造方法。 18. The continuous production method of carbon fiber according to claim 9, wherein the fibrillated polymer is plate-shaped and the transport mechanism is composed of a plurality of drive rolls.
[19] 前記加熱チャンバ一力 前記フィブリル状ポリマーの通過位置の上方及び下方に 断熱材又は真空断熱層を有することを特徴とする請求項 9に記載の炭素繊維の連続 製造方法。  19. The continuous production method of carbon fiber according to claim 9, further comprising a heat insulating material or a vacuum heat insulating layer above and below the passage position of the fibrillated polymer.
[20] 前記断熱材中に加熱ヒータが坦設されていることを特徴とする請求項 19に記載の 炭素繊維の連続製造方法。  [20] The continuous production method of carbon fiber according to [19], wherein a heater is carried in the heat insulating material.
[21] 前記断熱材の前記フィブリル状ポリマーに対面する側の表面上に、更にマイクロ波 吸収体層が配設されていることを特徴とする請求項 19に記載の炭素繊維の連続製 造方法。 [21] The continuous production method of carbon fiber according to [19], wherein a microwave absorber layer is further disposed on the surface of the heat insulating material facing the fibrillated polymer. .
[22] 前記連続焼成装置が、更に、前記加熱チャンバ一の後段にマイクロ波照射によつ て生成した炭素繊維を冷却するための冷却チャンバ一を備えることを特徴とする請 求項 9に記載の炭素繊維の連続製造方法。 [22] The apparatus according to claim 9, wherein the continuous firing apparatus further includes a cooling chamber for cooling the carbon fiber generated by microwave irradiation at a subsequent stage of the heating chamber. Continuous carbon fiber production method.
[23] 前記連続焼成装置が、更に、前記加熱チャンバ一の前段に芳香環を有する化合 物を電解重合してフィブリル状ポリマーを生成させるための電解重合槽を備えること を特徴とする請求項 9に記載の炭素繊維の連続製造方法。 [23] The continuous baking apparatus further includes an electropolymerization tank for electrolytically polymerizing a compound having an aromatic ring in the previous stage of the heating chamber to produce a fibrillated polymer. The continuous manufacturing method of the carbon fiber as described in 2.
[24] 前記連続焼成装置が、更に、前記電解重合槽と前記加熱チャンバ一との間に前記 フィブリル状ポリマーの洗浄装置及び乾燥装置を備えることを特徴とする請求項 23 に記載の炭素繊維の連続製造方法。 [24] The carbon fiber as set forth in claim 23, wherein the continuous firing device further comprises a cleaning device and a drying device for the fibrillated polymer between the electrolytic polymerization tank and the heating chamber. Continuous manufacturing method.
[25] 請求項:!〜 24のいずれかに記載の方法で製造された 3次元連続構造を有する炭 素繊維。 [25] Claim: Carbon fiber having a three-dimensional continuous structure produced by the method according to any one of! To 24.
[26] 請求項 25に記載の炭素繊維に触媒を担持してなる触媒構造体。  26. A catalyst structure obtained by supporting a catalyst on the carbon fiber according to claim 25.
[27] 加熱チャンバ一、マイクロ波発生装置及び搬送機構を備えた連続焼成装置と、該 連続焼成装置の加熱チャンバ一の後段に配置された触媒担持装置とを備える触媒 構造体の連続製造装置を用いて、炭素繊維に触媒を担持することを特徴とする触媒 構造体の連続製造方法。  [27] A continuous production apparatus for a catalyst structure comprising a heating chamber, a continuous firing device having a microwave generator and a transport mechanism, and a catalyst support device disposed at a subsequent stage of the heating chamber of the continuous firing device. A method for continuously producing a catalyst structure, wherein the catalyst is supported on carbon fibers.
[28] 前記触媒構造体の連続製造装置が、更に、前記触媒担持装置の後段に触媒が担 持された炭素繊維の洗浄装置及び乾燥装置を備えることを特徴とする請求項 27に 記載の触媒構造体の連続製造方法。 [28] The catalyst according to claim 27, wherein the continuous production apparatus for a catalyst structure further includes a carbon fiber cleaning device and a drying device in which a catalyst is supported downstream of the catalyst support device. A continuous manufacturing method of a structure.
[29] ガス拡散層と、該ガス拡散層の上に配置された触媒層とからなる固体高分子型燃 料電池用電極において、 [29] In a polymer electrolyte fuel cell electrode comprising a gas diffusion layer and a catalyst layer disposed on the gas diffusion layer,
前記触媒層に請求項 26に記載の触媒構造体を用いたことを特徴とする固体高分 子型燃料電池用電極。  27. A solid polymer fuel cell electrode, wherein the catalyst structure according to claim 26 is used for the catalyst layer.
[30] 請求項 29に記載の電極を備えた固体高分子型燃料電池。 30. A polymer electrolyte fuel cell comprising the electrode according to claim 29.
PCT/JP2006/305571 2005-03-23 2006-03-20 Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber WO2006101084A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005083968A JP2006265761A (en) 2005-03-23 2005-03-23 Carbon fiber, method for producing the same, catalyst structure using the same, electrode for solid high polymer fuel cell and solid high polymer fuel cell
JP2005-083968 2005-03-23
JP2005-094003 2005-03-29
JP2005094003A JP2006273645A (en) 2005-03-29 2005-03-29 Apparatus and method for continuously firing organic substance, carbon material, catalyst structure using the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
WO2006101084A1 true WO2006101084A1 (en) 2006-09-28

Family

ID=37023744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305571 WO2006101084A1 (en) 2005-03-23 2006-03-20 Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber

Country Status (1)

Country Link
WO (1) WO2006101084A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001469A (en) * 2007-06-25 2009-01-08 Ihi Corp Apparatus and method for highly purifying graphite
JP2009001468A (en) * 2007-06-25 2009-01-08 Ihi Corp Apparatus and method for producing highly functional carbon fiber
WO2011014105A1 (en) * 2009-07-28 2011-02-03 Soboleva Marina Vladimirovna Method for stabilizing a carbon-containing fibre and method for producing a carbon fibre
JP2013002767A (en) * 2011-06-20 2013-01-07 Micro Denshi Kk Heating device utilizing microwave
WO2014131245A1 (en) * 2013-03-01 2014-09-04 Abb Technology Ltd Electrically insulating composite material and electrical device comprising the same
CN104937682A (en) * 2013-03-01 2015-09-23 Abb技术有限公司 Electrically insulating composite material and electrical device comprising the same
CN108085788A (en) * 2017-11-28 2018-05-29 昆明理工大学 A kind of microwave heating prepares the device of oxidization fiber
JP2018142461A (en) * 2017-02-28 2018-09-13 株式会社日立国際電気 Microwave heating treatment device
EP3367751A4 (en) * 2016-12-26 2018-10-24 Hiroji Oishibashi Microwave heating device
CN110257959A (en) * 2019-06-28 2019-09-20 中国科学院合肥物质科学研究院 It is a kind of to be graphitized equipment with the carbon fiber microwave of Continuous maching
CN111869321A (en) * 2018-01-18 2020-10-30 微波化学有限公司 Microwave processing device and method for producing carbon fiber
CN112575412A (en) * 2020-12-17 2021-03-30 太仓旭云特种纤维科技有限公司 Continuous carbonization method of polyacrylonitrile short fiber
EP3828324A4 (en) * 2018-07-23 2021-09-01 Lg Chem, Ltd. Carbon fiber carbonizing apparatus using microwave

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245725A (en) * 1986-08-15 1987-02-27 Hirochiku:Kk Production of carbon fiber
JPH08165111A (en) * 1994-12-06 1996-06-25 Res Dev Corp Of Japan Production of nitrogen atom-containing carbon material
WO2004063438A1 (en) * 2003-01-15 2004-07-29 Bridgestone Corporation Method for producing carbon fiber, catalyst structure and membrane electrode junction body for solid polymer fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245725A (en) * 1986-08-15 1987-02-27 Hirochiku:Kk Production of carbon fiber
JPH08165111A (en) * 1994-12-06 1996-06-25 Res Dev Corp Of Japan Production of nitrogen atom-containing carbon material
WO2004063438A1 (en) * 2003-01-15 2004-07-29 Bridgestone Corporation Method for producing carbon fiber, catalyst structure and membrane electrode junction body for solid polymer fuel cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001469A (en) * 2007-06-25 2009-01-08 Ihi Corp Apparatus and method for highly purifying graphite
JP2009001468A (en) * 2007-06-25 2009-01-08 Ihi Corp Apparatus and method for producing highly functional carbon fiber
WO2011014105A1 (en) * 2009-07-28 2011-02-03 Soboleva Marina Vladimirovna Method for stabilizing a carbon-containing fibre and method for producing a carbon fibre
JP2013500406A (en) * 2009-07-28 2013-01-07 マリーナ ウラジーミロヴナ ソボレヴァ, Method for stabilizing carbon-containing fibers and method for producing carbon fibers
JP2013002767A (en) * 2011-06-20 2013-01-07 Micro Denshi Kk Heating device utilizing microwave
WO2014131245A1 (en) * 2013-03-01 2014-09-04 Abb Technology Ltd Electrically insulating composite material and electrical device comprising the same
CN104937682A (en) * 2013-03-01 2015-09-23 Abb技术有限公司 Electrically insulating composite material and electrical device comprising the same
EP3367751A4 (en) * 2016-12-26 2018-10-24 Hiroji Oishibashi Microwave heating device
JP2018142461A (en) * 2017-02-28 2018-09-13 株式会社日立国際電気 Microwave heating treatment device
CN108085788A (en) * 2017-11-28 2018-05-29 昆明理工大学 A kind of microwave heating prepares the device of oxidization fiber
CN111869321A (en) * 2018-01-18 2020-10-30 微波化学有限公司 Microwave processing device and method for producing carbon fiber
EP3745817A4 (en) * 2018-01-18 2021-12-15 Microwave Chemical Co., Ltd. Microwave processing device and carbon fiber production method
CN111869321B (en) * 2018-01-18 2023-02-17 微波化学有限公司 Microwave processing device and method for producing carbon fiber
EP3828324A4 (en) * 2018-07-23 2021-09-01 Lg Chem, Ltd. Carbon fiber carbonizing apparatus using microwave
US11459673B2 (en) 2018-07-23 2022-10-04 Lg Chem, Ltd. Carbon fiber carbonization apparatus using microwave
CN110257959A (en) * 2019-06-28 2019-09-20 中国科学院合肥物质科学研究院 It is a kind of to be graphitized equipment with the carbon fiber microwave of Continuous maching
CN110257959B (en) * 2019-06-28 2024-03-26 中国科学院合肥物质科学研究院 Carbon fiber microwave graphitization equipment capable of continuously processing
CN112575412A (en) * 2020-12-17 2021-03-30 太仓旭云特种纤维科技有限公司 Continuous carbonization method of polyacrylonitrile short fiber

Similar Documents

Publication Publication Date Title
WO2006101084A1 (en) Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber
US7854913B2 (en) Mesoporous carbon, method of preparing the same, and fuel cell using the carbon
JP4979276B2 (en) Method for producing mesoporous carbon containing heteroatoms
JP4912044B2 (en) Mesoporous carbon and production method thereof, supported catalyst for fuel cell electrode and fuel cell using the same
US20090142647A1 (en) Carbon fiber, porous support-carbon fiber composite and method for producing the same as well as catalyst structure, electrode for solid polymer fuel cell and solid polymer fuel cell
CN104617261B (en) Method for preparing composite cathode material of silicon-carbon nanotube of lithium ion battery
EP1323199B1 (en) Fluid diffusion layers for fuel cells
CN103771415B (en) A kind of Graphene hydridization active carbon with high specific surface area material and its preparation method and application
Li et al. Fabrication of the catalytic electrodes for methanol oxidation on electrospinning-derived carbon fibrous mats
JP2007055882A (en) Mesoporous carbon composite, method of preparing the same, supported catalyst containing the mesoporous carbon composite and fuel cell using the mesoporous carbon composite
JP2006273645A (en) Apparatus and method for continuously firing organic substance, carbon material, catalyst structure using the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2011192653A (en) Gas diffusion media, and fuel cell
WO2019049934A1 (en) Gas diffusion layer base material for fuel cells, gas diffusion layer for fuel cells, and fuel cell
KR20090055299A (en) Carbonaceous material and method of preparing same
Huang et al. A highly flexible and conductive graphene-wrapped carbon nanofiber membrane for high-performance electrocatalytic applications
JP4308740B2 (en) Hybrid reactor and high-functional material manufacturing method using the same
JP4367983B2 (en) Electrode electrolyte assembly for polymer electrolyte fuel cell, polymer electrolyte fuel cell and production method thereof
JP4393459B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
KR101995830B1 (en) Supporter for fuel cell, method of preparing same, and electrode for fuel cell, membrane-electrode assembly for a fuel cell and fuel cell system including same
JP2006265761A (en) Carbon fiber, method for producing the same, catalyst structure using the same, electrode for solid high polymer fuel cell and solid high polymer fuel cell
CN114988716B (en) Tungsten carbide/graphene composite material and preparation method thereof
JP2007227064A (en) Electrode for solid polymer fuel cell, its manufacturing method and activation method, as well as solid polymer fuel cell
JP2017029940A (en) Catalyst substrate composite, and electrode for treating organic waste water and organic waste water treatment system using the same
JP2007227088A (en) Electrode for polymer electrolyte fuel cell, its manufacturing method and treating method, and polymer electrolyte fuel cell
JPH10223234A (en) Manufacture of porous electrode substrate for phosphate-type fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729539

Country of ref document: EP

Kind code of ref document: A1