JPS58144125A - Microwave heating apparatus for preparing carbon fiber - Google Patents

Microwave heating apparatus for preparing carbon fiber

Info

Publication number
JPS58144125A
JPS58144125A JP1999782A JP1999782A JPS58144125A JP S58144125 A JPS58144125 A JP S58144125A JP 1999782 A JP1999782 A JP 1999782A JP 1999782 A JP1999782 A JP 1999782A JP S58144125 A JPS58144125 A JP S58144125A
Authority
JP
Japan
Prior art keywords
furnace body
microwave
microwaves
heating
outer shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1999782A
Other languages
Japanese (ja)
Other versions
JPS627288B2 (en
Inventor
Tsunemi Ochiai
常巳 落合
Shozo Minami
南 省三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIROCHIKU KK
New Japan Radio Co Ltd
Japan Radio Co Ltd
Original Assignee
HIROCHIKU KK
New Japan Radio Co Ltd
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIROCHIKU KK, New Japan Radio Co Ltd, Japan Radio Co Ltd filed Critical HIROCHIKU KK
Priority to JP1999782A priority Critical patent/JPS58144125A/en
Publication of JPS58144125A publication Critical patent/JPS58144125A/en
Publication of JPS627288B2 publication Critical patent/JPS627288B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:An apparatus, having a furnace body formed from an outer shell of a material reflecting microwaves lined with a furnace wall, consisting of a heat insulating material, and permeable to microwaves and waveguides for the microwaves opened to the interior thereof, and capable of preparing carbon fibers with small energy. CONSTITUTION:A long horizontal prismatic furnace body 1 is formed by using an outer shell 12 of a material reflecting microwaves, e.g. a heat-resistant steel plate, lined with a furnace wall consisting of a heat insulating material 27 of ceramic fiber type which is a fire-resistant heat insulating material permeable to the microwavs. One end each of waveguides 39 and 40 for microwaves is opened to the interior of the furnace body 1 to form a microwave irradiation apparatus 3. Preferably, a belt conveyor for transferring a microwave-permeable container containing raw material fibers consisting essentially of a mesh belt 32 made of a heat-resistant steel is provided in a zone extending from the inlet 10 to the outlet 11 of the furnace body 1, and nozzles 41 for passing in an inert gas through the furnace body 1 are provided in the furnace body 1.

Description

【発明の詳細な説明】 この発明は、主に有機合成繊維から製造された繊維をマ
イクロ波によシ加熱処理して、炭素繊維を大量に製造す
る装置の加熱装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating device for manufacturing carbon fibers in large quantities by heating fibers mainly made from organic synthetic fibers using microwaves.

従来、有機合成繊維から製造された不融化(耐炎化)繊
維を不活性ガス雰囲気中で1000〜1500°Cに加
熱して炭素化する場合、(員電気抵抗発熱体からの輻射
伝熱による加熱、(至)高温の不活性ガスとの熱交換に
よる加熱、(C)マイクロ波による加熱などの加熱方法
が提案されている。 El、)の加熱方法によるときは
、大量の繊維群を加熱するとき断熱材状の物質を加熱す
ることになり、始めに昇温する外表部の繊維から内部の
繊維への伝熱が悪く、繊維間の気体による熱絶縁、き・
らに繊維の熱容量に比して表面輻射量の大きなことなど
で伝熱速度が小さく、全体を均一に加熱することも困難
で加熱に長時間を要し、大量のエネルギーを必要とする
問題があった。また、加熱装置内を1000〜1500
°Cの温度雰囲気に保持しなければならないために、装
置の放熱量を減少させるには、包囲壁の断熱材が厚くな
り、高温耐火材や耐熱鋼等を使用しなければならず、装
置が大きく、高価となる問題もあった。(至)の加熱°
方法によるときは、高温用の熱交換器や循環用ブロワ−
などが必要であり、装置が高価となり、実用的には80
0°C以上の加熱は困難であるという問題があった。(
C)の加熱によるものは、炭素繊維製造技術分野では、
原糸を石英管内で張力を作用させながら延伸しつつマイ
クロ波を照射することが知られているのみであり1石炭
系ピッチの繊維を不融化したものは脆弱であるために適
用できない問題があった。また、この場合大量生産を目
的とした装置の大型化が困難であり、大量生産も行われ
ていないのが現状である。
Conventionally, when carbonizing infusible (flame-resistant) fibers manufactured from organic synthetic fibers by heating them to 1,000 to 1,500°C in an inert gas atmosphere, heating by radiant heat transfer from an electric resistance heating element has been used. Heating methods such as (to) heating by heat exchange with high-temperature inert gas, and (C) heating by microwaves have been proposed. When using the heating method of El,), a large group of fibers is heated. When heating an insulating material, heat transfer from the outer surface fibers to the inner fibers is poor, and thermal insulation due to the gas between the fibers occurs.
Furthermore, the heat transfer rate is low due to the large amount of surface radiation compared to the heat capacity of the fibers, and it is difficult to heat the entire fiber evenly, resulting in a long heating time and a large amount of energy. there were. In addition, the inside of the heating device should be heated at 1000 to 1500
To reduce the amount of heat dissipated from the equipment, the insulation of the surrounding wall must be thicker and materials such as high-temperature refractory materials or heat-resistant steel must be used. Another problem was that it was large and expensive. (to) heating °
When using this method, a heat exchanger for high temperatures or a circulation blower is used.
etc., making the equipment expensive, and practical
There was a problem in that heating above 0°C was difficult. (
In the field of carbon fiber manufacturing technology, C) is based on heating.
The only known method is to irradiate the raw fiber with microwaves while applying tension in a quartz tube, and there is a problem that it cannot be applied to infusible coal-based pitch fibers because they are too brittle. Ta. In addition, in this case, it is difficult to increase the size of the device for mass production, and currently mass production is not carried out.

このようなこ:□とから、この発明は、マイクロ波加熱
を採用して石炭系ピッチの繊維を不融化した脆弱な原料
繊維であってもトウ状のままで、少いエネルギーで加熱
処理でき、大量生産可能な炭素繊維製造用加熱装置を提
供することを目的とする。
Based on these points: □, this invention employs microwave heating to make coal-based pitch fibers infusible.Even the brittle raw material fibers remain tow-like and can be heat-treated with less energy. The purpose of the present invention is to provide a heating device for manufacturing carbon fiber that can be mass-produced.

以下この発明を図示の1実施例に基いて説明する。この
実施例の加熱装置は、炭素繊維の製造装置に実施したも
のであシ、加熱装置が炉体lと、搬送装置2と、マイク
ロ波照射装置3と、不活性ガス流通装M4とで構成され
、これらに関連して温度制御装置5、冷却装置6等を設
けて炭素繊維製造装置が構成されている。
The present invention will be explained below based on one embodiment shown in the drawings. The heating device of this example was implemented in a carbon fiber manufacturing device, and the heating device consists of a furnace body 1, a conveying device 2, a microwave irradiation device 3, and an inert gas flow system M4. In connection with these, a temperature control device 5, a cooling device 6, etc. are provided to constitute a carbon fiber manufacturing apparatus.

炉体lは、第1図乃至第4図に示すように、一端に入口
10、他端に出口11を有する水平に長い角筒状に形成
され、その外殻12はマイクロ波を反射する材料である
耐熱鋼板で形成されている。その炉体l内は区分壁13
.14.15.16.17によって区分された噴流帯域
18、第1加熱帯域19、第2加熱帯域20“、均熱帯
域21、冷却帯域22、噴流帯域23を形成されている
。各4の区分壁13°〜17は外殻12と同じ耐熱鋼板
で形成され、後述する容器31の搬送のための貫通孔1
3a −1’7aを設けられている。外殻12は上記各
帯域毎に分割形成され、その各々を7ランジ結合するフ
ランジ間に区分壁を挾持する形で互いに結合されている
。入口10及び出口11には各々開閉可能な鋼板製のス
ライド式扉24.25を設けられている。全ての加熱帯
域26、すなわち第1、第2加熱帯域19.20及び均
熱帯域21の炉殻内面並びに冷却帯域22の内面にはマ
イクロ波が透過する耐火断熱材であるセラミックファイ
バー系の断熱材27で内張すしである。噴流帯域18.
23内にハ夫々パンチングメタル28で形成された多数
のノズルが開口しており、このノズルを介して不活性ガ
ス、例えば窒素ガスが供給されるようになっており、入
口lO及び出口11からの空気の流入を防止するように
なっている。炉体l全体はローラ29を介して架台3o
に支持され、熱による伸縮を許容できるようになってい
る。
As shown in FIGS. 1 to 4, the furnace body l is formed into a horizontally long rectangular cylinder having an inlet 10 at one end and an outlet 11 at the other end, and its outer shell 12 is made of a material that reflects microwaves. It is made of heat-resistant steel plate. Inside the furnace body is a partition wall 13
.. 14.15.16.17 A jet zone 18, a first heating zone 19, a second heating zone 20'', a soaking zone 21, a cooling zone 22, and a jet zone 23 are formed. Each section has four sections. The walls 13° to 17 are made of the same heat-resistant steel plate as the outer shell 12, and have through holes 1 for transporting the container 31, which will be described later.
3a-1'7a are provided. The outer shell 12 is formed into sections for each of the zones, and each zone is connected to each other by sandwiching a partition wall between flanges that connect seven flanges. The entrance 10 and the exit 11 are each provided with sliding doors 24 and 25 made of steel plates that can be opened and closed. The inner surfaces of the furnace shells of all the heating zones 26, that is, the first and second heating zones 19 and 20 and the soaking zone 21, as well as the inner surface of the cooling zone 22, are made of ceramic fiber-based heat insulating material that is a refractory heat insulating material that allows microwaves to pass through. 27 is Uchihari sushi. Jet zone 18.
A large number of nozzles each made of punched metal 28 are opened in 23, and an inert gas such as nitrogen gas is supplied through these nozzles. It is designed to prevent air from entering. The entire furnace body l is mounted on a pedestal 3o via rollers 29.
The material is supported by a material that allows it to expand and contract due to heat.

搬送装置2は、炉体l内を入口10から出口11へ原料
繊維を収容した容器31を搬送するものであり、耐熱鋼
製メツシュベルト32.を主体とするベルトコンベヤで
ある。メツシュベルト32は、マイクロ波が反射しない
ような大きさの網目のものであり、7” −!J 33
.34、炉内ベルトガイド35、炉外ベルトガイド36
VCよって張設されている。炉内ベルトガイド35Fi
炉内全長に連続して設けられたもので、噴流帯域18.
23においてはベルト32の全幅を支持するように外殻
(第3図参照)で代用され、加熱帯域26及び冷却帯域
22においてはベルト32の両端縁部を支持するように
外殻12の内側面から外側へ突設され、第4・図に示す
ように、炉体l内が両側のガイド35の間でのみ上下に
連通している。第2図の37はメツシュベルト32の駆
動部である。
The conveying device 2 conveys a container 31 containing raw material fibers inside the furnace body 1 from an inlet 10 to an outlet 11, and includes a heat-resistant steel mesh belt 32. This is a belt conveyor that mainly consists of The mesh belt 32 has a mesh size that does not reflect microwaves, and has a mesh size of 7"-!J 33
.. 34, belt guide inside the furnace 35, belt guide outside the furnace 36
It is set up by VC. Furnace belt guide 35Fi
It is provided continuously along the entire length of the furnace, and has a jet zone 18.
23, an outer shell (see FIG. 3) is used to support the entire width of the belt 32, and in the heating zone 26 and cooling zone 22, the inner surface of the outer shell 12 is used to support both end edges of the belt 32. As shown in FIG. 4, the inside of the furnace body 1 is vertically communicated only between the guides 35 on both sides. Reference numeral 37 in FIG. 2 is a drive section for the mesh belt 32.

容器31は、マイクロ波が透過する耐火性の材料、例え
ばセラミックウールを成型したもので、幅500罵、長
さ1000■、高さ150簡の箱型であシ、底面壁に直
径が511I程度の通気孔を多数穿設したものである。
The container 31 is made of a fire-resistant material that allows microwaves to pass through, such as ceramic wool, and is box-shaped with a width of 500 cm, a length of 1000 cm, and a height of 150 cm.The bottom wall has a diameter of about 511 cm. It has many ventilation holes.

この容器31は蓋38を有するもので、蓋38も同材質
で、同様な通気孔を多数有し、さらに内部温度検出用の
幅1OIII+程度のスリットを有している。容器31
は入口lO側でベルト3ζ上に載せられると、搬送装置
2によって炉体l内を搬送され、出口11側へ出る。
This container 31 has a lid 38, which is also made of the same material, has many similar ventilation holes, and further has a slit with a width of about 1OIII+ for internal temperature detection. Container 31
is placed on the belt 3ζ on the inlet lO side, is conveyed within the furnace body l by the conveying device 2, and exits to the outlet 11 side.

マイクロ波照射装置3は、第1加熱帯域19、第2加熱
帯域20、均熱帯域21の各々に上面と下面からマイク
ロ波の導波管39.40の一端を開口させたものであり
、他方はマイクロ波発生装置に連結している。なお、各
導波管とマグネトロンとの間には炉体l内で反射して帰
って来るマイクロ波のために、アイソレニタを設けて、
この中に給水して吸収させ、熱として排出するようにし
である。
The microwave irradiation device 3 has one end of microwave waveguides 39 and 40 opened from the upper and lower surfaces of each of the first heating zone 19, second heating zone 20, and soaking zone 21, and the other end. is connected to a microwave generator. In addition, an isolenator is provided between each waveguide and the magnetron to prevent the microwaves from being reflected within the furnace body l.
The system is designed to feed water into the system, absorb it, and release it as heat.

不活性ガス流通装置4は、炉体1内の第1加熱帯域19
、第2加熱帯域20、均熱帯域21の夫々の両側下部に
配置された多数の小孔を有する管からなるノズル41と
、同各帯域19.20.21の上部に設けられた排気孔
42と、排気路中に設けられだダンパ43と、ノズル4
1に対する不活性ガス供給用の配管とで構成されている
。ノズル41からは適量の不活性ガス−が供給されるが
、ダンパ43の調節により炉体1の内部気圧が大気圧よ
りも若干大きい正圧に維持されるようになっている。ま
だ、下方から上方へ不活性ガスは流通するが、その間に
前記容器31がメツシュベルト32上にある状態では、
炉内ベルトガイド35の存在によシ、大部分が容器31
及び蓋38の通気孔を通るようになっている。
The inert gas distribution device 4 is connected to a first heating zone 19 in the furnace body 1.
, a nozzle 41 made of a tube having a large number of small holes arranged at the bottom of both sides of the second heating zone 20 and soaking zone 21, and an exhaust hole 42 provided at the top of each zone 19, 20, 21. , a damper 43 provided in the exhaust passage, and a nozzle 4.
1 and a pipe for supplying inert gas to the pipe. An appropriate amount of inert gas is supplied from the nozzle 41, and the internal pressure of the furnace body 1 is maintained at a positive pressure slightly higher than atmospheric pressure by adjusting the damper 43. The inert gas still flows from the bottom to the top, but while the container 31 is on the mesh belt 32,
Due to the presence of the in-furnace belt guide 35, most of the container 31
and a ventilation hole in the lid 38.

温度制御装置5は、第2図に示すように帯域19.20
.21の天井部にメツシュベルト32上に位置せしめら
れる容器31の蓋38のスリットを介して内部の原料繊
維に指向して設けられた放射型温度計44によって繊維
温度を検出し、別の制御部によって該当帯域におけるマ
イクロ波出力を調整するようになっている。温度制御は
例えば第1加熱帯域19で約700°CVC”iで昇温
させ、第2加熱帯域2oで所定の1300°Cまで昇温
させ、均熱帯域で1300’cを維持するようにしであ
る。
The temperature control device 5 operates in a zone 19.20 as shown in FIG.
.. The fiber temperature is detected by a radiation type thermometer 44 installed in the ceiling of the container 21 and directed toward the raw material fibers inside through a slit in the lid 38 of the container 31, which is positioned on the mesh belt 32. It is designed to adjust the microwave output in the relevant band. For example, temperature control is such that the first heating zone 19 is heated at about 700° CVC''i, the second heating zone 2o is heated to a predetermined temperature of 1300°C, and the soaking zone is maintained at 1300°C. be.

冷却装置6は、加熱処理された炭素繊維を冷却してから
炉外に取出すためのもので、第1加熱帯19などにおけ
る不活性ガス流通装置4と同様力、両側下部のノズル4
1a、排気孔42a、ダンパ43a1ノズル41aに対
する配管で構成されている。しかし冷却が目的のため、
加熱帯域のものよりは大量の不活性ガスを流通させるこ
とができるようになっている。
The cooling device 6 is for cooling the heat-treated carbon fibers and then taking them out of the furnace.
1a, an exhaust hole 42a, a damper 43a, and piping for a nozzle 41a. However, because the purpose is cooling,
A larger amount of inert gas can be passed through the heating zone than in the heating zone.

第2図における45は覗窓である。なお、この覗窓、温
度計、各排気口にはマイクロ波の洩れ防止対策あるいは
保護対策が々されている。
45 in FIG. 2 is a viewing window. Note that this viewing window, thermometer, and each exhaust port are equipped with measures to prevent or protect microwaves from leaking.

このように構成された炭素繊維製造装置によれば、炉体
lの入口10から容器31に原料繊維を収容して蓋38
を載置して炉内に供給すると、炭素繊維に加工されたも
のが出口11から出てくる。例えば、原料繊維として、
石炭系ピッチの繊維を不融化したものを炭素繊維とする
場合について説明すると。
According to the carbon fiber manufacturing apparatus configured in this way, the raw material fibers are stored in the container 31 from the inlet 10 of the furnace body l, and the lid 38
When the carbon fibers are placed and fed into the furnace, the processed carbon fibers come out from the outlet 11. For example, as a raw material fiber,
Let us explain the case where carbon fiber is made by infusible coal-based pitch fiber.

まず原料繊維の長さ17FL程度のものをトウ状にした
ものを、厚さl100Iに積重ねて容器31に充填密度
50 kg/rn 程度で収容する。このような容器3
1を多数準備して、順次炉体内に挿入する。搬送装置2
は間歇動作する。最初に炉体l内に送り込まれた容器3
1は第1加熱帯域19で停止し、窒素ガスを供給されな
がらマイクロ波によって内部の原料繊維のみが加、熱さ
れる。供給される窒素ガスは容器31内を通って外部へ
排出され、加熱初期の段階で原料繊維間に包含されてい
た空気の大部分を置換し、さらに流通を続ける。原料繊
維の温度が所定時間tで所定温度1例えば’700°C
に達し、容器31は第2加熱帯域20へ搬送される。こ
こでも窒素ガスを供給されながらマイクロ波によって加
熱され、原料繊維の温度が前記と同じ所定時間tで所定
処理温度、例えば1300°Cに達し、容器31は均熱
帯域21へ搬送される。ここでも窒素ガスを供給されな
がらマイクロ波によって加熱され、原料繊維の温度が処
理温度1300°Cに処理時間を維持された後、容器3
1は冷却帯域22へ搬送される。ここでは比較的大量の
窒素ガスが供給されて容器内の繊維が300°C程度に
冷却され1時間を経過後に外部へ搬出される。以上は最
初に炉体l内へ送9込まれた容器31についての説明で
あるが、後続の容器31についても順次同じ処理がなさ
れて外部へ搬出される。
First, raw material fibers having a length of about 17 FL are formed into tows, which are stacked to a thickness of 1100 I and stored in a container 31 at a packing density of about 50 kg/rn. Such a container 3
1 is prepared in large numbers and inserted into the furnace body one after another. Transport device 2
operates intermittently. Container 3 first sent into the furnace body l
1 is stopped in the first heating zone 19, and only the raw material fibers inside are heated by microwaves while being supplied with nitrogen gas. The supplied nitrogen gas passes through the inside of the container 31 and is discharged to the outside, replacing most of the air contained between the raw material fibers at the initial stage of heating, and then continues to circulate. The temperature of the raw material fiber is at a predetermined temperature 1, for example, '700°C in a predetermined time t.
The container 31 is then transported to the second heating zone 20. Here too, it is heated by microwaves while being supplied with nitrogen gas, and the temperature of the raw material fiber reaches a predetermined processing temperature, for example 1300° C., in the same predetermined time t as above, and the container 31 is conveyed to the soaking zone 21. Here too, the fibers are heated by microwaves while being supplied with nitrogen gas, and the temperature of the raw material fibers is maintained at the processing temperature of 1300°C for a processing time, and then the container 3
1 is conveyed to the cooling zone 22. Here, a relatively large amount of nitrogen gas is supplied to cool the fibers in the container to about 300° C., and after one hour has elapsed, the fibers are transported outside. The above is a description of the container 31 that was first sent 9 into the furnace body l, but the subsequent containers 31 are sequentially subjected to the same process and then transported outside.

このようにして製造された炭素繊維は、従来の輻射加熱
によって製造されたものと較べて、強度及び収率は変ら
ないものであまた。
Carbon fibers produced in this way have the same strength and yield as those produced by conventional radiant heating.

上述の装置において、不活性ガスは、毎帯域毎に供給さ
れ、排出されるが、これは区分壁13.14.15.1
6.17の存在が有効に作用しておシ、不活性ガスの供
給量とダンパの調節により、好ましい状態が維持される
。これによって各帯域の酸素濃度を夫々規定値以下に制
御することができるaまた、不活性ガスの流通において
、炉体1内の下半部に充満した状態から容器31の通気
孔を通して繊維間を通り、上側空間に至る挙動は、ガイ
ド350区画作用によるものである。従って、順次継続
的に送り込まれる容器間に間隔があるときは、炉体l内
の上下の区画の意味で容器31の底面にひれ状突部を設
けてもよい。
In the device described above, the inert gas is supplied and discharged in each zone, but this
The presence of 6.17 works effectively, and a favorable state is maintained by adjusting the amount of inert gas supplied and the damper. As a result, the oxygen concentration in each zone can be controlled to be below the specified value. Also, in the flow of inert gas, from the state where the lower half of the furnace body 1 is filled, it is passed between the fibers through the vent hole of the container 31. The behavior leading to the upper space is due to the guide 350 partition effect. Therefore, when there is a gap between the containers that are continuously fed one after another, a fin-like protrusion may be provided on the bottom surface of the container 31 to represent the upper and lower divisions within the furnace body l.

また、前記区分壁13〜17の存在は、各帯域における
容器内の繊維温度が規定する昇温パターンになるために
も有効に作用している。すなわち、不活性ガスの整流作
用のみでなく、加熱帯域26の各帯域19.20%21
毎に照射されるマイクロ波が夫々他の帯域に大きく影響
を及ぼさないようにマイクロ波についても整流作用のよ
うなものがあるのである。
Furthermore, the presence of the partition walls 13 to 17 is also effective because the temperature of the fibers in the container in each zone becomes a prescribed temperature increase pattern. That is, not only the rectifying effect of the inert gas but also each zone 19.20% 21 of the heating zone 26
Microwaves also have a rectifying effect so that each microwave irradiated does not greatly affect other bands.

また、この装置におけるマイクロ波による加熱は、従来
の輻射加熱方式に比し加熱時間が14〜14速度が5°
C15)であったのに対し、この装置では30〜45°
C/分で加熱可能であった。また繊維層の厚み100 
mの加熱において、第2加熱帯域を出た段階の温度分布
を測定してみると、±20℃以内であった。
In addition, heating using microwaves in this device takes 14 to 14 degrees faster than conventional radiation heating methods.
C15), whereas in this device it was 30-45°
It was possible to heat at C/min. Also, the thickness of the fiber layer is 100
When the temperature distribution was measured at the stage of exiting the second heating zone during heating for 100 m, it was found to be within ±20°C.

上述したように、この炭素繊維製造用マイクロ波加熱装
置を用いた炭素繊維の製造装置は、加熱時間を従来より
も大幅に短縮でき、従って炉体の長さを短かぐできる。
As described above, the carbon fiber manufacturing apparatus using this microwave heating apparatus for carbon fiber manufacturing can significantly shorten the heating time compared to the conventional method, and therefore the length of the furnace body can be shortened.

さらに、マイクロ波加熱によるから、炉体内の雰囲気を
高温にすることなく、繊維のみを加熱するため、繊維を
マイクロ波が透過する耐火材あるいは耐火断熱材で覆う
構成により、放散熱が少く、エネルギ消費量を従来よシ
も大幅に減少させることができる。実験によると。
Furthermore, since microwave heating is used, only the fibers are heated without raising the atmosphere inside the furnace to a high temperature, so by covering the fibers with a fireproof material or fireproof insulation material that allows microwaves to pass through, less heat is dissipated and energy is reduced. Consumption can be significantly reduced compared to conventional methods. According to experiments.

従来318 KV/の電力を消費していた所定処理量が
、この装置によれば50KWで処理できた。また、との
装量は、繊維をトウ状のまま多量を継続的に処理できる
ので、製品コストも安価になる。
A predetermined processing amount that conventionally required 318 KV/power could be processed using 50 KW with this device. In addition, since a large amount of fiber can be continuously processed in a tow-like manner, the product cost is also low.

以上のように、この発明によるときは、小型で、高速処
理が可能で、省エネルギ効果が大きく、きわめて経済性
の高い炭素繊維製造用マイクロ波加熱装置を提供できる
As described above, according to the present invention, it is possible to provide a microwave heating apparatus for producing carbon fibers that is small in size, capable of high-speed processing, has a large energy saving effect, and is extremely economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの5発明の実施例の概略の構成を示す横断平
面図、第2図は同実施例の縦断側面図、第3図は第2図
のA−A断面拡大図、第4図は第2図のA−A断面拡大
図である。 l・・・炉体、2・・・搬送装置、3・・・マイクロ波
照射装置、4・・・不活性ガス流通装置、6・・・冷却
装置、10・・・入口、11・・・出口、12・・・外
殻、13.14.15.16.17・・・区分壁、18
.23・・・噴流帯域、26・・・加熱帯域、22・・
・冷却帯域、27・・・M熱材、31・・・容器%32
・・・メツシュベルト、38・・・蓋、39.4Q・・
・マイクロ波導波管、41・・・ノズル、42・・・排
気孔、43・・・ダンパ、44・・・温度計、41a・
・・ノズル、42a・・・排気孔、43a・・・ダンパ
。 特許出願人  株式会社 広 築 代 理 人  清 水   哲ほか2名第3図 ↓ 第4図
Fig. 1 is a cross-sectional plan view showing a schematic configuration of an embodiment of the fifth invention, Fig. 2 is a vertical sectional side view of the same embodiment, Fig. 3 is an enlarged cross-sectional view taken along line A-A in Fig. 2, and Fig. 4 2 is an enlarged cross-sectional view taken along the line AA in FIG. 2. 1...Furnace body, 2...Transfer device, 3...Microwave irradiation device, 4...Inert gas distribution device, 6...Cooling device, 10...Inlet, 11... Outlet, 12...Outer shell, 13.14.15.16.17...Dividing wall, 18
.. 23... Jet zone, 26... Heating zone, 22...
- Cooling zone, 27... M heat material, 31... Container% 32
... Metschbelt, 38... Lid, 39.4Q...
・Microwave waveguide, 41... Nozzle, 42... Exhaust hole, 43... Damper, 44... Thermometer, 41a.
... Nozzle, 42a... Exhaust hole, 43a... Damper. Patent applicant: Hiro Tsukiyo Osamu, Tetsu Shimizu, and 2 others Figure 3 ↓ Figure 4

Claims (1)

【特許請求の範囲】 (1)  マイクロ波を反射する材料で外殻を形成され
上記外殻内側をマイクロ波が透過する耐火断熱材料で断
熱施工された炉体と、その炉体内にマイクロ波導波管が
開口したマイクロ波照射装置とからなる炭素繊維製造用
マイクロ波加熱装置。 (2)マイクロ波を反射する材料で外殻を形成され開閉
可能な出口及び入口を有しその入口から出口へ至る間に
加熱帯域を設けて少くともその加熱帯域の上記外殻内側
をマイクロ波が透過する耐火断熱材料で断熱施工された
炉体と、マイクロ波が透過する耐火性の原料繊維用容器
を上記入口から出口へ搬送するように構成された搬送装
置と、上記加熱帯域にマイクロ波導波管が開口したマイ
クロ波照射装置と、王妃加熱帯域に上記容器内を通って
不活性ガスを流通させるように設けられた不活性ガス流
通装置とからなる炭素繊維製造用マイクロ波加熱装置。 (5)  特許請求の範囲(2)に記載の装置において
、上記炉体内の加熱帯域が、上記外殻から上記容器の搬
送径路近くにまで伸延したマイクロ波を反射する材料か
らなる区分壁によって、上記搬送径路方向長さを複数に
゛区分されていることを特徴とする炭素繊維製造用マイ
クロ波加熱装置。
[Scope of Claims] (1) A furnace body whose outer shell is formed of a material that reflects microwaves and which is insulated with a fireproof and heat-insulating material that allows microwaves to pass through the inside of the outer shell, and a microwave waveguide inside the furnace body. A microwave heating device for producing carbon fiber, consisting of a microwave irradiation device with an open tube. (2) The outer shell is formed of a material that reflects microwaves, has an outlet and an inlet that can be opened and closed, and a heating zone is provided between the inlet and the outlet, and at least the inside of the outer shell of the heating zone is heated by the microwave. A furnace body insulated with a refractory heat insulating material that allows microwaves to pass therethrough, a conveying device configured to convey a refractory raw material fiber container that allows microwaves to pass from the inlet to the outlet, and a microwave guide to the heating zone. A microwave heating device for manufacturing carbon fiber, comprising a microwave irradiation device having an open wave tube, and an inert gas distribution device provided in the queen heating zone so as to distribute an inert gas through the container. (5) The apparatus according to claim (2), wherein the heating zone in the furnace body is formed by a partition wall made of a microwave-reflecting material extending from the outer shell to near the conveyance path of the container. A microwave heating device for manufacturing carbon fiber, characterized in that the length in the direction of the conveyance path is divided into a plurality of sections.
JP1999782A 1982-02-10 1982-02-10 Microwave heating apparatus for preparing carbon fiber Granted JPS58144125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1999782A JPS58144125A (en) 1982-02-10 1982-02-10 Microwave heating apparatus for preparing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1999782A JPS58144125A (en) 1982-02-10 1982-02-10 Microwave heating apparatus for preparing carbon fiber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61191945A Division JPS6245725A (en) 1986-08-15 1986-08-15 Production of carbon fiber

Publications (2)

Publication Number Publication Date
JPS58144125A true JPS58144125A (en) 1983-08-27
JPS627288B2 JPS627288B2 (en) 1987-02-17

Family

ID=12014796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1999782A Granted JPS58144125A (en) 1982-02-10 1982-02-10 Microwave heating apparatus for preparing carbon fiber

Country Status (1)

Country Link
JP (1) JPS58144125A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156026A (en) * 1982-03-03 1983-09-16 Hirochiku:Kk Preparation of carbon fiber
JPH0642685A (en) * 1992-02-20 1994-02-18 Rasmussen Gmbh Plug-in type joint for coupling fluid conduit
JPH07235374A (en) * 1994-02-15 1995-09-05 Internatl Business Mach Corp <Ibm> Equipment and method to apply microwave energy in occasion that processes sheet-form material
US20120181162A1 (en) * 2009-07-28 2012-07-19 Marina Vladimirovna Soboleva Method for Stabilizing Carbon-Containing Fibre and Method for Producing Carbon Fibre
JP2014067575A (en) * 2012-09-26 2014-04-17 Micro Denshi Kk Heating device to which microwaves are applied
US9745671B2 (en) 2013-07-26 2017-08-29 Toho Tenax Co., Ltd. Carbonization method and carbon fiber production method
WO2018123249A1 (en) * 2016-12-27 2018-07-05 株式会社日立国際電気 Microwave heating device, and device and method for producing carbon fibers
CN110878434A (en) * 2018-09-06 2020-03-13 永虹先进材料股份有限公司 High-temperature carbonization furnace
KR102134628B1 (en) * 2020-01-08 2020-07-16 재단법인 철원플라즈마 산업기술연구원 Apparatus and method manufacturing carbon fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147822A (en) * 1977-05-25 1978-12-22 British Petroleum Co Method of producing carbon fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147822A (en) * 1977-05-25 1978-12-22 British Petroleum Co Method of producing carbon fiber

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156026A (en) * 1982-03-03 1983-09-16 Hirochiku:Kk Preparation of carbon fiber
JPH0642685A (en) * 1992-02-20 1994-02-18 Rasmussen Gmbh Plug-in type joint for coupling fluid conduit
JPH07235374A (en) * 1994-02-15 1995-09-05 Internatl Business Mach Corp <Ibm> Equipment and method to apply microwave energy in occasion that processes sheet-form material
US20120181162A1 (en) * 2009-07-28 2012-07-19 Marina Vladimirovna Soboleva Method for Stabilizing Carbon-Containing Fibre and Method for Producing Carbon Fibre
JP2013500406A (en) * 2009-07-28 2013-01-07 マリーナ ウラジーミロヴナ ソボレヴァ, Method for stabilizing carbon-containing fibers and method for producing carbon fibers
JP2014067575A (en) * 2012-09-26 2014-04-17 Micro Denshi Kk Heating device to which microwaves are applied
US9745671B2 (en) 2013-07-26 2017-08-29 Toho Tenax Co., Ltd. Carbonization method and carbon fiber production method
WO2018123249A1 (en) * 2016-12-27 2018-07-05 株式会社日立国際電気 Microwave heating device, and device and method for producing carbon fibers
JPWO2018123249A1 (en) * 2016-12-27 2019-08-08 株式会社Kokusai Electric Microwave heat treatment apparatus, carbon fiber production apparatus and production method
CN110878434A (en) * 2018-09-06 2020-03-13 永虹先进材料股份有限公司 High-temperature carbonization furnace
KR102134628B1 (en) * 2020-01-08 2020-07-16 재단법인 철원플라즈마 산업기술연구원 Apparatus and method manufacturing carbon fiber

Also Published As

Publication number Publication date
JPS627288B2 (en) 1987-02-17

Similar Documents

Publication Publication Date Title
JPS58144125A (en) Microwave heating apparatus for preparing carbon fiber
EP1212575B1 (en) Apparatus and method for continuous microwave drying of ceramics
US4148600A (en) Heat treatment furnace for metal strip
JPS6332886B2 (en)
EP0000269A1 (en) Method for thermally toughening glass sheets and glass sheets obtained by this method, in particular to be used as motor vehicle side or rear windows.
US2091172A (en) Apparatus for heating
US4620864A (en) Glass sheet tempering utilizing heating and quenching performed in ambient at superatmospheric pressure
US4681616A (en) Glass sheet tempering method and furnace
US3314666A (en) Fast fire tunnel kiln
KR100424095B1 (en) Batch-type brazing furnace system
US4628615A (en) Process and installation for the heat treatment of cylindrical bodies, especially pipes
US3854918A (en) Method for continuous heat treating of glass articles
JP2541625B2 (en) Glass plate ceramic coating method and firing furnace for performing this method
JP4943087B2 (en) Continuous firing furnace and continuous firing method
JPH0742508B2 (en) Continuous annealing and bluing equipment for iron-based laminated products
US2162377A (en) Glass annealing lehr
US3930831A (en) Furnace for heat treating glass sheet material
RU2005829C1 (en) Unit for heat treatment of fibrous materials
JP2002363727A (en) Carburizing method and device thereof
EP0237334A2 (en) Process and apparatus for the firing of ceramic products
RU2138748C1 (en) Furnace for combined annealing of raw powder
JPS62288126A (en) Glass sheet heating equipment and process
JP4926445B2 (en) Oxidation-resistant furnace for graphite material and oxidation-resistant method for graphite material
KR200255891Y1 (en) Batch-type brazing furnace apparatus
JPH0347923A (en) Bright annealing furnace