JP2982598B2 - Operating method of atmosphere heat treatment furnace - Google Patents

Operating method of atmosphere heat treatment furnace

Info

Publication number
JP2982598B2
JP2982598B2 JP5344178A JP34417893A JP2982598B2 JP 2982598 B2 JP2982598 B2 JP 2982598B2 JP 5344178 A JP5344178 A JP 5344178A JP 34417893 A JP34417893 A JP 34417893A JP 2982598 B2 JP2982598 B2 JP 2982598B2
Authority
JP
Japan
Prior art keywords
furnace
gas
atmosphere
refractory
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5344178A
Other languages
Japanese (ja)
Other versions
JPH07173526A (en
Inventor
正広 阿部
勝 石川
守弘 和田
和久 岡田
常弘 山路
裕久 拜司
勝司 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP5344178A priority Critical patent/JP2982598B2/en
Publication of JPH07173526A publication Critical patent/JPH07173526A/en
Application granted granted Critical
Publication of JP2982598B2 publication Critical patent/JP2982598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、鋼帯の連続熱処理炉
や金属製品の雰囲気焼鈍炉等、耐火物炉壁を有する雰囲
気熱処理炉の操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating an atmosphere heat treatment furnace having refractory furnace walls, such as a continuous heat treatment furnace for steel strip and an atmosphere annealing furnace for metal products.

【0002】[0002]

【従来の技術】鋼帯の連続熱処理炉や金属製品の雰囲気
焼鈍炉では、炉内での被処理材料の酸化を極力防止する
必要があり、このため一般には非酸化性若しくは還元性
の炉内雰囲気ガスが使用される。例えば、鋼帯の連続熱
処理炉では、鋼帯をラジアント・チューブで加熱し、炉
内雰囲気ガスとしてはH2を含むN2が使用される。
2. Description of the Related Art In a continuous heat treatment furnace for steel strip or an atmosphere annealing furnace for metal products, it is necessary to prevent oxidation of the material to be treated in the furnace as much as possible. Atmospheric gas is used. For example, in a continuous heat treatment furnace of the steel strip, the steel strip is heated in radiant tube, the furnace atmosphere gas N 2 containing H 2 is used.

【0003】ところで、雰囲気熱処理炉の炉壁の耐火物
としては、従来からレンガ系や不定形耐火物が用いられ
てきたが、最近ではこれらに代わり断熱性の高いファイ
バー系の耐火物の使用比率が高まっている。このファイ
バー系耐火物は極細の繊維状物質からなるもので、気孔
率が高いために優れた断熱性を有している。しかしなが
ら、このファイバー系耐火物は気孔率が高い故に空気や
水分を吸収し易く、炉の建設直後や炉修理或いは点検時
に炉を大気開放した際には、その内部に大量の空気や水
分を吸収した状態にある。また、炉の建設時や炉内耐火
物の修理の際には耐火物を接合するために水分を多く含
んだバインダーが使用され、これらの水分も大気中から
吸収された水分や空気とともに耐火物内部に含まれてい
る。
[0003] By the way, as a refractory for the furnace wall of the atmosphere heat treatment furnace, a brick type or an amorphous type refractory has been conventionally used. Is growing. This fiber-based refractory is made of a fine fibrous substance, and has excellent heat insulating properties due to its high porosity. However, this fiber-based refractory has a high porosity and easily absorbs air and moisture.When the furnace is opened to the atmosphere immediately after the furnace is constructed or when the furnace is repaired or inspected, a large amount of air or moisture is absorbed inside the furnace. It is in a state of having done. At the time of furnace construction and repair of refractories inside the furnace, a binder containing a large amount of water is used to join the refractories, and these moistures are also absorbed together with moisture and air absorbed from the atmosphere. Included inside.

【0004】[0004]

【発明が解決しようとする課題】従来、炉開放後の再立
ち上げ時には雰囲気ガスを炉内空間に直接送気する方法
が採られているが、このような送気方法では耐火物内部
に入り込んだ空気や水分はなかなか抜けず、また、最近
の炉設計では炉体表面からの放散熱量を低減するために
断熱性に優れた断熱材が使用され、炉外壁面(鉄皮表
面)温度が80℃程度以下に保たれるようにしているた
め、鉄皮内面近傍に残留した水分は特に蒸発気化されに
くい。このため従来の雰囲気熱処理炉では、炉内の酸素
濃度や露点を低下させるために著しく長時間を要してい
る。
Conventionally, a method has been adopted in which the atmosphere gas is directly fed into the furnace space when the furnace is re-started after the furnace is opened. Air and moisture hardly escape, and in recent furnace designs, heat-insulating materials with excellent heat insulation properties are used to reduce the amount of heat dissipated from the furnace body surface. Since the temperature is maintained at about not higher than about ° C, water remaining in the vicinity of the inner surface of the steel shell is particularly difficult to evaporate. For this reason, in the conventional atmospheric heat treatment furnace, it takes an extremely long time to reduce the oxygen concentration and the dew point in the furnace.

【0005】図9は、月産能力1万tの電磁鋼板用連続
焼鈍炉において、定期修理後の立ち上げ以降の炉内雰囲
気中の酸素濃度と露点の実測結果を示している。同図の
酸素濃度の推移を見ると、パーセント・レベルでは低下
は早いもののppmレベルでの低下は著しく遅い。この
操業例では、雰囲気ガスとして露点−70℃、含有酸素
濃度0.05ppmの高純度のN2を使用しているにも
かかわらず、30日経過後でも炉内酸素濃度は20〜3
0ppmもあり、また、露点も−30℃程度である。こ
のように酸素濃度と露点がなかなか低下しないのは、炉
壁耐火物の内部に残留している空気や水分が拡散により
少しずつ炉内空間に出てくるためである。
FIG . 9 shows the results of actual measurements of the oxygen concentration and dew point in the furnace atmosphere after startup after periodic repair in a continuous annealing furnace for electrical steel sheets with a monthly production capacity of 10,000 tons. Looking at the transition of the oxygen concentration in the figure, the decrease at the percent level is fast but the decrease at the ppm level is extremely slow. In this operation example, dew point -70 ° C. as the atmospheric gas, despite the use of high-purity N 2 containing oxygen concentration 0.05 ppm, the furnace oxygen concentration even after 30 days 20-3
There is also 0 ppm, and the dew point is about -30 ° C. The reason why the oxygen concentration and the dew point do not readily decrease is that air and moisture remaining inside the furnace wall refractory gradually come into the furnace space due to diffusion.

【0006】本発明はこのような従来の問題に鑑み、雰
囲気熱処理炉の炉開放後の立ち上りを速やかに安定させ
るために、炉壁耐火物内に残留する空気および水分を効
率良くパージすることができる炉の操業方法を提供しよ
うとするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, the present invention is intended to efficiently purge air and moisture remaining in a furnace wall refractory in order to quickly stabilize the rise of an atmosphere heat treatment furnace after the furnace is opened. It is intended to provide a furnace operating method that can be performed.

【0007】[0007]

【課題を解決するための手段】このような目的を達成す
るための本発明法の構成は以下の通りである。
The structure of the method of the present invention for achieving the above object is as follows.

【0008】(1) 少なくとも炉開放後の立ち上げ時
に、炉壁耐火物の最外面側から炉内空間に向けて温度が
50〜120℃の雰囲気ガスを送気することを特徴とす
る雰囲気熱処理炉の操業方法。
(1) At least at the time of start-up after furnace opening, the temperature from the outermost surface side of the furnace wall refractory toward the furnace interior space
A method for operating an atmosphere heat treatment furnace, wherein an atmosphere gas at 50 to 120 ° C is supplied.

【0009】(2) 少なくとも炉開放後の立ち上げ時
に、炉内空間に直接雰囲気ガスを送気するとともに、炉
壁耐火物の最外面側から炉内空間に向けて温度が50〜
120℃の雰囲気ガスを送気することを特徴とする雰囲
気熱処理炉の操業方法。
(2) At least at the time of start-up after the furnace is opened, the atmospheric gas is directly supplied to the furnace space, and the temperature of the furnace wall refractory increases from 50 to 50 degrees from the outermost surface side toward the furnace space.
A method for operating an atmosphere heat treatment furnace, wherein an atmosphere gas at 120 ° C. is supplied.

【0010】[0010]

【0011】本発明法において、炉壁耐火物の最外面側
から炉内空間に向けての雰囲気ガス(ガス温度:50〜
120℃)の送気は、炉壁耐火物内に残留する空気およ
び水分が十分にパージされた時点、すなわち、炉内酸素
濃度および露点が所定値に達した時点で停止してもよい
し、炉の定常運転時に常時送気してもよい。また、炉壁
耐火物の最外面側から炉内空間に向けて送気される雰囲
気ガス(ガス温度:50〜120℃)は、炉内露点が所
定値に達した時点で常温のガスに切り替えてもよい。
[0011] In the method of the present invention, the atmosphere gas (gas temperature: 50 to 50) from the outermost surface of the furnace wall refractory toward the furnace space.
120 ° C.) may be stopped when air and moisture remaining in the furnace wall refractory are sufficiently purged, that is, when the oxygen concentration and the dew point in the furnace reach a predetermined value, Air may be constantly supplied during steady operation of the furnace. Also, the furnace wall
Atmosphere sent from the outermost side of the refractory to the furnace space
The gas (gas temperature: 50 to 120 ° C) has a dew point inside the furnace.
The gas may be switched to a normal temperature gas when the gas reaches a fixed value.

【0012】[0012]

【作用】本発明によれば、炉壁耐火物の最外面側から炉
内空間に向けて送気された雰囲気ガスが、炉壁耐火物の
内部に残留した空気および水分を随伴して炉内空間側に
排出され、そのまま若しくは炉内空間に雰囲気ガスが直
接送気されている場合にはこの雰囲気ガスととともに、
排ガスポートから炉外に排出される。したがって、少な
くとも炉開放後の立ち上り時に炉壁耐火物の最外面側か
らの雰囲気ガスの送気を実施することにより、炉壁耐火
物内に残留する空気および水分が速やかにパージされ、
炉内酸素濃度及び露点は立上り後速やかに所定のレベル
まで低減される。炉壁耐火物の最外面側からの雰囲気ガ
スの送気は、従来から行われている送気ポートを通じた
炉内への直接送気と併用してもよいし、また、併用しな
くてもよく、いずれの場合も上記作用が得られる。
According to the present invention, the atmospheric gas blown from the outermost surface of the furnace wall refractory toward the furnace space is filled with air and moisture remaining inside the furnace wall refractory. If the atmosphere gas is discharged to the space side and is directly supplied to the furnace space or as it is,
The gas is discharged from the exhaust gas port to the outside of the furnace. Therefore, air and moisture remaining in the furnace wall refractory are quickly purged by performing the supply of the atmosphere gas from the outermost surface side of the furnace wall refractory at least at startup after the furnace is opened,
The oxygen concentration in the furnace and the dew point are reduced to predetermined levels immediately after the rise. The air supply of the atmosphere gas from the outermost surface side of the furnace wall refractory may be used together with the conventional direct air supply into the furnace through the air supply port, or may not be used together. In all cases, the above-described effects can be obtained.

【0013】特に本発明では、炉壁耐火物の最外面側か
ら炉内空間に向けて送気する雰囲気ガスの温度を50〜
120℃とすることにより、耐火物内の水分を効率的に
除去することができる。図1に、炉壁が厚さ350mm
のセラミックファイバー系耐火物により構成され、炉内
温度:1200℃、炉外壁面温度:80℃で設計された
雰囲気熱処理炉について、炉開放後の立ち上げ時におけ
る炉壁耐火物厚さ方向の温度分布の推移を示す。これに
よれば、炉壁耐火物は断熱性が高いために立ち上げ初期
では鉄皮側の耐火物はほとんど常温に近く、この部分に
鉄皮を通じて常温の雰囲気ガスを送り込んでも、この雰
囲気ガスは飽和蒸気圧分の水分を随伴できるだけであ
る。
In particular, in the present invention, the temperature of the atmosphere gas sent from the outermost surface side of the furnace wall refractory to the furnace space is set to 50 to 50.
By setting the temperature to 120 ° C., moisture in the refractory can be efficiently removed. In FIG. 1, the furnace wall has a thickness of 350 mm.
The temperature in the thickness direction of the furnace wall refractory at the time of startup after the furnace is opened for an atmosphere heat treatment furnace which is made of ceramic fiber refractory and is designed at a furnace temperature of 1200 ° C. and a furnace outer wall surface temperature of 80 ° C. The transition of distribution is shown. According to this, the refractory on the furnace wall has a high heat insulating property, so that the refractory on the steel shell side is almost at room temperature in the initial stage of startup. It can only entrain moisture at the saturated vapor pressure.

【0014】図2は雰囲気ガス温度と雰囲気ガスの随伴
可能水分量との関係を示しており、常温(20℃)の雰
囲気ガスの随伴可能水分量を1とすると、50℃の雰囲
気ガスでは約5倍、100℃の雰囲気ガスでは約20
倍、120℃の雰囲気ガスでは約40倍の水分量を随伴
することができる。したがって、炉壁耐火物内の水分の
除去を効率的に行うには、予熱された雰囲気ガスを炉壁
耐火物の最外面側から炉内空間に向けて送気することが
好ましい。一方、雰囲気ガスの温度を過度に高くすると
炉体放散熱が増大するため好ましくない。雰囲気ガス温
度が120℃の場合、炉外壁面温度の設計値である80
℃に対して1.5倍の放散熱となるため、この程度が省
エネルギーの観点からの限界であると考えられる。した
がって、本発明では水分の除去効率と省エネルギーの観
点から、炉壁耐火物の最外面側から炉内空間に向けて送
気する雰囲気ガスの温度を50〜120℃とする。
FIG. 2 shows the relationship between the temperature of the atmosphere gas and the amount of accompanying moisture in the atmosphere gas. Assuming that the amount of accompanying moisture in the ambient gas at room temperature (20 ° C.) is 1, an atmosphere gas at 50 ° C. 5 times, about 20 at 100 ° C ambient gas
Atmospheric gas at 120.degree. C. can accompany about 40 times the water content. Therefore, in order to efficiently remove moisture from the furnace wall refractory, it is preferable to supply the preheated atmospheric gas from the outermost surface of the furnace wall refractory to the furnace space. On the other hand, if the temperature of the atmosphere gas is too high, the heat dissipated in the furnace body increases, which is not preferable. When the ambient gas temperature is 120 ° C., the design value of the furnace outer wall surface temperature is 80.
This is considered to be the limit from the viewpoint of energy saving because the heat dissipated is 1.5 times as high as the temperature. Therefore, in the present invention, from the viewpoint of water removal efficiency and energy saving, the temperature of the atmosphere gas sent from the outermost surface side of the furnace wall refractory to the furnace space is set to 50 to 120 ° C.

【0015】[0015]

【実施例】図3は典型的な水平型焼鈍炉の縦断面を示す
もので、1は加熱帯、2は均熱帯、3は冷却帯、4はハ
ースロール、5は炉壁、6は炉壁耐火物に設けられる送
気ポート、Sは被処理材たるストリップである。従来の
雰囲気熱処理炉では、炉開放後の立ち上げ時の炉内への
雰囲気ガスの供給は、ガス供給路Aから送気ポート6を
通じてのみ行われている。これに対して本発明では、ガ
ス供給路Aおよび送気ポート6を通じた炉内空間への直
接送気とともに或いはこれに代えて、炉壁耐火物の最外
面側から炉内空間に向けて温度が50〜120℃の雰囲
気ガスを送気する。すなわち、温度が50〜120℃の
雰囲気ガスを炉殻の内側に供給し、炉壁耐火物の空隙
(気孔部)を通して炉内空間側へ送気する。
FIG. 3 shows a longitudinal section of a typical horizontal annealing furnace. 1 is a heating zone, 2 is a level zone, 3 is a cooling zone, 4 is a hearth roll, 5 is a furnace wall, and 6 is a furnace. An air supply port S provided in the wall refractory is a strip as a material to be treated. In a conventional atmosphere heat treatment furnace, the supply of the atmosphere gas into the furnace at the time of startup after the furnace is opened is performed only from the gas supply path A through the air supply port 6. On the other hand, in the present invention, the temperature is increased from the outermost surface side of the furnace wall refractory toward the furnace space together with or instead of direct air supply to the furnace space through the gas supply path A and the air supply port 6. Is supplied with an atmosphere gas of 50 to 120 ° C. That is, an atmosphere gas having a temperature of 50 to 120 ° C. is supplied to the inside of the furnace shell, and is supplied to the furnace space side through the voids (pores) of the furnace wall refractory.

【0016】図4は、このような本発明の実施状況の一
例を炉を横断面した状態で示したもので、炉殻を構成す
る鉄皮8に送気孔7が設けられ、ガス供給路Bから送気
孔7を通じて鉄皮8の内側に温度が50〜120℃の
囲気ガスが供給される。この雰囲気ガスは、炉壁5を構
成する耐火物の空隙を通過する過程で耐火物内部に残留
した空気および水分を随伴しつつ、炉内空間側に排出さ
れ、炉内空間に雰囲気ガスが直接送気されている場合に
はこの雰囲気ガスとともに排ガスポートから炉外に排出
される。
FIG. 4 shows an example of such an embodiment of the present invention in a state in which the furnace is cross-sectioned. An air supply hole 7 is provided in an iron shell 8 constituting a furnace shell, and a gas supply passage B is provided. An atmosphere gas having a temperature of 50 to 120 ° C. is supplied to the inside of the steel shell 8 through the air supply holes 7. This atmosphere gas is discharged to the furnace space side, accompanied by air and moisture remaining inside the refractory in the process of passing through the gap of the refractory constituting the furnace wall 5, and the atmosphere gas is directly injected into the furnace space. When the gas is supplied, the gas is exhausted from the exhaust gas port to the outside of the furnace together with the atmospheric gas.

【0017】炉壁耐火物の最外面側から炉内空間側に向
けて雰囲気ガスを送気するには、図4に示すように単純
に鉄皮8に送気孔7を開け、これにガス供給路Bの配管
を接続するだけでもよいが、炉壁5がファイバー系耐火
物のように気孔率の高い材料で構成されている場合に
は、図5に示すように送気孔7の炉殻内側の前面に邪魔
板9を設けることが好ましい。このような邪魔板9を設
けることにより、雰囲気ガスの流れを一旦鉄皮8の内面
に沿わせるようにしてから耐火物中を炉内空間方向に流
すことができるため、耐火物内の空気や水分をより効率
的に除去することができる。以下に具体的な実施例を示
す。
In order to supply the atmospheric gas from the outermost surface side of the furnace wall refractory to the furnace space side, as shown in FIG. The pipe of the passage B may be simply connected. However, when the furnace wall 5 is made of a material having a high porosity such as a fiber-based refractory, as shown in FIG. It is preferable that a baffle plate 9 is provided on the front surface of the device. By providing such a baffle plate 9, the atmosphere gas can be caused to flow along the inner surface of the steel shell 8 and then flow through the refractory in the furnace space direction. Moisture can be removed more efficiently. Hereinafter, specific examples will be described.

【0018】[0018]

【0019】[0019]

【0020】[0020]

【0021】[0021]

【0022】[0022]

【0023】[0023]

【0024】図6および図7に示す試験炉(図6は縦断
面図、図7は横断面図)を用い、下記の試験を実施し
た。この試験炉は、炉内空間部容積:約8m 3 、耐火物
厚さ:300mm、加熱方式:電気抵抗加熱方式であ
り、最高1200℃まで炉温を上げることができる。ま
た、炉壁耐火物の構造は、炉床部については試料重量を
支えるためにレンガ系の耐火物とし、側壁および天井に
ついては外壁50a側にレンガ系耐火物、内壁50b側
に200mm厚のファイバー系耐火物をベニアリング
し、最外殻の鉄皮8には厚さ5mmの鋼板を使用してあ
る。図において、10は装入扉、11は排気ポートであ
り、他の構成は図4に示す実施例と同様であるため、同
一の符号を付してその説明は省略する。また、この試験
炉には炉に供給する雰囲気ガスの予熱装置を付設した。
この実施例では、雰囲気ガスとして露点−70℃、含有
酸素濃度0.05ppmの高純度のN 2 を使用し、送気
ポート6(ガス供給路A)を通じて炉内空間にN 2 を送
気するとともに、各壁面において平均3m 2 につき1ヶ
所の割合の送気孔7(ガス供給路B)からN 2 を送気し
た。この際、送気孔7を通じて送気するN 2 の温度を2
0〜200℃の範囲で種々変化させ、雰囲気ガスの予熱
効果を試験した。なお、N 2 の総供給量は50Nm 3 /h
とした。 この実施例では、炉開放点検を想定して炉前部
の装入扉10を開けて大気開放状態とし、1日経過後に
装入扉10を閉じるのと同時に、上記の条件でN 2 の送
気を開始し、それ以降炉内ガスをサンプリングして炉内
の露点の推移を測定した。本実施例において、炉内露点
が−40℃に到達するまでの時間を求めた結果を図8
示す。これによれば、炉内露点が−40℃に到達するま
でに常温(20℃)の雰囲気ガスでは約30時間を要す
るのに対し、50℃の雰囲気ガスでは約18時間、10
0℃の雰囲気ガスでは約13時間、120℃の雰囲気ガ
スでは約12時間、200℃の雰囲気ガスでは約11時
間をそれぞれ要している。このように雰囲気ガスを50
℃程度に予熱しただけでも、炉内露点の迅速な低下とい
う面で著しい改善ができることが判る。但し、雰囲気ガ
スを予熱することによる効果は120℃程度で略飽和し
ている。
The test furnace shown in FIGS. 6 and 7 (FIG.
The following test was carried out using the
Was. This test furnace has a furnace space volume of about 8 m 3 ,
Thickness: 300mm, heating method: electric resistance heating method
The furnace temperature can be increased up to 1200 ° C. Ma
For the furnace wall refractory structure, the sample weight is
Made of brick-based refractory to support, on side walls and ceiling
The brick-based refractory on the outer wall 50a side and the inner wall 50b side
Veneering 200mm thick fiber refractory
The outer shell 8 is made of steel plate with a thickness of 5 mm.
You. In the figure, 10 is a charging door, 11 is an exhaust port.
The other configuration is the same as that of the embodiment shown in FIG.
The same reference numerals are given and the description is omitted. Also, this test
The furnace was provided with a device for preheating the atmospheric gas supplied to the furnace.
In this example, the dew point was -70 ° C.
Using the high-purity N 2 oxygen concentration 0.05 ppm, air
N 2 is sent to the furnace space through port 6 (gas supply path A)
As well as care, one month to the average 3m 2 in each wall
N 2 is supplied from the air supply hole 7 (gas supply path B) at a certain ratio.
Was. At this time, the temperature of N 2 sent through the
Preheating of atmospheric gas with various changes in the range of 0 to 200 ° C
The effect was tested. The total supply amount of N 2 is 50 Nm 3 / h
And In this example, the furnace front
The charging door 10 is opened to open to the atmosphere, and after one day,
At the same time as closing the Sonyutobira 10, feeding of N 2 in the above conditions
And then sample the gas inside the furnace
The change of the dew point was measured. FIG. 8 shows the result of obtaining the time required for the in-furnace dew point to reach −40 ° C. in this example. According to this, it takes about 30 hours for an ambient gas at room temperature (20 ° C.) to reach a dew point in a furnace of −40 ° C., while about 18 hours for an ambient gas at 50 ° C.
It takes about 13 hours for an atmosphere gas at 0 ° C., about 12 hours for an atmosphere gas at 120 ° C., and about 11 hours for an atmosphere gas at 200 ° C. Thus, the atmosphere gas is
It can be seen that even preheating to about ° C can significantly improve the rapid reduction of the furnace dew point. However, the effect of preheating the atmospheric gas is substantially saturated at about 120 ° C.

【0025】[0025]

【0026】[0026]

【0027】[0027]

【0028】図10に、図6および図7に示した試験炉
の鉄皮部の構造例を示す。この炉体構造では、鉄皮部を
内側鉄皮8aと外側鉄皮8bとからなる2重構造とし、
内側鉄皮8aには300mmのピッチで直径10mmの
送気孔7aを設けるとともに、外側鉄皮8bには各壁面
につき各1ヶ所づつ送気ポート12を設け、この送気ポ
ート12から内側鉄皮8aと外側鉄皮8bとの隙間に雰
囲気ガスを供給できるようにしてある。このような炉の
構造は、炉壁耐火物に対してより均一に雰囲気ガスを送
気し、且つ炉外壁面温度を下げることを狙いとしたもの
である。
FIG . 10 shows the test furnace shown in FIGS. 6 and 7.
2 shows an example of the structure of the iron shell portion. In this furnace body structure, the steel shell has a double structure including an inner steel shell 8a and an outer steel shell 8b,
The inner steel shell 8a is provided with air supply holes 7a having a pitch of 300 mm and a diameter of 10 mm, and the outer steel shell 8b is provided with one air supply port 12 for each wall surface. Atmosphere gas can be supplied to the gap between the outer steel shell 8b and the outer steel shell 8b . The structure of such a furnace aims at more uniformly sending the atmospheric gas to the furnace wall refractory and lowering the furnace outer wall surface temperature.

【0029】[0029]

【0030】なお、上記の炉体構造は、各送気孔ごとに
ガス供給配管を接続することが不要であるため、設備の
簡略化を図ることができる利点がある。
The above-mentioned furnace body structure has an advantage that the equipment can be simplified because it is not necessary to connect a gas supply pipe for each air supply hole.

【0031】[0031]

【発明の効果】以上述べた本発明の雰囲気熱処理炉の操
業方法によれば、炉開放後の立ち上り時に、炉壁耐火物
内に残留する空気および水分を効率良く迅速にパージす
ることができ、雰囲気熱処理炉の雰囲気を速やかに安定
させることができる。
According to the method for operating the atmospheric heat treatment furnace of the present invention described above, air and moisture remaining in the furnace wall refractory can be efficiently and quickly purged at the time of startup after the furnace is opened, Atmosphere The atmosphere of the heat treatment furnace can be quickly stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】雰囲気熱処理炉の炉開放後の立ち上げ時におけ
る炉壁耐火物の厚さ方向の温度分布の推移を示すグラフ
FIG. 1 is a graph showing a change in a temperature distribution in a thickness direction of a furnace wall refractory at the time of start-up after opening of an atmosphere heat treatment furnace.

【図2】雰囲気ガス温度と雰囲気ガスの随伴可能水分量
との関係を示すグラフ
FIG. 2 is a graph showing a relationship between an atmospheric gas temperature and an accompanying moisture content of the atmospheric gas.

【図3】典型的な水平型焼鈍炉を示す縦断面図FIG. 3 is a longitudinal sectional view showing a typical horizontal annealing furnace.

【図4】本発明の実施状況の一例を炉を横断面した状態
で示す図面
FIG. 4 is a view showing an example of an implementation state of the present invention in a state in which a furnace is cross-sectioned.

【図5】本発明法におけるの雰囲気ガスの炉壁耐火物内
への送気方法の一例を炉壁を断面した状態で示す図面
FIG. 5 is a view showing an example of a method of sending an atmospheric gas into a furnace wall refractory in the method of the present invention in a state in which a furnace wall is cross-sectioned.

【図6】実施例で使用した試験炉の縦断面図FIG. 6 is a longitudinal sectional view of a test furnace used in an example .

【図7】実施例で使用した試験炉の横断面図FIG. 7 is a cross-sectional view of the test furnace used in the example .

【図8】 実施例 において、雰囲気ガスの予熱温度と炉内
露点が−40℃に到達するまでの時間との関係を示すグ
ラフ
FIG. 8 is a graph showing a relationship between a preheating temperature of an atmospheric gas and a time until a dew point in a furnace reaches −40 ° C. in an example .

【図9】 従来における 炉立ち上げの炉内酸素濃度および
露点の経時的変化を示すグラフ
FIG. 9 is a graph showing a change with time of the oxygen concentration and the dew point in the furnace at the time of starting the conventional furnace .

【図10】 図6及び図7に示される 試験炉の鉄皮部の
造例を示す説明図
FIG. 10 shows the structure of the steel shell of the test furnace shown in FIGS. 6 and 7.
Explanatory drawing showing a construction example

【符号の説明】[Explanation of symbols]

1…加熱帯、2…均熱帯、3…冷却帯、4…ハースロー
ル、5…炉壁、6…送気ポート、7、7a…送気孔、8
…鉄皮、8a…内側鉄皮、8b…外側鉄皮、9…邪魔
板、10…装入扉、11…排気ポート、12…送気ポー
ト、A,B…ガス供給路、S…ストリップ
DESCRIPTION OF SYMBOLS 1 ... Heating zone, 2 ... Uniform tropical zone, 3 ... Cooling zone, 4 ... Hearth roll, 5 ... Furnace wall, 6 ... Air supply port, 7, 7a ... Air supply hole, 8
... steel skin, 8a ... inner steel skin, 8b ... outer steel skin, 9 ... baffle plate, 10 ... loading door, 11 ... exhaust port, 12 ... air supply port, A, B ... gas supply path, S ... strip

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 和久 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 山路 常弘 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 拜司 裕久 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 笠井 勝司 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭48−21610(JP,A) 特開 平1−193588(JP,A) 実公 昭29−3768(JP,Y1) (58)調査した分野(Int.Cl.6,DB名) C21D 1/74 F27D 7/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuhisa Okada 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Tsunehiro Yamaji 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan (72) Inventor Hirohisa Kashiji 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Katsuji Kasai 1-1-2, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (56) References JP-A-48-21610 (JP, A) JP-A-1-193588 (JP, A) Jiko 29-3768 (JP, Y1) (58) Fields investigated (Int. Cl. 6) , DB name) C21D 1/74 F27D 7/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも炉開放後の立ち上げ時に、炉
壁耐火物の最外面側から炉内空間に向けて温度が50〜
120℃の雰囲気ガスを送気することを特徴とする雰囲
気熱処理炉の操業方法。
At least at the time of start-up after furnace opening, a temperature of 50 to 50 from the outermost surface side of the furnace wall refractory toward the furnace interior space.
A method for operating an atmosphere heat treatment furnace, wherein an atmosphere gas at 120 ° C. is supplied.
【請求項2】 少なくとも炉開放後の立ち上げ時に、炉
内空間に直接雰囲気ガスを送気するとともに、炉壁耐火
物の最外面側から炉内空間に向けて温度が50〜120
℃の雰囲気ガスを送気することを特徴とする雰囲気熱処
理炉の操業方法。
2. At least at the time of startup after the furnace is opened, an atmospheric gas is directly supplied to the furnace space, and the temperature is increased from 50 to 120 from the outermost surface side of the furnace wall refractory toward the furnace space.
A method for operating an atmosphere heat treatment furnace, wherein an atmosphere gas at a temperature of ° C is supplied.
JP5344178A 1993-12-17 1993-12-17 Operating method of atmosphere heat treatment furnace Expired - Fee Related JP2982598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5344178A JP2982598B2 (en) 1993-12-17 1993-12-17 Operating method of atmosphere heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5344178A JP2982598B2 (en) 1993-12-17 1993-12-17 Operating method of atmosphere heat treatment furnace

Publications (2)

Publication Number Publication Date
JPH07173526A JPH07173526A (en) 1995-07-11
JP2982598B2 true JP2982598B2 (en) 1999-11-22

Family

ID=18367235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5344178A Expired - Fee Related JP2982598B2 (en) 1993-12-17 1993-12-17 Operating method of atmosphere heat treatment furnace

Country Status (1)

Country Link
JP (1) JP2982598B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5500053B2 (en) * 2010-11-25 2014-05-21 Jfeスチール株式会社 In-furnace atmosphere adjustment method for continuous annealing furnace
US20150322539A1 (en) 2013-01-28 2015-11-12 Jfe Steel Corporation Method for adjusting furnace atmosphere in continuous annealing furnace (as amended)
JP6007870B2 (en) * 2013-08-06 2016-10-12 Jfeスチール株式会社 Atmospheric heat treatment furnace
JP6131880B2 (en) * 2014-02-26 2017-05-24 Jfeスチール株式会社 Continuous annealing furnace and startup method of continuous annealing furnace

Also Published As

Publication number Publication date
JPH07173526A (en) 1995-07-11

Similar Documents

Publication Publication Date Title
JP2003075077A (en) Microwave calcination furnace, and microwave calcination method
JP2982598B2 (en) Operating method of atmosphere heat treatment furnace
EP1265044B1 (en) Vacuum heat treatment furnace
JP2007131936A (en) Burnout method for vacuum carburizing furnace
JP2567140B2 (en) Bright annealing furnace
JP2000144241A (en) Heating method for continuous charging type heating furnace and continuous charging type heating furnace
JPS59205412A (en) Work piece heat treatment and device
JP2567130B2 (en) Bright annealing furnace
JP4876279B2 (en) Heat treatment furnace
JP3535630B2 (en) Heat treatment furnace
JP2582554B2 (en) Method of carburizing steel
JP3794243B2 (en) Oxidation processing method and apparatus
JP2002156188A (en) Roller hearth type atmospheric furnace
JP2567113B2 (en) Bright annealing furnace
JP2000088474A (en) Heat treating furnace
JPS6234233Y2 (en)
JPH02115357A (en) Action for stoppage of patch carburization furnace
JP4060737B2 (en) Reduction furnace
JPH08193257A (en) Metallic sheet for lining for high temperature atmospheric furnace
JP2500950B2 (en) Continuous annealing furnace with excellent atmosphere controllability
JP2789350B2 (en) Bright annealing method and apparatus for stainless steel strip
JP3241587B2 (en) Method of preventing carbon adhesion at the base of coke oven riser
JP2002327990A (en) Seasoning method for atmospheric furnace and atmospheric furnace
JP3509405B2 (en) Improvement of furnace atmosphere in continuous heat treatment furnace for steel strip
JPH1136013A (en) Method for drying monolithic refractory lining

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees