JPS62205277A - Method for synthesizing high-hardness boron nitride - Google Patents

Method for synthesizing high-hardness boron nitride

Info

Publication number
JPS62205277A
JPS62205277A JP4546286A JP4546286A JPS62205277A JP S62205277 A JPS62205277 A JP S62205277A JP 4546286 A JP4546286 A JP 4546286A JP 4546286 A JP4546286 A JP 4546286A JP S62205277 A JPS62205277 A JP S62205277A
Authority
JP
Japan
Prior art keywords
gas
boron nitride
atom
containing gas
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4546286A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukushima
和彦 福島
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4546286A priority Critical patent/JPS62205277A/en
Publication of JPS62205277A publication Critical patent/JPS62205277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To enable the synthesizing conditions to be variable and to stably synthesize high-hardness boron nitride by passing a gaseous mixture of gas contg. boron atom, gas contg. nitrogen atom and hydrogen through microwave nonpolarized discharge and thereafter introducing it onto the surface of a heated base plate. CONSTITUTION:A gaseous mixture of gas contg. boron atom, gas contg. nitrogen atom and hydrogen supplied from gas feeders 1, 2 is introduced into a reaction chamber 5. This gaseous mixture is passed through microwave electrodeless discharge generated by a microwave oscillator 4, and gases are made to an excited or atomic state. The gaseous mixture is introduced onto the surface of a base plate 7 heated at 300-1,300 deg.C and both gas contg. boron atom and gas contg. nitrogen gas are pyrolytically decomposed and allowed to react with each other to deposit cubic boron nitride. This cubic boron nitride is excellent in thermal shock resistance, thermal conductivity, hardness, abrasion resistance and durability for metal of iron group at high temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非常に高硬度を有するのみならず、熱伝導率
にとみ、化学的に安定で、加えてダイヤモンドとは異な
り、鉄族金し4に対する耐性((も優れることから、切
削工具、耐摩工具などの工具材料、さらにはヒートシン
クなどの11y子材料とし、で用いられている立方晶窒
化ホウ素ケ、気相より基材表面に析出させる方法に関す
るイ、のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention not only has extremely high hardness, but also has high thermal conductivity and is chemically stable. Due to its excellent resistance to corrosion, it is used as a material for tools such as cutting tools and wear-resistant tools, and even for heat sinks. This is about how to do it.

〔従来の技術〕[Conventional technology]

立方晶窒化ホウ素の製造方法として、従来、例えば下記
の■〜■の方法等が知られていた。
Conventionally, methods for producing cubic boron nitride have been known, such as the following methods (1) to (2).

■ 特公昭AO−181262号公報に示されるように
、ホウ素を含有する蒸発林からw体上にホウ素分を蒸着
させると共に、少なくとも窒素を含むイオン種を発生せ
しめるイオン発生源から基体上に該イオン種を照射して
、該基体上に窒化ホウ素を生成させる窒化ホウ素膜の製
造方法。
■ As shown in Japanese Patent Publication No. AO-181262, boron is deposited on the substrate from an evaporation forest containing boron, and at the same time, the ions are deposited on the substrate from an ion source that generates ionic species containing at least nitrogen. A method for producing a boron nitride film, comprising irradiating a seed to produce boron nitride on the substrate.

■ ジャーナル オプ マテリアルス サイエンス レ
ターズ(、Tournal of materiala
aciance xetters )、J(1985)
51〜54頁、に示されるように、Hz十Nzプラズマ
によるボロンの化学輸送を行うことにより、立方晶窒化
ホウ素を生成する方法。
■ Journal of Materials Science Letters (, Journal of Materials Science Letters)
aciance xetters), J. (1985).
As shown in pages 51 to 54, a method for producing cubic boron nitride by chemically transporting boron using Hz-10Nz plasma.

■ 8g9回イオン工学シンポジウム(1985年、東
京)議事録、「イオ/源とイオンを基礎とした応用技術
」、に示されるように、HODガンでボロンを蒸発させ
ながら、ホローアノードからNakイオン化して基板に
放射し、基板には高周波を印加して、セルフバイアス効
果を持たせて立方晶窒化ホウ素を生成する方法。
■ As shown in the proceedings of the 8g 9th Ion Engineering Symposium (Tokyo, 1985), ``Ion/source and applied technology based on ions'', Nak ionization was performed from the hollow anode while boron was evaporated with a HOD gun. A method of generating cubic boron nitride by applying high frequency waves to the substrate and creating a self-bias effect.

〔発明が解決しようとする問題点〕 しかしながら、前記■の方法は、イオンビームを発生す
る装置及びその集束装置が高価であることが欠截である
[Problems to be Solved by the Invention] However, the above-mentioned method (1) is lacking in that the ion beam generating device and its focusing device are expensive.

前記(力の方法は、プラズマエネルギー密度が大きい為
、Sp’結号がうまく働かず、欠陥準位を多く有する欠
点を有している。
The aforementioned (force method) has the disadvantage that the Sp' bond does not work well because the plasma energy density is high, and that it has many defect levels.

前記■の方法は、■の方法と同じく、イオンビームを発
生する装置及びその集束装置が高価でちることと、不活
性ガスの原子が析出した立方晶窒化ホウ素に取り込まれ
る、という欠点を有する。
Like method (2), method (2) has the disadvantages that the ion beam generating device and its focusing device are expensive and expensive, and that atoms of the inert gas are incorporated into the precipitated cubic boron nitride.

本発明の目的は、化学気相析出法において、反応ガスの
濃度及びその比率、加熱温度、反応系の圧力、などの合
成条件を独立して可変することが容易であり、それらの
合成条件を可変することにより、前記した従来法■〜■
の問題点を解決し、基板表面に立方晶窒化ホウ素を析出
する新規な方法を提案するところにδる。
An object of the present invention is to easily and independently vary synthesis conditions such as the concentration and ratio of reaction gases, heating temperature, and pressure of the reaction system in a chemical vapor deposition method. By varying the above conventional methods ■~■
We propose a new method for depositing cubic boron nitride on the surface of a substrate by solving these problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はホウ素原子含有ガス、窒素原子含有ガスおよび
水素からなる混合ガスを、マイクロ波無極放電中を通過
させた後、300〜1300℃に加熱した基板表面に導
入することにより、該混合ガスを熱分解、反応させ、上
記基板表面に窒化ホウ素を析出させることを特徴とする
高硬度窒化ホウ素の合成方法である。
In the present invention, a mixed gas consisting of a boron atom-containing gas, a nitrogen atom-containing gas, and hydrogen is passed through a microwave non-polar discharge, and then introduced onto the surface of a substrate heated to 300 to 1300°C. This is a method for synthesizing high hardness boron nitride, which is characterized by thermal decomposition and reaction to precipitate boron nitride on the surface of the substrate.

また本発明のW、2の発明は、水素ガスをマイクロ波無
極放電中を通過させた後に、ホウ素原子含有ガスおよび
窒素原子含有ガスと混合し、該混合ガスを300〜13
00℃に加熱した基板表面に導入することにより、該混
合ガスを熱分解、反応させ、上記基板表面に窒化ホウ素
を析出させることを特徴とする高硬度窒化ホウ素の合成
方法に関する。
In addition, in the invention of W, 2 of the present invention, after passing hydrogen gas through a microwave non-polar discharge, it is mixed with a boron atom-containing gas and a nitrogen atom-containing gas, and the mixed gas is
The present invention relates to a method for synthesizing high-hardness boron nitride, which comprises introducing the mixed gas onto the surface of a substrate heated to 00° C. to cause the mixed gas to thermally decompose and react, thereby depositing boron nitride on the surface of the substrate.

上記#41および第2の発明における特に好ましい実施
態様としては、ホウ素原子含有ガス、窒素原子含有ガス
および水素の混合ガスの混合比率を、 ホウ素原子含有ガス/水索回100〜11001、窒素
原子含有ガス/ 水素−100〜(1001、の範囲と
することが挙げられる。
As a particularly preferred embodiment of the above #41 and the second invention, the mixing ratio of the mixed gas of the boron atom-containing gas, the nitrogen atom-containing gas, and hydrogen is set such that the boron atom-containing gas/water line ratio is 100 to 11001, and the nitrogen atom-containing Gas/Hydrogen may be in the range of -100 to (1001).

本発明は、励起状態のホウ素原子含有ガスと励起状態の
窒素ガスとを、励起もしくは原子状態の水素の存在下、
加熱された基板表面で熱分解・反応させて、これにより
生成した立方晶窒化ホウ素を該基板上に析出せしめる方
法であり、原料ガス及び水素を励起もしくは原子状態と
するには、これらのガスをマイクロ波無極放電中を通過
させることによる。これにはまず水素ガスをマイクロ波
無極放電中に通過せしめた後、ホウ素原子含有ガス及び
窒素原子含有ガスと混合してもよいし、またはホウ素原
子含有ガス及び窒素原子含有ガスと水素ガスを混合した
後、マイクロ波無極放電中を通過せしめてもよい。
The present invention combines an excited boron atom-containing gas and an excited nitrogen gas in the presence of excited or atomic hydrogen.
This method involves thermal decomposition and reaction on the surface of a heated substrate, and the resulting cubic boron nitride is deposited on the substrate. By passing microwaves through a polarless discharge. For this, hydrogen gas may first be passed through a microwave polarless discharge and then mixed with a boron atom-containing gas and a nitrogen atom-containing gas, or the boron atom-containing gas and nitrogen atom-containing gas may be mixed with hydrogen gas. After that, it may be passed through microwave non-polar discharge.

いずれの方法によっても、励起状態のホウ素原子含有ガ
ス及び窒素原子含有ガス、励起状態又は原子状態の水素
を生成することができる。前者の場合には、励起された
水素の作用でホウ素原子、窒素原子も励起される。
Any of the methods can produce a boron atom-containing gas and a nitrogen atom-containing gas in an excited state, and hydrogen in an excited state or an atomic state. In the former case, boron atoms and nitrogen atoms are also excited by the action of excited hydrogen.

本発明においては、安定に放電を持続させるため、マイ
クロ波無極放電を採用することが好ましい。直流放電の
場合は、電極を利用するため長時間連続しての放電の発
生は困難である。
In the present invention, it is preferable to employ microwave nonpolar discharge in order to sustain stable discharge. In the case of direct current discharge, since electrodes are used, it is difficult to generate continuous discharge for a long time.

また、数千MHz以下の周波数による無極放電の発生は
系の圧力に強く依存する。従ってマイクロ波無極放電は
系の圧力への依存度を軽減することができる。
Furthermore, the occurrence of nonpolar discharge at a frequency of several thousand MHz or less strongly depends on the pressure of the system. Therefore, microwave non-polar discharge can reduce the dependence on system pressure.

無極放電を発生する管内の圧力は、放電安定を維持する
ために、0.05 Torr〜400Torrの範囲が
好ましい。
The pressure inside the tube that generates the non-polar discharge is preferably in the range of 0.05 Torr to 400 Torr in order to maintain discharge stability.

次にこれらの気体を加熱された基板表面に導入すると、
この励起状態のホウ素原子含有ガス及び窒素原子含有ガ
スが加熱された基板表面で熱分解した時に、遊離ホウ素
原子及び遊離窒素原子に互いにS?結合を起すのに充分
な反応エネルギーを供給する。
Next, when these gases are introduced onto the heated substrate surface,
When this excited state boron atom-containing gas and nitrogen atom-containing gas are thermally decomposed on the heated substrate surface, free boron atoms and free nitrogen atoms are mutually converted into S? Provides sufficient reaction energy to cause bonding.

また、励起状態または原子状態の水素は、非立方晶窒化
ホウ素を成長させる原因となるsl混成軌道を持った核
と反応し、これをsp結合に変換あるいは、水素化ホウ
素、窒化水素を生成し、高硬度窒化ホウ素の成長する面
の清浄化の作用をする。
In addition, hydrogen in an excited or atomic state reacts with a nucleus with an sl hybrid orbital, which causes the growth of non-cubic boron nitride, converting it into an sp bond or producing boron hydride or hydrogen nitride. , has the effect of cleaning the surface on which the high hardness boron nitride grows.

ホウ素原子含有ガスとして、例えば迅へ。For example, as a boron atom-containing gas.

Be/3 、 BBr3 、 B5N3&等が挙げられ
、又、窒素原子含有ガスとして、例えばNz 、Nut
 、等が挙げられる。
Examples include Be/3, BBr3, B5N3&, and nitrogen atom-containing gases include, for example, Nz, Nut
, etc.

使用する混合ガスのホウ素原子含有ガス及び慴素原子含
有ガスと水素ガスと混合比率は広い範囲に変更し得るも
ので、ホウ素原子含有ガス/水素ガス=m100〜0.
001、窒素原子含有ガス/水素ガス−100〜(10
01の範囲が好ましい。上記夫々の比率が1001以下
の時は、ホウ素原子含有ガス及び窒素原子含有ガスが希
釈されすぎているため、基板上lC窒化ホウ素膜が成膜
しにくくなる。また上記夫々の比率が100以上の時は
、水素ガスがほとんど含まれないため、高硬度窒化ホウ
素の清浄面の作用がされにくく、高硬度窒化ホウ素が得
にくい。
The mixing ratio of the boron atom-containing gas and hydrogen atom-containing gas to the hydrogen gas in the mixed gas used can be varied within a wide range, and boron atom-containing gas/hydrogen gas = m100 to 0.
001, nitrogen atom-containing gas/hydrogen gas-100~(10
A range of 01 is preferred. When each of the above ratios is 1001 or less, the boron atom-containing gas and the nitrogen atom-containing gas are too diluted, making it difficult to form an 1C boron nitride film on the substrate. Further, when each of the above ratios is 100 or more, hydrogen gas is hardly contained, so that the cleaning surface effect of high hardness boron nitride is difficult to be performed, and it is difficult to obtain high hardness boron nitride.

基板温度は、析出した立方晶窒化ホウ素から窒素が抜け
、非立方晶窒化ホウ素に転移する現象を防止し、また励
起状態のホウ素原子含有ガス及び窒素原子含有ガスを熱
分解を起すのに必要な温度であることを必要とするので
、300〜1300℃であることが好ましい。
The substrate temperature is set at a temperature necessary to prevent nitrogen from leaving the deposited cubic boron nitride and transform into non-cubic boron nitride, and to thermally decompose the excited boron atom-containing gas and nitrogen atom-containing gas. The temperature is preferably 300 to 1300°C.

次に本発明の方法を図を参照して具体的に説明する。第
1図及び第2図は本発明により高硬度窒化ホウ素を合成
する実施態様を示す図であって、第1図及び第2図にお
いて1は、ホウ素原子含有ガス及び窒素原子含有ガス供
給装置、2は水素ガス供給装置、3はウェーブガイド、
4はマイクロ波発振器、5は反応室、6は排気装置、7
は基板、8は基板支持台、9は抵抗加熱炉、10,11
.12はコック、15は排気口を示す。
Next, the method of the present invention will be specifically explained with reference to the drawings. 1 and 2 are diagrams showing an embodiment of synthesizing high-hardness boron nitride according to the present invention, and in FIGS. 1 and 2, 1 indicates a boron atom-containing gas and a nitrogen atom-containing gas supply device, 2 is a hydrogen gas supply device, 3 is a wave guide,
4 is a microwave oscillator, 5 is a reaction chamber, 6 is an exhaust device, 7
is a substrate, 8 is a substrate support stand, 9 is a resistance heating furnace, 10, 11
.. 12 is a cock, and 15 is an exhaust port.

第1図は、ガス供給装置1及び2からの全反応ガスと混
合して反応室5に導入し、マイクロ波無極放電中に通過
させた後、基板7の天面に導入し反応させる方法の例で
あり、第2図は水素ガスのみをマイクロ波無極放電中に
通過させ、その後にガス供給装置f 1からホウ素原子
含有ガス及び窒素原子含有ガスと混合して反応室5へ導
入する方法の例でおる。
Figure 1 shows a method in which the mixture is mixed with all the reaction gases from gas supply devices 1 and 2, introduced into the reaction chamber 5, passed through the microwave during polarless discharge, and then introduced onto the top surface of the substrate 7 for reaction. As an example, FIG. 2 shows a method in which only hydrogen gas is passed through a microwave non-polar discharge, and then mixed with a boron atom-containing gas and a nitrogen atom-containing gas from the gas supply device f1 and introduced into the reaction chamber 5. I'll give you an example.

第1図の方法では、マイクロ波放電中に基板7が存在し
ているので、マイクロ波プラズマの強度により基板温度
を変えうるが、第2図の方法では、基板7はマイクロ波
プラズマ外に存在しているので、抵抗加熱炉9により基
板?加熱する。
In the method shown in Fig. 1, the substrate 7 is present during the microwave discharge, so the substrate temperature can be changed depending on the intensity of the microwave plasma, but in the method shown in Fig. 2, the substrate 7 is present outside the microwave plasma. So, is the substrate heated by the resistance heating furnace 9? Heat.

〔実施例〕〔Example〕

実施例1゜ Fi1図の構成に従い、本発明による窒化ホウ素の合成
を行った。基板としてはモリブデン?用い、反応ガスと
しては、ジボランガス、窒素ガス及び水素ガスを用いた
Example 1 Boron nitride according to the present invention was synthesized according to the configuration shown in Fig. 1°Fi1. Molybdenum for the substrate? Diborane gas, nitrogen gas, and hydrogen gas were used as reaction gases.

排気装置を作動し反応系を減圧にした。次にジボランガ
ス、窒素ガス、水素ガスをそれぞれ、I CC/ mi
n 、 4 CC/ min 、 100 CC/ m
in流した。その時の反応系圧力は50 Torr  
とした。
The exhaust system was activated to reduce the pressure in the reaction system. Next, diborane gas, nitrogen gas, and hydrogen gas were each
n, 4 CC/min, 100 CC/m
I ran it in. The reaction system pressure at that time was 50 Torr.
And so.

次に基板温度を700℃に上昇すると共に、2、45 
GHzのマイクロ波発振器によって無極放電を発生し、
5時間反応を続けたところ、基板表面に2μ?ルの厚さ
の窒化ホウ素膜?付出させることができた。これをX線
回折しfcところ(1゜1.1)パターンが現f1.た
ので、立方晶窒化ホウ素と同定できだ。
Next, the substrate temperature was raised to 700°C, and
A GHz microwave oscillator generates a non-polar discharge,
When the reaction continued for 5 hours, 2μ? A boron nitride film with a thickness of 1.5 mm? I was able to get him to submit it. This was subjected to X-ray diffraction, and the fc (1° 1.1) pattern was found to be the current f1. Therefore, it could be identified as cubic boron nitride.

実施例Z ′″JY、1図の杯!成に従い、シリコンウェハーを基
板として、本発明(てよる窒化ホウ九の合成を行った。
Example Z'''JY, according to the method shown in Fig. 1, the synthesis of phosphorous nitride according to the present invention was carried out using a silicon wafer as a substrate.

操作子jIは実施例1と同様で、反応ガス条件はジボラ
ンガス2 CC/ min 、アンモニア10 cC/
 min 、水嵩ガス50CC/min、反応系圧力2
0 Tr>rr  とした。基板温度700℃とし、7
、、.45 GHzのマイクロ波発振器で無極放電?発
生し、4時間析出を行ったところ、基板表面に約1.5
μ慣の厚さの立方晶窒化ホウ素膜を得た。
The operator jI was the same as in Example 1, and the reaction gas conditions were diborane gas 2 CC/min and ammonia 10 cC/min.
min, water bulk gas 50CC/min, reaction system pressure 2
0 Tr>rr. The substrate temperature is 700℃, and
,,. Polarless discharge with a 45 GHz microwave oscillator? After 4 hours of precipitation, about 1.5
A cubic boron nitride film with a thickness of μm was obtained.

実施例乙 第1図の構成に従い、シリコーンウェハーを基板として
、本発明による窒化ホウ素の合成を行った。操作手順は
実施例1と同様とし、反応ガス条件は、塩化ホウ素ガス
1oc/min、窒素ガス2ec/min、水素ガス1
00c/min、反応系圧力41’l Torr  と
I7た。基板FnllJf 70’ ℃、2、、、 A
 5 tlHzマイクロ波発振器によるマイクI]波無
極放屯、析出時間5時間で、基叛表面各・□こ厚さ2μ
青の立方晶窒化ホウ素1漠金得た、3実施例4゜ 第2図の構成に従い、シリコーンウェーバー・全基板と
し2、本発明によZ)窒化ホウ素の合成を行った。4ず
、排気装置を作動し、反応系を減圧にする。続いて、水
素ガスケ100仁/ minのitで供給すると共に、
反応系圧力’;< 20 TorrK調整した。2. 
A 5 GHzのマイクロ波発振器Vこより無極放電を
発生し、この中?通過した水素ガスを反応室へと導入し
た。次に基板温度全700℃に上昇させると共(1c1
 ジボランガス2Cr、 / min及びアンモニア1
0 E / minを供給し、前記の無極放電中を通過
してきた水素と混合して加熱基板表面に導入した。5時
間反応を続けたところ、基板表面IC厚さ1μmの高硬
度窒化ホウ素膜が析出した。これをXH回折したところ
、立方晶窒化ホウ素と同定できた。
Example B According to the structure shown in FIG. 1, boron nitride was synthesized according to the present invention using a silicone wafer as a substrate. The operating procedure was the same as in Example 1, and the reaction gas conditions were boron chloride gas 1 oc/min, nitrogen gas 2 ec/min, and hydrogen gas 1 oc/min.
The reaction system pressure was 41'l Torr and I7. Substrate FnllJf 70'℃, 2,, A
Microphone I using a 5 tlHz microwave oscillator] Waveless radiation, deposition time 5 hours, thickness of each □ on the substrate surface 2μ
Blue cubic boron nitride was obtained.Example 4 According to the structure shown in FIG. 2, silicone Weber was used as the entire substrate.Z) Boron nitride was synthesized according to the present invention. 4. First, operate the exhaust system to reduce the pressure in the reaction system. Next, hydrogen gas was supplied at a rate of 100 liters/min, and
Reaction system pressure was adjusted to <20 TorrK. 2.
A 5 GHz microwave oscillator V generates a non-polar discharge, and inside this? The hydrogen gas that passed through was introduced into the reaction chamber. Next, the total substrate temperature was raised to 700°C (1c1
Diborane gas 2Cr, / min and ammonia 1
0 E/min was supplied, and the hydrogen was mixed with the hydrogen that had passed through the non-polar discharge and introduced onto the surface of the heated substrate. When the reaction was continued for 5 hours, a highly hard boron nitride film with a thickness of 1 μm was deposited on the substrate surface. When this was subjected to XH diffraction, it was identified as cubic boron nitride.

以上の実施例1〜4において、立方晶窒化ホウ素(OB
N )が作製できたので、これらの条件を用いて、チッ
プにコーティングを行い、切削テストを行った。尚、比
較として、コーティングと行っていないチップ及びCV
D法を用いてA t203  のコーティングを行った
チップの切削テストも行った(比較例2及び1)。
In the above Examples 1 to 4, cubic boron nitride (OB
N) was successfully produced, a chip was coated using these conditions and a cutting test was performed. For comparison, chips with and without coating and CV
Cutting tests were also conducted on chips coated with A t203 using method D (Comparative Examples 2 and 1).

使用するチップは、材質がwCC超超硬合金型溝基準で
9.5%C0112%Tie、6%TaCおよび残余W
C)である’rNMG 552の切削チップを用いた。
The material of the tip used is wCC cemented carbide type groove reference, 9.5% CO, 12% Tie, 6% TaC, and the remainder W.
C) 'rNMG 552 cutting tip was used.

実施例1〜4の条件で作製する立方晶窒化ホウ素コーテ
ィング層、及び比較例1で作製するA e2o3  コ
ーティング層の厚みは4μ悔と統一し九チップの切削テ
ストの条件を表1に示す。
The thickness of the cubic boron nitride coating layer produced under the conditions of Examples 1 to 4 and the Ae2o3 coating layer produced in Comparative Example 1 were unified to 4μ, and the conditions of the nine-chip cutting test are shown in Table 1.

表1 [ 表2に切削テストの結果と示す。Table 1 [ Table 2 shows the results of the cutting test.

表 2 以上のように本発明による立方晶窒化ホウ素を被覆層と
してチップに使用した場合、従来品のA l、O,破り
、及び破覆なしのものに比し耐摩耗性に優れており、こ
の結果からも本発明の効果は明らかである。
Table 2 As shown above, when the cubic boron nitride according to the present invention is used as a coating layer on a chip, it has excellent wear resistance compared to the conventional product without Al, O, breakage, or breakage. The effects of the present invention are clear from this result as well.

〔発明の効果〕〔Effect of the invention〕

本発明は耐熱衝撃性、熱伝導性、硬度、耐摩耗性及び高
温での鉄襄金鵠に対する耐性にも優?2る、立方晶窒化
ホウ素を、可変な合成条件((より気相から析出できる
新規な方法である。このように合成条件が可変であるの
で、本発明の方法は切削部材、耐摩耗部材、耐熱部材等
の立方晶窒化ホウ素被株形成に用いて、非常に有利で、
bる。
The present invention also has excellent thermal shock resistance, thermal conductivity, hardness, abrasion resistance, and resistance to iron lint at high temperatures. 2. This is a new method that allows cubic boron nitride to be precipitated from the gas phase under variable synthesis conditions.Since the synthesis conditions are variable in this way, the method of the present invention can be used for cutting materials, wear-resistant materials, Very advantageous when used to form cubic boron nitride stocks for heat-resistant parts, etc.
bl.

本発明方法により得られる立方晶窒化ホウ素は、耐熱衝
撃性、熱伝導性、硬度及びM#耗性並びに高温での鉄族
金−に対する耐性rこも優れているため、切削部材、耐
摩耗部材及び耐熱部材の被覆膜として利用して、多大の
効果を有する。
The cubic boron nitride obtained by the method of the present invention has excellent thermal shock resistance, thermal conductivity, hardness, M# wear resistance, and resistance to iron group metals at high temperatures, so it can be used in cutting parts, wear-resistant parts, etc. It has great effects when used as a coating film for heat-resistant members.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の実1包、態様を概B各訣、
明する断面図である。
Figures 1 and 2 show one packet of the present invention, each aspect of which is shown in detail.
FIG.

Claims (3)

【特許請求の範囲】[Claims] (1)ホウ素原子含有ガス、窒素原子含有ガスおよび水
素からなる混合ガスを、マイクロ波無極放電中を通過さ
せた後、300〜1300℃に加熱した基板表面に導入
することにより、該混合ガスを熱分解、反応させ、上記
基板表面に窒化ホウ素を析出させることを特徴とする高
硬度窒化ホウ素の合成方法。
(1) A mixed gas consisting of a boron atom-containing gas, a nitrogen atom-containing gas, and hydrogen is passed through a microwave non-polar discharge, and then introduced onto the substrate surface heated to 300 to 1300°C. A method for synthesizing high hardness boron nitride, which comprises pyrolyzing and reacting to precipitate boron nitride on the surface of the substrate.
(2)水素ガスをマイクロ波無極放電中を通過させた後
に、ホウ素原子含有ガスおよび窒素原子含有ガスと混合
し、該混合ガスを300〜1300℃に加熱した基板表
面に導入することにより、該混合ガスを熱分解、反応さ
せ、上記基板表面に窒化ホウ素を析出させることを特徴
とする高硬度窒化ホウ素の合成方法。
(2) After hydrogen gas passes through a microwave non-polar discharge, it is mixed with a boron atom-containing gas and a nitrogen atom-containing gas, and the mixed gas is introduced onto the substrate surface heated to 300 to 1300°C. A method for synthesizing high hardness boron nitride, which comprises pyrolyzing and reacting a mixed gas to deposit boron nitride on the surface of the substrate.
(3)ホウ素原子含有ガス、窒素原子含有ガスおよび水
素の混合ガスの混合比率が、 ホウ素原子含有ガス/水素=100〜0.001窒素原
子含有ガス/水素=100〜0.001の範囲である特
許請求の範囲第(1)項又は第(2)項に記載される高
硬度窒化ホウ素の合成方法。
(3) The mixing ratio of the mixed gas of boron atom-containing gas, nitrogen atom-containing gas, and hydrogen is in the range of boron atom-containing gas/hydrogen = 100 to 0.001 and nitrogen atom-containing gas/hydrogen = 100 to 0.001. A method for synthesizing high hardness boron nitride as set forth in claim (1) or (2).
JP4546286A 1986-03-04 1986-03-04 Method for synthesizing high-hardness boron nitride Pending JPS62205277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4546286A JPS62205277A (en) 1986-03-04 1986-03-04 Method for synthesizing high-hardness boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4546286A JPS62205277A (en) 1986-03-04 1986-03-04 Method for synthesizing high-hardness boron nitride

Publications (1)

Publication Number Publication Date
JPS62205277A true JPS62205277A (en) 1987-09-09

Family

ID=12720030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4546286A Pending JPS62205277A (en) 1986-03-04 1986-03-04 Method for synthesizing high-hardness boron nitride

Country Status (1)

Country Link
JP (1) JPS62205277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074418A1 (en) * 2016-10-19 2018-04-26 国立大学法人名古屋大学 cBN MOLDING AND METHOD FOR MANUFACTURING cBN FILM

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074418A1 (en) * 2016-10-19 2018-04-26 国立大学法人名古屋大学 cBN MOLDING AND METHOD FOR MANUFACTURING cBN FILM

Similar Documents

Publication Publication Date Title
JPS5891100A (en) Synthesizing method for diamond
JPS5930709A (en) Method for synthesizing carbon film and carbon granule in vapor phase
JPH04958B2 (en)
JPS62205277A (en) Method for synthesizing high-hardness boron nitride
JPS62158195A (en) Synthesizing method of diamond
JPS6054996A (en) Synthesis of diamond
JP2569423B2 (en) Gas phase synthesis of boron nitride
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS63199871A (en) Method for synthesizing high hardness boron nitride
JPH0667797B2 (en) Diamond synthesis method
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPS63134661A (en) Method for synthesizing high hardness boron nitride
JPS6369973A (en) Production of cubic boron nitride film
JPS62280364A (en) Method for synthesizing hard boron nitride
JPS60200896A (en) Process for synthesizing fibrous diamond
JPH07133103A (en) Method for synthesizing c3n4 by plasma arc method
JPS62205276A (en) Method for synthesizing high-hardness boron nitride
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPS63199872A (en) Method for synthesizing high hardness boron nitride
JPS63134662A (en) Method for synthesizing high hardness boron nitride
JP2762561B2 (en) Method of synthesizing diamond film
JPS62260062A (en) Method for synthesizing high hardness boron nitride