JPS6054996A - Synthesis of diamond - Google Patents

Synthesis of diamond

Info

Publication number
JPS6054996A
JPS6054996A JP58164766A JP16476683A JPS6054996A JP S6054996 A JPS6054996 A JP S6054996A JP 58164766 A JP58164766 A JP 58164766A JP 16476683 A JP16476683 A JP 16476683A JP S6054996 A JPS6054996 A JP S6054996A
Authority
JP
Japan
Prior art keywords
diamond
substrate
microwave
gas
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58164766A
Other languages
Japanese (ja)
Other versions
JPS62120B2 (en
Inventor
Mutsukazu Kamo
加茂 睦和
Yoichiro Sato
洋一郎 佐藤
Seiichiro Matsumoto
精一郎 松本
Nobuo Sedaka
瀬高 信雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP58164766A priority Critical patent/JPS6054996A/en
Publication of JPS6054996A publication Critical patent/JPS6054996A/en
Publication of JPS62120B2 publication Critical patent/JPS62120B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Abstract

PURPOSE:To produce a high-quality diamond, by using two kinds of microwaves playing different roles in the synthesis of diamond by the chemical vapor deposition process using the electrodeless microwave discharge. CONSTITUTION:Diamond is deposited on the substrate 8 by the electrodeless microwave discharge of the mixed gas of hydrogen and hydrocarbon. In the above process, (i) the electrodeless discharge (about 300MHz-1,000GHz, about 200-5,000W power) generated by the microwave oscillator 5 is introduced through the wave guide 6 into the reaction chamber 7 to excite the gas, and (ii) the diamond is formed on the substrate 8 by introducing the electrodeless discharge (about 300MHz-1,000GHz and about 100-1,500W power) generated by the microwave oscillator 3 through the waveguide 4 into the reaction chamber 7 and keeping the substrate 8 at about 300-1,300 deg.C (1 is raw material gas supplying apparatus 2, is vacuum pump).

Description

【発明の詳細な説明】 z′ 本発明は化学気相析出法によるダイヤモンドの合成法に
関する。
DETAILED DESCRIPTION OF THE INVENTION z' The present invention relates to a method for synthesizing diamond by chemical vapor deposition.

従来、常圧以下の低圧領域におけるダイヤモンドの合成
法としては、次のような方法が知られている。
Conventionally, the following methods are known as methods for synthesizing diamond in a low pressure region below normal pressure.

1)、減圧下で炭化水素を加熱した基板表面に通じ、そ
の熱エネルギーで熱分解して遊離炭素を生成速、さらに
集束して基板表面に衝突させてダイヤモンドを析出させ
るイオンビーム法。
1) An ion beam method in which hydrocarbons are heated under reduced pressure to the substrate surface, and the thermal energy is used to thermally decompose them to generate free carbon, which is then focused and collided with the substrate surface to precipitate diamonds.

5)、水素ガスと炭化水素ガスとの混合ガスに、30M
Hz以下、例えば13.5MHzの高周波を導通して高
周波プラズマを発生せしめ、プラズマの高エネルギーの
荷電粒+Kよって炭化水素の化学結合を解き放すと同時
に励起状態の炭素原子または励起状態の炭化水素を生成
せしめ、基板衣Q X ゛−′−相析出法。
5), 30M to the mixed gas of hydrogen gas and hydrocarbon gas
A high frequency plasma is generated by conducting a high frequency of Hz or less, for example 13.5 MHz, and the high energy charged particles +K of the plasma release the chemical bonds of hydrocarbons and at the same time generate excited state carbon atoms or excited state hydrocarbons. Seshime, substrate coating QX ゛-'-phase precipitation method.

4)、黒鉛、基板及び水素を封管中に黒鉛を高温部に、
基板を低温部に設置して封入し、水素ガスを熱的あるい
は放電によって原子状水素を生成せしめ、不均化反応を
利用して基板表面にダイヤモンドを析出させる化学輸送
法。
4) Graphite, substrate, and hydrogen are placed in a sealed tube, and the graphite is placed in the high temperature section.
A chemical transport method in which the substrate is placed in a low-temperature area and sealed, hydrogen gas is thermally or electrically discharged to generate atomic hydrogen, and diamond is deposited on the substrate surface using a disproportionation reaction.

などがある。and so on.

たダイヤモンドを合成するためには、析出の操作と酸素
または水素ガスを導入して基板表面に析出した黒鉛状炭
素を除去する操作とを、屑期的に繰返し行うことが必要
である。従って析出速度が遅く、また基板がダイヤモン
ドに限定される欠点がある。
In order to synthesize diamond, it is necessary to repeatedly perform the precipitation operation and the operation of introducing oxygen or hydrogen gas to remove graphitic carbon deposited on the substrate surface. Therefore, the deposition rate is slow and the substrate is limited to diamond.

前記2)のイオンビーム法は、常温で各種材料の基板表
面にダイヤそンドを析出させることができ!i、’47
利点はあるが、炭素の正イオンビームを発生させる装置
及びその集束装置Nが高価であり、また放電持続に用い
るアルゴンガス等の不活性ガスの原子がダイヤモンド格
子中に混入するなどの欠点がある。
The ion beam method described in 2) above can deposit diamonds on the surface of substrates made of various materials at room temperature! i, '47
Although there are advantages, the device for generating a carbon positive ion beam and its focusing device N are expensive, and there are also disadvantages such as atoms of inert gas such as argon gas used to sustain the discharge mixed into the diamond lattice. .

前記5)の高周波プラズマ化学気相析出法は、プラズマ
を発生させるだめには、反応系の圧力が低い圧力の狭い
範囲であることが必要であり、圧力続操業を行うことが
できない欠点がある。
The high-frequency plasma chemical vapor deposition method described in 5) above requires the pressure of the reaction system to be in a low pressure narrow range in order to generate plasma, and has the disadvantage that continuous pressure operation cannot be performed. .

本発明者らは、これらの従来法の欠点を改善すべく研究
の結果、さきに、(1)水素をマイクロ波無極放電中を
通過させた後炭化水素を混合した混合ガス、または水素
と炭化水素との混合ガスをマイクロ波無極放電中を通過
させた混合ガスを、300〜1300℃に加熱した基板
上1で導き、炭化水素の分解によりダイヤモンドを基板
上に析出させる方’−,,”jl’¥)(特願昭56−
204321号)を見出した。
As a result of research to improve the shortcomings of these conventional methods, the present inventors have previously found that (1) a mixed gas in which hydrogen is passed through a microwave non-polar discharge and then mixed with hydrocarbons, or a mixture of hydrogen and hydrocarbons; A method in which a mixed gas with hydrogen is passed through a microwave polarless discharge and guided over a substrate heated to 300 to 1300°C, and diamond is deposited on the substrate by decomposition of hydrocarbons. jl'¥) (Special application 1982-
204321).

しかし、この方法によると、合成したダイヤモンド中に
、乱れた構造を有する炭素あるいは水ご素? 本発明の目的は前記問題点を解消せんとするものである
However, according to this method, the synthesized diamond contains carbon or hydrogen with a disordered structure. An object of the present invention is to solve the above-mentioned problems.

本発明者らは、この問題点を克服すべく更に研の発振機
ではプラズマを維持し、且つ基板温度をダイヤモンド合
成温度(300〜1300℃)に適し九温度に保つ出力
のマイクロ波を発振させプラズマを発生させて導波管で
基板忙導くようにすると、高品質のダイヤモンドが基板
上に析出し得られることを究明し得た。この知見に基い
て本発明を完成した。
In order to overcome this problem, the present inventors further developed an oscillator that maintains the plasma and oscillates microwaves with an output that maintains the substrate temperature at a temperature suitable for the diamond synthesis temperature (300 to 1300°C). It has been found that high-quality diamond can be deposited on a substrate by generating plasma and guiding it through a waveguide. The present invention was completed based on this knowledge.

本発明の要旨は、 (5) 電を用いて基板上にダイヤモンドを析出させる方法にお
いて、2個のマイクル波導入用導波管を用い、一方の導
波管でガスの励起、解離を効率よく行う高出力のマイク
ロ波を導入してプラズマを発生させ、他方の導波管でプ
ラズマを維持し、基板温度をダイヤモンド合成に適した
300〜1300℃の温度に保つ出力のマイクロ波を発
振させ導波管させるために用いる出力は大きい程よいが
、200W〜5kW、好ましくは500 W〜2 kW
で、ガスに300MHz〜1000GHzのマイクロ波
を導入してプラズマを発生させる。
The gist of the present invention is as follows: (5) In a method of depositing diamond on a substrate using electricity, two waveguides for introducing microwave waves are used, and one waveguide efficiently excite and dissociate gas. A high-power microwave is introduced to generate plasma, and the plasma is maintained in the other waveguide, and the output microwave is oscillated and guided to maintain the substrate temperature at a temperature of 300 to 1300 degrees Celsius, which is suitable for diamond synthesis. The output used for making the wave tube is higher, the better, but 200 W to 5 kW, preferably 500 W to 2 kW.
Then, microwaves of 300 MHz to 1000 GHz are introduced into the gas to generate plasma.

また、基板をダイヤモンド合成に適する300〜130
0℃に保持させるための出力は100 W〜1.5kW
 、好ましくは100W〜1kWで、300MHz〜1
000GHzのマイクロ波を導入する。
In addition, the substrate is 300 to 130, which is suitable for diamond synthesis.
The output to maintain the temperature at 0℃ is 100 W to 1.5 kW.
, preferably 100W to 1kW, 300MHz to 1
000 GHz microwave will be introduced.

(6) シ、水素と炭化水素ガスの励起・解離は高まり、かつダ
イヤモンドの化学結合を生せしめる十分な反応エネルギ
ーを持った炭素原子となる。下部のマイ(クロ波導波管
から導かれたマイクロ波プラズマまた、マイクロ波プラ
ズマ中で発生した励起状態または原子状態の水素は、黒
鉛及び黒鉛状炭素を成長させる原因となるSp 、 S
p結合を持つ炭素原子と反応して炭化水素を生成すると
同時に基板表面からこれらを離脱し、基板面の清浄化の
作用を行う。前記2つの作用が相俟って、ダイヤモンド
中に不純物及び乱れた構造の炭素が混入することが防止
し得られ、高品質のダイヤモンドを析出持合の材質を誘
電率及び誘電正接の値によって選択する。例えば、アル
ミナの代りに六方晶窒化はう素を用いることで50℃か
ら200℃の低い温度が得られる。または基板支持金の
周りに、マイクロ波の吸収剤例えば、黒鉛、ステンレス
を置いだ漫、あるいは支持台を1#接冷媒で冷却するよ
うにすることKよって、より正確に調整し得られる。
(6) The excitation and dissociation of hydrogen and hydrocarbon gas increases, and carbon atoms become carbon atoms with sufficient reaction energy to form chemical bonds in diamond. Microwave plasma guided from the microwave waveguide at the bottom Also, the excited or atomic state hydrogen generated in the microwave plasma is responsible for the growth of graphite and graphitic carbon.Sp,S
It reacts with carbon atoms having p-bonds to generate hydrocarbons and at the same time separates them from the substrate surface, thereby cleaning the substrate surface. The above two effects work together to prevent impurities and carbon with a disordered structure from entering the diamond, and to select a material that can precipitate high-quality diamond based on its dielectric constant and dielectric loss tangent. do. For example, by using hexagonal boron nitride instead of alumina, temperatures as low as 50°C to 200°C can be obtained. Alternatively, more accurate adjustment can be achieved by placing a microwave absorber such as graphite or stainless steel around the substrate support, or by cooling the support with a 1# coolant.

本発明において使用する炭化水素と12では、マイ1ク
ロ波プラズマ中で励起・解離する炭化水素で・あ、れば
よい。例えば、メタン、エタン、プロパン。
The hydrocarbon 12 used in the present invention may be any hydrocarbon that is excited and dissociated in microwave plasma. For example, methane, ethane, propane.

・1(;・ 几工)チレン、アセチ1/ン、ベンゼン等の飽和、不飽
和の脂肪族炭化水素及び芳香族炭化水素が挙げられる。
・Saturated and unsaturated aliphatic hydrocarbons and aromatic hydrocarbons such as 1(;・ 几工) tyrene, acetylene, and benzene are mentioned.

炭化水素(A)と水素ガス(B)の容量割合は、%=1
000〜0.001の広い範囲で使用し得られる。
The volume ratio of hydrocarbon (A) and hydrogen gas (B) is %=1
It can be used in a wide range of 0.000 to 0.001.

しかし、黒鉛状炭素の析出を防止するという観点から、
その」二限は10以下であることが奸才しい。
However, from the viewpoint of preventing the precipitation of graphitic carbon,
It is clever that the second limit is 10 or less.

基板の湿度は300〜1300℃の範囲であることが必
要である。300℃より低いと、析出したダイヤ−M、
:%ノド中に水素が混入する恐れがあシ、130011
::を超えると析出したダイヤモンドが黒鉛に逆転移す
る欠点が生ずる。最も好ましい範囲は500〜1200
℃である。マイクロ波は前記した通りの300 MHz
 〜1000 GHzの範囲で、マイクロ波出力範囲は
前記した通りの範囲であることが好ましい。
The humidity of the substrate needs to be in the range of 300 to 1300°C. When the temperature is lower than 300°C, the precipitated diamond M,
:% There is a risk of hydrogen getting mixed into the throat, 130011
If it exceeds ::, there will be a drawback that the precipitated diamond will reversely transform into graphite. The most preferred range is 500-1200
It is ℃. The microwave is 300 MHz as mentioned above.
~1000 GHz, and the microwave output range is preferably as described above.

マイクロ波プラズマを発生させる管内の圧力は、プラズ
マを安定に維持するために、0.05〜400Torr
であることが好ましい。まだダイヤモンド■“−一 1.’:I板全面に均一に析出させる1基板の支持合成
に本発明の方法を実施する装置の態様を第1図に基いて
説明する。第1図はその態様を示す概要図である。図中
、1はガス供給装置で、10゜11はそれぞれ、炭化水
素ガス及び水素ガスの供給管に設けたパルプで、12は
混合ガスの供給管に設けたパルプである。3及び5はマ
イクロ波発振機で、マイクロ波はそれぞれ導波管4及び
6を通り、反応室7内に導かれる。8は基板、9は支(
9) ”、、、?、2は排気装置、13は排気バルブ、14は
マイクロ波吸収剤である。
The pressure inside the tube that generates microwave plasma is 0.05 to 400 Torr in order to maintain stable plasma.
It is preferable that An embodiment of the apparatus for carrying out the method of the present invention for supporting synthesis of one substrate in which diamond is deposited uniformly over the entire surface of the I plate will be explained based on FIG. 1. FIG. 1 shows the embodiment. In the figure, 1 is a gas supply device, 10° and 11 are pulps provided in the hydrocarbon gas and hydrogen gas supply pipes, respectively, and 12 is pulp provided in the mixed gas supply pipe. 3 and 5 are microwave oscillators, and the microwaves pass through waveguides 4 and 6, respectively, and are guided into the reaction chamber 7. 8 is a substrate, and 9 is a support (
9) ”,,,?, 2 is an exhaust device, 13 is an exhaust valve, and 14 is a microwave absorber.

反応室7内の支持台9上に基板8を設Wt−た後、排気
装置2を作動l〜て反応室7内を減圧にすると共に1バ
ルブ10 、11 、12及び13を調整して水素ガス
、炭化水素の流量ならびに反応室内の圧力を所定の値に
保持する。次にマイクロ波発振機3及び5を所定の出力
で起動させ、導波管4及び6を通じて反応室7内にプラ
ズマを発生させる叉共に基板8の加熱を行う。基板8の
温度はマイ実施例1゜ 第1図に示す装置を用い、基板8としてシリコンウェハ
ーを、ガスとしてメタン及び水素を使用した。シリコン
ウェハーを支持台9」二に設置t t、、排気装置2を
作動して反応室7を減圧にした。次いでガス供給袋ft
flより水素とメタンをそれぞれ毎分子occ、1cc
の流量で供給し、バルブ13を調整して反応室7内の圧
力を40 Torr Kfllli整しC10) 、:た;。次いでマイクロ波発振機5の周波数2.45
GHz、800Wの出力で無極放電を発生させ、導波管
6により反応室内に導きガスを励起させると共に、マイ
クロ波発振機30周波数2.45GHz。
After setting the substrate 8 on the support stand 9 in the reaction chamber 7, the exhaust device 2 is activated to reduce the pressure in the reaction chamber 7, and the first valves 10, 11, 12 and 13 are adjusted to release hydrogen. The gas and hydrocarbon flow rates as well as the pressure in the reaction chamber are maintained at predetermined values. Next, the microwave oscillators 3 and 5 are activated with predetermined outputs to generate plasma in the reaction chamber 7 through the waveguides 4 and 6 and to heat the substrate 8 at the same time. The temperature of the substrate 8 was as follows: My Example 1 The apparatus shown in FIG. 1 was used, a silicon wafer was used as the substrate 8, and methane and hydrogen were used as the gases. The silicon wafer was placed on a support stand 9'', and the exhaust device 2 was activated to reduce the pressure in the reaction chamber 7. Then gas supply bag ft
Each molecule of hydrogen and methane is occ and 1cc from fl, respectively.
The pressure inside the reaction chamber 7 was adjusted to 40 Torr by adjusting the valve 13. Next, the frequency of the microwave oscillator 5 is 2.45.
A non-polar discharge was generated with an output of 800 W at GHz, and the waveguide 6 guided the gas into the reaction chamber to excite the gas, and the microwave oscillator 30 had a frequency of 2.45 GHz.

400Wの出力で無極放電を発生させ、導波管4によシ
反応室内に導き、基板8を900℃に加熱した。
A non-polar discharge was generated with an output of 400 W, guided into the reaction chamber through the waveguide 4, and the substrate 8 was heated to 900°C.

3時間析出させたところ約10μmのダイヤモンド粒子
が基板8土に析出した。ダイヤモンド粒子ンド粉末でき
ずをつけたシリコンウェハーを、ガスとしてメタン及び
水素を使用し、水素及びメタンをそれぞれ毎分80 c
cs O,24ccの流量で供給し、反応室7内の圧力
を30 Torrにした。マイクロ波発振機5は周波数
2.45 GHz、 1 kWの出力、マイクロ波発振
機3は周波数2.45GHz。
After 3 hours of precipitation, diamond particles of about 10 μm were deposited on the substrate 8 soil. A silicon wafer impregnated with diamond particles and powder was heated at 80 c/min using methane and hydrogen as gases, respectively.
csO was supplied at a flow rate of 24 cc, and the pressure inside the reaction chamber 7 was set at 30 Torr. The microwave oscillator 5 has a frequency of 2.45 GHz and an output of 1 kW, and the microwave oscillator 3 has a frequency of 2.45 GHz.

500 Wの出力で行い、支持台中に水を通して基板の
温度を930℃とした。50時間析出させたとこに析出
した。膜状ダイヤモンド中には乱れた構造の炭素あるい
は水素と結合l−だ炭素が光学的に観察されなかった。
The temperature of the substrate was set at 930° C. by passing water into the support stage. Precipitation occurred after 50 hours of precipitation. No disordered carbon structure or l-carbon bonded to hydrogen was optically observed in the diamond film.

本発明の方法によると、2個のマイクロ波導入用導波管
を用い、一方の導波管でガスの励起解離に適したマイク
ロ波を導入してプラズマを発生させ、他方の導波管でプ
ラズマを維持し、かつ基板温1度をダイヤモンド合成に
適した湿度に保持するま た;め、極めて適正にダイヤモンド合成に適する条智 る。
According to the method of the present invention, two waveguides for introducing microwaves are used, one waveguide introduces microwaves suitable for excitation dissociation of gas to generate plasma, and the other waveguide generates plasma. In order to maintain the plasma and maintain the substrate temperature at 1 degree Celsius and the humidity suitable for diamond synthesis, the process is extremely suitable for diamond synthesis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の概要図である。 1:ガス供給装置、2:排気装置、 3.5:マイクロ発振機、4..6:導波管、7;反応
室、 8:基板、 9:支持台、 す11や・11・12・13 : ′Op 7’・14
:マイクロ波吸収剤。 (13) 第 1 図
FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the invention. 1: Gas supply device, 2: Exhaust device, 3.5: Micro oscillator, 4. .. 6: Waveguide, 7: Reaction chamber, 8: Substrate, 9: Support stand, 11, 11, 12, 13: 'Op 7', 14
:Microwave absorber. (13) Figure 1

Claims (1)

【特許請求の範囲】 1 水素と炭化水素の混合ガスのマイクロ波無極放電を
用いて基板上にダイヤモンドを析出させる方法において
、2個のマイクロ波導入用導波管を用い、一方の導波管
でガスの励起、解離を効率よく行う高出力のマイクロ波
を導入してプラズマを発生させ、他方の導波管でプラズ
マを維持し、基板温度をダイヤモンド合成に適した30
0〜1300℃の温度に保つ出力のマイクロ波を発振さ
せ導波管で導入してプラズマを発生させて、基板上にダ
イヤモンドを析出させるようにしたことを特徴とするダ
イヤモンドの合成法。 2 基板の周囲に冷却材またはマイクロ波吸収材を配置
して基板温度を制御するようにした特許請求の範囲第1
項記載のダイヤモンドの合成法。 (1)
[Claims] 1. In a method for depositing diamond on a substrate using microwave non-polar discharge of a mixed gas of hydrogen and hydrocarbon, two waveguides for introducing microwaves are used, and one of the waveguides is Plasma is generated by introducing high-power microwaves that efficiently excite and dissociate the gas, and the plasma is maintained in the other waveguide to maintain the substrate temperature at 30°C, which is suitable for diamond synthesis.
A method for synthesizing diamond, characterized in that microwaves are oscillated with an output that is maintained at a temperature of 0 to 1300°C and introduced through a waveguide to generate plasma and deposit diamond on a substrate. 2. Claim 1 in which the temperature of the substrate is controlled by disposing a cooling material or a microwave absorbing material around the substrate.
Synthesis method of diamond as described in section. (1)
JP58164766A 1983-09-07 1983-09-07 Synthesis of diamond Granted JPS6054996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58164766A JPS6054996A (en) 1983-09-07 1983-09-07 Synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58164766A JPS6054996A (en) 1983-09-07 1983-09-07 Synthesis of diamond

Publications (2)

Publication Number Publication Date
JPS6054996A true JPS6054996A (en) 1985-03-29
JPS62120B2 JPS62120B2 (en) 1987-01-06

Family

ID=15799517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58164766A Granted JPS6054996A (en) 1983-09-07 1983-09-07 Synthesis of diamond

Country Status (1)

Country Link
JP (1) JPS6054996A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198277U (en) * 1986-06-09 1987-12-17
US4940015A (en) * 1988-07-30 1990-07-10 Kabushiki Kaisha Kobe Seiko Sho Plasma reactor for diamond synthesis
US4984534A (en) * 1987-04-22 1991-01-15 Idemitsu Petrochemical Co., Ltd. Method for synthesis of diamond
WO1992005867A1 (en) * 1990-10-01 1992-04-16 Idemitsu Petrochemical Company Limited Device for generating microwave plasma and method of making diamond film utilizing said device
US5271971A (en) * 1987-03-30 1993-12-21 Crystallume Microwave plasma CVD method for coating a substrate with high thermal-conductivity diamond material
EP0839928A1 (en) * 1996-10-30 1998-05-06 Schott Glaswerke Remote plasma CVD method
KR100459531B1 (en) * 2001-12-27 2004-12-04 박수길 Manufacturing Method of Large crystalline Diamond Electrode by Microwave Plasma CVD

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198277U (en) * 1986-06-09 1987-12-17
JPH043007Y2 (en) * 1986-06-09 1992-01-31
US5271971A (en) * 1987-03-30 1993-12-21 Crystallume Microwave plasma CVD method for coating a substrate with high thermal-conductivity diamond material
US4984534A (en) * 1987-04-22 1991-01-15 Idemitsu Petrochemical Co., Ltd. Method for synthesis of diamond
US4940015A (en) * 1988-07-30 1990-07-10 Kabushiki Kaisha Kobe Seiko Sho Plasma reactor for diamond synthesis
WO1992005867A1 (en) * 1990-10-01 1992-04-16 Idemitsu Petrochemical Company Limited Device for generating microwave plasma and method of making diamond film utilizing said device
EP0839928A1 (en) * 1996-10-30 1998-05-06 Schott Glaswerke Remote plasma CVD method
US5985378A (en) * 1996-10-30 1999-11-16 Schott Glaswerke Remote-plasma-CVD method for coating or for treating large-surface substrates and apparatus for performing same
KR100459531B1 (en) * 2001-12-27 2004-12-04 박수길 Manufacturing Method of Large crystalline Diamond Electrode by Microwave Plasma CVD

Also Published As

Publication number Publication date
JPS62120B2 (en) 1987-01-06

Similar Documents

Publication Publication Date Title
US4767608A (en) Method for synthesizing diamond by using plasma
US4434188A (en) Method for synthesizing diamond
US4985227A (en) Method for synthesis or diamond
JPH0346437B2 (en)
JPS6054996A (en) Synthesis of diamond
JPS6054995A (en) Synthesis of diamond
JPS62158195A (en) Synthesizing method of diamond
JPH0733243B2 (en) Manufacturing method of hard boron nitride by plasma CVD method combined with light irradiation
JPS6033300A (en) Process and apparatus for synthesizing diamond in gaseous phase
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JPS62265198A (en) Method for synthesizing diamond
JPH03174397A (en) Method and device for synthesizing rigid substance
JPS593098A (en) Synthesizing method of diamond
JPS61236691A (en) Vapor phase synthesis of diamond
JPS63117995A (en) Device for synthesizing diamond in vapor phase
JPS60200896A (en) Process for synthesizing fibrous diamond
JPS63117996A (en) Device for synthesizing diamond in vapor phase
JPS63156009A (en) Synthesis of fine diamond powder
JPH0532489A (en) Synthesis of diamond using plasma
JPS63282200A (en) Method of chemical vapor growth for diamond
JPS6265997A (en) Method and apparatus for synthesizing diamond
JPH064915B2 (en) Method for synthesizing cubic boron nitride
JPH0818905B2 (en) Diamond synthesizing method and synthesizing apparatus
JPH01317198A (en) Method for synthesizing diamond or the like
JPS60127292A (en) Production of diamond