JPS63134661A - Method for synthesizing high hardness boron nitride - Google Patents

Method for synthesizing high hardness boron nitride

Info

Publication number
JPS63134661A
JPS63134661A JP27935986A JP27935986A JPS63134661A JP S63134661 A JPS63134661 A JP S63134661A JP 27935986 A JP27935986 A JP 27935986A JP 27935986 A JP27935986 A JP 27935986A JP S63134661 A JPS63134661 A JP S63134661A
Authority
JP
Japan
Prior art keywords
boron nitride
gas
substrate
atoms
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27935986A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukushima
和彦 福島
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27935986A priority Critical patent/JPS63134661A/en
Publication of JPS63134661A publication Critical patent/JPS63134661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To deposit high hardness cubic boron nitride on the surface of a heated substrate by passing a B-contg. gas, an N-contg. gas and an inert gas through microwave nonpolar discharge to excite the gases and by leading the excited gases to the surface of the substrate. CONSTITUTION:A B-contg. gas such as B2H6, an N-contg. gas such as N2 and an inert gas such as Ar are excited by passing through microwave nonpolar discharge. The excited gases are led to the surface of a substrate heated to 300-1,300 deg.C and they are brought into a reaction to deposit cubic boron nitride on the surface of the substrate. The ratio of the number of B atoms in the B-contg. gas to the number of N atoms in the N-contg. gas (B/N) is preferably regulated to 0.1-10 and hydrogen is preferably used as a reactive gas.

Description

【発明の詳細な説明】 く産業上の利用分野〉 この発明は高硬度な立方晶窒化硼素の合成法に係り、詳
しくは非常に高硬度を有するだけでなく、熱伝導率に富
み、化学的に安定で加えてダイヤモンドとは異なり、鉄
族金属に対する耐性にもすぐれていることから切削工具
、耐摩工具などの工具材料、さらにはヒートシンクなど
の電子材料として用いられる立方晶窒化硼素を気相より
基材表面に析出させる方法に関するものである。
[Detailed description of the invention] Industrial application field> This invention relates to a method for synthesizing highly hard cubic boron nitride. Specifically, it not only has very high hardness, but also has high thermal conductivity and chemical resistance. In addition, unlike diamond, cubic boron nitride is used as tool materials such as cutting tools and wear-resistant tools, as well as electronic materials such as heat sinks because it has excellent resistance to iron group metals. This relates to a method of depositing on the surface of a substrate.

〈従来の技術〉 従来、窒化硼素の製造法としては、 (11iI素を含有する燕発源から基体上に硼素分子を
蒸着させるとともに、少なくとも窒素を含むイオン種を
発生せしめるイオン発生源から基体上に該イオン種を照
射して、該基体上に窒化硼素を析出せしめる窒化硼素膜
の製造方法(特公昭60−181262号公報)。
<Prior Art> Conventionally, boron nitride has been produced by depositing boron molecules onto a substrate from a swallow source containing 11iI element, and depositing boron molecules onto the substrate from an ion source that generates ionic species containing at least nitrogen. A method for producing a boron nitride film (Japanese Patent Publication No. Sho 60-181262), in which boron nitride is deposited on the substrate by irradiating the ion species with the ion species.

123  N2 + N2プラズマによる硼素の化学輸
送を行なうことによって立方晶窒化硼素を生成させる方
法(journal of material 5ci
ence 1etters 4、(1985) 、p5
1〜54)。
123 Method of producing cubic boron nitride by chemical transport of boron by N2 + N2 plasma (journal of material 5ci
ence 1etters 4, (1985), p5
1-54).

f31  HCD gunで力木を蒸発させながら、H
ollowAnodeからN2をイオン化して基板に放
射し、基板には高周波を印加して5elf bias効
果をもたせて立方晶窒化硼素を生成する方法 (Proceeding、 9 th 5yiposi
un on Ion 5ourceIon  As1s
ted  Technology  Anode  8
5  、 Toky。
While vaporizing the strength wood with f31 HCD gun, H
A method of generating cubic boron nitride by ionizing N2 from the hollowAnode and emitting it to the substrate, and applying high frequency to the substrate to have a 5elf bias effect (Proceeding, 9th 5yiposi)
un on Ion 5sourceIon As1s
ted Technology Anode 8
5, Tokyo.

(1985))。(1985)).

(4)硼素原子含有固体にEBを当てることにより、硼
素を蒸発させ、それに窒素原子含有ガスを流し込み、理
水1>よび窒素を同時にイオン化することにより、基材
表面に立方晶窒化硼素を生成する方法(真空、第28巻
、第7号、1985)。
(4) Boron is evaporated by applying EB to a solid containing boron atoms, and a gas containing nitrogen atoms is poured into it, and cubic boron nitride is generated on the surface of the substrate by simultaneously ionizing water and nitrogen. (Vacuum, Vol. 28, No. 7, 1985).

などが知られている。etc. are known.

〈発明が解決しようとする問題点〉 しかしながら上記(1)の方法はイオンビームを発生す
る装置および集束装置が高価であることが欠点とされ、
(2)の方法は高出力のRFプラズマを成躾に利用して
いることにより、反応系からの不純物が混入しやすい。
<Problems to be Solved by the Invention> However, the method (1) above has the disadvantage that the ion beam generating device and focusing device are expensive.
Since the method (2) uses high-power RF plasma for formation, impurities from the reaction system are likely to be mixed in.

(3)の方法は(1)の方法と同じくイオンビームを発
生する装置およびその集束装置が高価であることと、不
活性ガスの原子が析出した窒化硼素に取り込まれる欠点
がある。また(4)の方法においては、TniAは融点
と沸点が近いため、EBを当てることにより、突沸しや
すく制御が困難であるという欠点を有しているのである
Method (3), like method (1), has the drawbacks that the ion beam generating device and its focusing device are expensive, and that inert gas atoms are incorporated into the precipitated boron nitride. In addition, in the method (4), since the melting point and boiling point of TniA are close to each other, when EB is applied, it tends to cause bumping and is difficult to control.

〈問題点を解決するための手段〉 この発明は上記した従来法の欠点を解消した窒化硼素の
合成法を得るべく検討の結果見出されたものである。
<Means for Solving the Problems> The present invention was discovered as a result of studies aimed at obtaining a method for synthesizing boron nitride that eliminates the drawbacks of the conventional methods described above.

即ち、この発明は硼素原子含有ガス、窒素原子含有ガス
、および不活性ガスをマイクロ波無極放電中を通過させ
たのち、300〜1300℃に加熱した基板表面に導入
して立方晶窒化硼素を析出させることを特徴とする高硬
度窒化硼素の合成法を提供することを目的とするもので
ある。
That is, in this invention, a boron atom-containing gas, a nitrogen atom-containing gas, and an inert gas are passed through a microwave non-polar discharge and then introduced onto a substrate surface heated to 300 to 1300°C to precipitate cubic boron nitride. The object of the present invention is to provide a method for synthesizing high hardness boron nitride, which is characterized by the following.

〈作用〉 この発明は硼素原子含有ガス、窒素原子含有ガスおよび
不活性ガスをマイクロ波無極放電に通過せしめることに
より、励起状の硼素原子含有ガス、窒素原子含有ガス、
不活性ガスを生成せしめる。
<Operation> The present invention allows a boron atom-containing gas, a nitrogen atom-containing gas, and an inert gas to pass through a microwave nonpolar discharge, thereby generating excited boron atom-containing gas, nitrogen atom-containing gas,
Generates inert gas.

この励起状態の硼素原子含有ガスおよび窒素原子含有ガ
スが加熱された基板表面において互いに反応し、基板表
面上に8Nl膜を生成する。
The boron atom-containing gas and the nitrogen atom-containing gas in the excited state react with each other on the heated substrate surface to form an 8Nl film on the substrate surface.

しかし、加熱した基板上においては、硼素原子と窒素原
子が互いにs p 3結合を起すのに不十分であり、基
板表面においてCBN簿躾のみでなく、h−BN膜やα
−8N膜を混在した薄膜が生成されている。そのため、
h−BNやα−BNを除去し、CAN膜のみを残す必要
がある。励起した不活性ガスは、膜中に混入することも
なく、また大きなエネルギーを有しているため、CBN
のs p3結合より弱いh−BNのs p !結合、お
よびα−8NのB−N間結合を切断し、h−BNやα−
BNを膜中より除去し、CANのみを残すことが可能と
なり、選択エッヂング的な働きを有する。
However, on a heated substrate, it is insufficient for boron atoms and nitrogen atoms to form sp3 bonds with each other, and not only CBN film but also h-BN film and α
A thin film containing -8N film was produced. Therefore,
It is necessary to remove h-BN and α-BN and leave only the CAN film. The excited inert gas does not mix into the film and has large energy, so CBN
The sp3 bond of h-BN is weaker than the sp3 bond of h-BN! bond, and the B-N bond of α-8N, resulting in h-BN and α-
It becomes possible to remove BN from the film and leave only CAN, and has a selective etching function.

硼素原子数および窒素原子数と不活性ガス原子数の比は
、0.01 < (!11本原子数+窒素原子数)/不
活性ガス原子数<100の範囲が好ましい。
The ratio of the number of boron atoms and the number of nitrogen atoms to the number of inert gas atoms is preferably in the range of 0.01<(!11 atoms+number of nitrogen atoms)/number of inert gas atoms<100.

この値が0.01より小さい時は不活性ガスの分圧が大
きくなりすぎ、窒化硼素NWAが析出しにくくなる。ま
た100より大きくなると、不活性ガスの割合が非常に
小さいため、析出する窒化硼素薄膜中のα−BN−Fh
−8Nを除去するのには不足である。
When this value is smaller than 0.01, the partial pressure of the inert gas becomes too large, making it difficult for boron nitride NWA to precipitate. If it exceeds 100, the proportion of inert gas is very small, so α-BN-Fh in the deposited boron nitride thin film
This is insufficient to remove -8N.

硼素原子含有ガス中の硼素原子数および窒素原子含有ガ
ス中の窒素原子数の比はB/N= 0.1〜10の範囲
が好ましい。これはB/N<0.1の時は非晶質状の窒
化硼素膜が析出されやすく、B/N〉10の時は硼素が
過剰となり、非晶質状のllI素が形成されやすいため
である。
The ratio of the number of boron atoms in the boron atom-containing gas to the number of nitrogen atoms in the nitrogen atom-containing gas is preferably in the range of B/N=0.1 to 10. This is because when B/N<0.1, an amorphous boron nitride film is likely to be deposited, and when B/N>10, boron is excessive and amorphous llI element is likely to be formed. It is.

この発明においては、安定に放電を持続させるため、マ
イクロ波無極放電を採用するものである。
In this invention, microwave non-polar discharge is employed in order to sustain stable discharge.

マイクロ波出力は100W〜1.5kWの範囲が最適で
ある。この出力が100wより小さい時は不活性ガスが
α−BNやh−BNを選択除去するのにエネルギーが不
足であり、また1、5kwより大きいと、励起不活性ガ
スのエネルギーが大きくなりすぎるためα−BNやh−
BNだけでなくCANをも除去してしまうおそれがあり
好ましくない。
The optimum microwave output is in the range of 100W to 1.5kW. When this output is smaller than 100W, there is insufficient energy for the inert gas to selectively remove α-BN and h-BN, and when it is larger than 1.5kW, the energy of the excited inert gas becomes too large. α-BN and h-
This is not preferable since there is a risk that not only BN but also CAN will be removed.

基板温度は300℃以下では励起硼素原子および励起窒
素原子が基板上で互いに反応するエネルギーに不足し、
また1300℃以上では析出した立方晶窒化硼素から窒
素が抜け、非立方晶窒化硼素になりやすいため300〜
1300℃の範囲が好ましい。
When the substrate temperature is below 300°C, there is insufficient energy for the excited boron atoms and excited nitrogen atoms to react with each other on the substrate.
In addition, at temperatures above 1,300°C, nitrogen is easily released from the precipitated cubic boron nitride, resulting in non-cubic boron nitride.
A range of 1300°C is preferred.

マイクロ波無極放電を発生する管内の圧力は放電安定を
維持するために0.05〜400Torrの範囲が望ま
しい。
The pressure inside the tube that generates microwave non-polar discharge is preferably in the range of 0.05 to 400 Torr in order to maintain discharge stability.

原料ガスのうち、硼素原子含有ガスとしてB、HいB 
CF s 、B Br 3 、B−N−Hi等が挙げら
れ、窒素原子含有ガスとしてN2、N83等が、また不
活性ガスとしてはHe、 Me、 k等が用いられる。
Among the raw material gases, B and HB are used as boron atom-containing gases.
Examples include CFs, BBr3, B-N-Hi, etc. N2, N83, etc. are used as the nitrogen atom-containing gas, and He, Me, K, etc. are used as the inert gas.

なおこの発明で高硬度窒化硼素合成に際しては第1図に
概略図として示す製造装置を用いるものであり、同図に
おいて、1はg素原子含有ガス供給装置、2は窒素原子
含有ガス供給装置、3は不活性ガス供給8置、4はウェ
ーブガイド、5はマイクロ波発振器、6は反応室、7は
排気装置、8は基板、9は基板支持台、10はコック、
11は排気口である。
In the present invention, when synthesizing high-hardness boron nitride, a manufacturing apparatus schematically shown in FIG. 3 is an inert gas supply 8 position, 4 is a wave guide, 5 is a microwave oscillator, 6 is a reaction chamber, 7 is an exhaust device, 8 is a substrate, 9 is a substrate support stand, 10 is a cock,
11 is an exhaust port.

〈実施例〉 以下実施例によりこの発明の詳細な説明する。<Example> The present invention will be explained in detail below with reference to Examples.

実施例1 第1図に示す製造装置を用い、基板としてモリブデン基
板を使用して原料ガスはB、H,、N2、kを夫々5c
c/1in、 5cc/1n、 10cc/lin流し
た。反応管内圧力は30Torrに調整し、マイクロ波
出力500W1基板@ l11000℃、成膜時間は4
時間とした。
Example 1 Using the manufacturing apparatus shown in Fig. 1, a molybdenum substrate was used as the substrate, and the raw material gases were 5c each of B, H, N2, and k.
The flow rates were c/1in, 5cc/1n, and 10cc/lin. The pressure inside the reaction tube was adjusted to 30 Torr, the microwave output was 500W, 1 substrate @ 11000℃, and the film formation time was 4
It was time.

その結果、基板表面に3μmの窒化ill素膜を析出し
た。解析手段としてラマン分析法を用いた結果CBNの
ピークである1055c、−1および1310c、−1
付近に鋭いピークを検出し、立方晶窒化硼素であると同
定した。
As a result, a 3 μm thick nitride ill film was deposited on the substrate surface. As a result of using Raman analysis as an analysis method, the CBN peaks were 1055c, -1 and 1310c, -1.
A sharp peak was detected in the vicinity and it was identified as cubic boron nitride.

実施例2 第1図の装置を使用した。基板としてシリコンウェハー
を使用し、原料ガスとしてBeF2、NH3、kを夫々
1 QCC/ II j n 130c C/ II 
i n N 5 CC/ Ill j nK L/た。
Example 2 The apparatus shown in FIG. 1 was used. A silicon wafer is used as the substrate, and BeF2, NH3, and k are each used as raw material gases.
i n N 5 CC/ Ill j nK L/ta.

反応管内圧力を10Torrに調整し、マイクロ波出力
800w 1基板湿度を1200℃、成膜時間は3時間
とした。
The pressure inside the reaction tube was adjusted to 10 Torr, the microwave output was 800 W, the humidity per substrate was 1200° C., and the film forming time was 3 hours.

その結果、基板表面に4μ而の厚みを有する窒化硼素膜
を析出した。解析手段としてX線回折を用いた結果、C
BNのピークである43.2度付近に鋭いピークを検出
し、立方晶窒化硼素と同定した。
As a result, a boron nitride film having a thickness of 4 μm was deposited on the surface of the substrate. As a result of using X-ray diffraction as an analytical means, C
A sharp peak was detected near 43.2 degrees, which is the peak of BN, and it was identified as cubic boron nitride.

実施例3 第1図の装置を用い、モリブデン基板を使用した。原料
ガスは不活性ガスを使用せず、B、NjH4のみとし、
その流量は8cc/ninとした。反応管内圧力は50
Torrに調整し、マイクロ波出力600w 1基板湿
度1300℃、成膜時間は5時間とした。
Example 3 The apparatus shown in FIG. 1 was used, and a molybdenum substrate was used. The raw material gas does not use inert gas, only B and NjH4,
The flow rate was 8 cc/nin. The pressure inside the reaction tube is 50
Torr, microwave output was 600 W, 1 substrate humidity was 1300° C., and film forming time was 5 hours.

その結果、基板表面に5μmの窒化硼素膜を析出した。As a result, a 5 μm thick boron nitride film was deposited on the substrate surface.

解析手段として×41回折を用いた結果、h−BNのピ
ークである26.7度付近に鋭いピーク、CBNのピー
クである43.2度付近になだらかなピークを検出し、
CBNとh−BNが混在し、かつh−BNの含有率の大
きい窒化硼素膜と同定できた。
As a result of using ×41 diffraction as an analytical means, we detected a sharp peak near 26.7 degrees, which is the peak of h-BN, and a gentle peak near 43.2 degrees, which is the peak of CBN.
It was identified as a boron nitride film in which CBN and h-BN were mixed and the content of h-BN was high.

実施例4 上記実施例1〜3の条件を用いてWCC超超硬合金ある
SNMG432をチップとして、該チップにコーティン
グを行ない切削テストを行なった。
Example 4 Using the conditions of Examples 1 to 3 above, a cutting test was conducted using SNMG432, a WCC cemented carbide, as a chip by coating the chip.

比較としてコーティングを行なわないチップ、およびC
VD法を用いてfil 20gコーティングを行なった
チップの切削テストをも行なった。
For comparison, chips without coating and C
A cutting test was also conducted on a chip coated with 20 g of fil using the VD method.

コーティングは何れも被覆層厚3μmとした。All coatings had a coating layer thickness of 3 μm.

切削テスト条件は第1表に示した。また切削テストの結
果は第2表に示した。
The cutting test conditions are shown in Table 1. The results of the cutting test are shown in Table 2.

第    1    表 第    2   表 上表から立方晶窒化硼素を被覆層としてチップに使用し
た場合、この発明の実施例はすべて耐摩耗性にすぐれて
いることが認められた。
From Table 1 and Table 2, it was found that all the examples of the present invention had excellent wear resistance when cubic boron nitride was used as a coating layer in the chip.

また、この発明の方法にて得たCBNコートチップの鋳
鉄旋削における切削性能を切削速度と寿命時間との関係
で調べたところ第2図の結果を得た。また欠損までの切
削時間と!fi撃回数回数関係で調べたところ第3図の
結果を得た。
Further, the cutting performance of the CBN-coated insert obtained by the method of the present invention in cast iron turning was investigated in terms of the relationship between cutting speed and life time, and the results shown in FIG. 2 were obtained. Also, the cutting time until breakage! When we investigated the relationship between the number of fi shots, we obtained the results shown in Figure 3.

〈発明の効果〉 以上説明したように、この発明は耐熱衝撃性、熱伝導性
、硬度、耐摩耗性および高温における鉄族金属に対する
耐性にもすぐれる立方晶窒化n素膜を気相から析出する
新規な合成法であり、切削部材、耐摩耗部材および耐熱
部品の被覆膜として用いた場合、第2図および第3図に
示すように多大の効果を示すことが認められた。
<Effects of the Invention> As explained above, the present invention provides a cubic n-nitride film that is superior in thermal shock resistance, thermal conductivity, hardness, wear resistance, and resistance to iron group metals at high temperatures by precipitating it from the gas phase. This is a novel synthesis method, and when used as a coating film for cutting members, wear-resistant members, and heat-resistant parts, it was found to have great effects as shown in FIGS. 2 and 3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法で用いる製造装置の概略説明図
、第2図および第3図はこの発明の方法で得られる立方
晶窒化硼素を被覆膜としたチップの切削性能を示す図表
である。 1・・・a素原子含有ガス供給装置 2・・・窒素原子含有ガス供給装置 3・・・不活性ガス供給装置 5・・・マイクロ波発振器
Figure 1 is a schematic illustration of the manufacturing equipment used in the method of the present invention, and Figures 2 and 3 are charts showing the cutting performance of chips coated with cubic boron nitride obtained by the method of the present invention. be. 1...A element-containing gas supply device 2...Nitrogen atom-containing gas supply device 3...Inert gas supply device 5...Microwave oscillator

Claims (3)

【特許請求の範囲】[Claims] (1)硼素原子含有ガス、窒素原子含有ガスおよび不活
性ガスをマイクロ波無極放電中を通過させたのち、30
0〜1300℃に加熱した基板表面に導入して立方晶窒
化硼素を析出させることを特徴とする高硬度窒化硼素の
合成法。
(1) After passing a boron atom-containing gas, a nitrogen atom-containing gas, and an inert gas through a microwave nonpolar discharge,
A method for synthesizing high-hardness boron nitride, which comprises introducing cubic boron nitride onto the surface of a substrate heated to 0 to 1300°C.
(2)硼素原子含有ガス中の硼素原子数と窒素原子含有
ガス中の窒素原子数との比をB/N=0.1〜10の範
囲として反応ガスに水素を用いない特許請求の範囲第1
項記載の高硬度窒化硼素の合成法。
(2) A claim in which the ratio of the number of boron atoms in the boron atom-containing gas to the number of nitrogen atoms in the nitrogen atom-containing gas is in the range of B/N = 0.1 to 10, and hydrogen is not used as the reaction gas. 1
Synthesis method of high hardness boron nitride as described in .
(3)(硼素原子数+窒素原子数)/不活性ガス原子数
の比を0、01〜100の範囲とする特許請求の範囲第
1項記載の高硬度窒化硼素の合成法。
(3) The method for synthesizing high hardness boron nitride according to claim 1, wherein the ratio of (number of boron atoms + number of nitrogen atoms)/number of inert gas atoms is in the range of 0.01 to 100.
JP27935986A 1986-11-22 1986-11-22 Method for synthesizing high hardness boron nitride Pending JPS63134661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27935986A JPS63134661A (en) 1986-11-22 1986-11-22 Method for synthesizing high hardness boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27935986A JPS63134661A (en) 1986-11-22 1986-11-22 Method for synthesizing high hardness boron nitride

Publications (1)

Publication Number Publication Date
JPS63134661A true JPS63134661A (en) 1988-06-07

Family

ID=17610067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27935986A Pending JPS63134661A (en) 1986-11-22 1986-11-22 Method for synthesizing high hardness boron nitride

Country Status (1)

Country Link
JP (1) JPS63134661A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463901A (en) * 1991-09-27 1995-11-07 Sumitomo Electric Industries, Ltd. Stacked piezoelectric surface acoustic wave device with a boron nitride layer in the stack
FR2726834A1 (en) * 1994-11-07 1996-05-15 Neuville Stephane Hard protective coating prodn. by PECVD or PVD process
WO1996014448A1 (en) * 1994-11-07 1996-05-17 Neuville Stephane Method for depositing a hard protective coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463901A (en) * 1991-09-27 1995-11-07 Sumitomo Electric Industries, Ltd. Stacked piezoelectric surface acoustic wave device with a boron nitride layer in the stack
FR2726834A1 (en) * 1994-11-07 1996-05-15 Neuville Stephane Hard protective coating prodn. by PECVD or PVD process
WO1996014448A1 (en) * 1994-11-07 1996-05-17 Neuville Stephane Method for depositing a hard protective coating
US5846613A (en) * 1994-11-07 1998-12-08 Neuville; Stephane Method for depositing a hard protective coating

Similar Documents

Publication Publication Date Title
EP0476825B1 (en) A process for the synthesis of hard boron nitride
JPS62138395A (en) Preparation of diamond film
JPS63134661A (en) Method for synthesizing high hardness boron nitride
JPS623234B2 (en)
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPS63134662A (en) Method for synthesizing high hardness boron nitride
JPS63199871A (en) Method for synthesizing high hardness boron nitride
JPS63199872A (en) Method for synthesizing high hardness boron nitride
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPS62260062A (en) Method for synthesizing high hardness boron nitride
JPS63256596A (en) Method for synthesizing diamond in vapor phase
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPH04124272A (en) Cubic boron nitride coating member and its production
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPH0667797B2 (en) Diamond synthesis method
JPH0814023B2 (en) High-pressure phase boron nitride vapor phase synthesis method
JPH0224005A (en) Diamond coated tool and manufacture thereof
JPS62260063A (en) Method for synthesizing high hardness boron nitride
JPS63277766A (en) Method for synthesizing high-hardness boron nitride
JPS62280364A (en) Method for synthesizing hard boron nitride
JPH03199378A (en) Method for synthesizing boron nitride thin film
JPS62224675A (en) Synthesizing method for hard boron nitride
JPH01119673A (en) Method for synthesizing high-hardness boron nitride