JPS63128179A - Method and apparatus for synthesizing hard boron nitride - Google Patents

Method and apparatus for synthesizing hard boron nitride

Info

Publication number
JPS63128179A
JPS63128179A JP27437786A JP27437786A JPS63128179A JP S63128179 A JPS63128179 A JP S63128179A JP 27437786 A JP27437786 A JP 27437786A JP 27437786 A JP27437786 A JP 27437786A JP S63128179 A JPS63128179 A JP S63128179A
Authority
JP
Japan
Prior art keywords
substrate
boron nitride
electrode
support material
substrate support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27437786A
Other languages
Japanese (ja)
Inventor
Akihiko Ikegaya
明彦 池ヶ谷
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27437786A priority Critical patent/JPS63128179A/en
Publication of JPS63128179A publication Critical patent/JPS63128179A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain hard BN which has large hardness and also is excellent in thermal conductivity by feeding a gaseous B source and a gaseous N source to the front space of a base plate, impressing high-frequency electric power between the base plate and an oppositely arranged electrode and projecting thermions to the front space of the base plate. CONSTITUTION:After exhausting the inside of a reaction tank 1 at prescribed degree of vacuum, B2H6 diluted with H2 is introduced into the reaction tank 1 through a duct 6 as a raw material and also NH3 is introduced thereinto through a duct 5 separately and the inside of the reaction vessel is kept at prescribed degree of vacuum. After using a W filament as an electrode combined with a projection material of thermions and heating it at >=2,000 deg.C, high-frequency electric power is impressed to form plasma between a supporting material 2 of a base plate and the electrode 4. Then the temp. of the above-mentioned filament is regulated so that the surface temp. of the base plate 3 is made to specified temp. A film obtained after performing coating for a prescribed time shows a sharp intrinsic diffraction peak of cubic BN in X-ray analysis. Further the hardness of this film is shown as 4,800 by the measurement of micro Vickers hardness.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、立方晶窒化硼素(c[3N)やウルツ型窒
化硼素のような硬度が高く、かつ熱伝導性に優れた硬質
窒化硼素の合成方法および装置に関し、特にプラズマC
VD法を利用した合成方法および装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to the use of hard boron nitrides, such as cubic boron nitride (c[3N) and Wurtz type boron nitride, which have high hardness and excellent thermal conductivity. Regarding synthesis method and apparatus, especially plasma C
This invention relates to a synthesis method and apparatus using the VD method.

[従来の技術〕 立方晶窒化!al素は、ビッカース硬度が4500と地
球上で入手し得る材料ではダイヤモンドに次ぐ硬さを示
し、またダイヤモンドと同様に熱伝導性に優れ【おり、
さらにダイヤモンドに比べて耐酸化性に優れ高温で鉄族
金属と反応しないという特性を有する。そのため切削工
具材料や耐摩耗工具材料として非常に優れているもので
ある。また、熱伝導性に優れているだけでなく、電気絶
縁性にも優れているため、半導体デバイス等の放熱基板
への応用もなされている。
[Conventional technology] Cubic nitriding! Al has a Vickers hardness of 4500, which is the second hardest material available on earth after diamond, and like diamond, it has excellent thermal conductivity.
Furthermore, it has superior oxidation resistance compared to diamond and does not react with iron group metals at high temperatures. Therefore, it is an excellent material for cutting tools and wear-resistant tools. Furthermore, since it not only has excellent thermal conductivity but also excellent electrical insulation, it has been applied to heat dissipation substrates for semiconductor devices and the like.

従来cBNはダイヤモンドと同様に超高圧・高温発生装
置を用いて合成されていたが、近年、ダイヤモンドの場
合と同様に、CBNの合成においても超高圧・高温を利
用せずに、気相中から加熱基板上に析出させる気相合・
成法が開発されつつある。
Conventionally, cBN was synthesized using an ultra-high pressure/high temperature generator like diamond, but in recent years, CBN has been synthesized from the gas phase without using ultra-high pressure/high temperature, similar to the case of diamond. Vapor phase deposition on a heated substrate
A new law is being developed.

現在試みられている方法としては、金属硼素を硼素源と
するイオンブレーティング法やイオン化蒸着法、IvD
法、ならびに六方晶窒化硼素(hBN)あるいは金aB
を原料とし、これをArもしくはN2でスパッタするス
パッタリング法が挙げられる。また、硼素源および窒化
源としてガスを利用し、該原料ガスに外部より高周波、
マイクロ波等の電力を付加してプラズマ状態に励起し、
加熱保持された基板上に窒化硼素を合成するプラズマC
VD法も知られている。
Methods currently being tried include ion brating method using metallic boron as a boron source, ionized vapor deposition method, and IvD method.
method, as well as hexagonal boron nitride (hBN) or gold aB
The sputtering method uses Ar or N2 as a raw material and sputters it with Ar or N2. In addition, gas is used as a boron source and a nitriding source, and high frequency and
Excite it into a plasma state by adding power such as microwaves,
Plasma C to synthesize boron nitride on a heated and maintained substrate
The VD method is also known.

[発明が解決しようとする問題点] 上述した従来から試みられている窒化硼素の気相合成方
法では、ダイヤモンドの気相合成法の場合のように単−
相に近いcBNを得ることは極めて難しく、hBNや非
晶質の窒化硼素が共存しやすいという問題があった。
[Problems to be Solved by the Invention] In the vapor phase synthesis method of boron nitride that has been tried in the past, as in the case of the vapor phase synthesis method of diamond,
It is extremely difficult to obtain cBN close to the phase, and there is a problem in that hBN and amorphous boron nitride tend to coexist.

また、たとえ単−相に近い、cBNが得られたとしても
、cBN自体の結晶性は低く、Xta回折で鋭いピーク
を示すようなcBNは未だ得られていなかった。
Further, even if cBN close to a single phase is obtained, the crystallinity of cBN itself is low, and cBN that shows a sharp peak in Xta diffraction has not yet been obtained.

よって、この発明の目的は、結晶性に優れかつ高純度の
cBNを得ることが可能な気相合成方法およびそのため
の装置を提供することにある。
Therefore, an object of the present invention is to provide a gas phase synthesis method and an apparatus for the same, which are capable of obtaining cBN with excellent crystallinity and high purity.

[問題点を解決するための手段] 本願発明行速は、従来から用いられている気相合成法の
うちプラズマCVD法を用いて、非晶質層やhBNを含
まず、かつ結晶性に優れた硬質窒化硼素(cBNやウル
ツ型の硬質窒化硼素)を得るべく鋭意検討した結果、プ
ラズマ励起だけでなく、熱電子放射部材を用い、熱電子
放射によっても原料ガスの活性化を行なえば、高純度か
つ高結晶性の硬質窒化硼素の得られることを見出し、こ
の発明をなすに至った。
[Means for solving the problems] The process of the present invention uses the plasma CVD method among the conventionally used vapor phase synthesis methods, and uses a method that does not contain an amorphous layer or hBN and has excellent crystallinity. As a result of intensive studies to obtain hard boron nitride (cBN or Wurtz type hard boron nitride), we found that if the raw material gas is activated not only by plasma excitation but also by thermionic radiation using a thermionic emission member, high It was discovered that hard boron nitride with high purity and high crystallinity can be obtained, and the present invention was completed.

すなわち、この発明の合成方法は、基板を500℃〜1
200℃に加熱し、硼素源および窒素源ガスを基板前方
空間に供給し、該基板と、基板の前方に所定距離を隔て
て対向配置された電極との間に高周波電源を用いて容量
結合型の給電を行ない、かつ基板の前方に配置されてお
り1500℃以上に加熱された熱電子放射部材に電圧を
印加して熱電子を基板前方空間に放射することを特徴と
するものである。
That is, in the synthesis method of the present invention, the substrate is heated at 500°C to 1°C.
Heating to 200°C, boron source and nitrogen source gas are supplied to the space in front of the substrate, and a high-frequency power source is used between the substrate and an electrode disposed facing each other at a predetermined distance in front of the substrate. The device is characterized in that it supplies power to the substrate, applies a voltage to a thermionic emission member heated to 1,500° C. or higher, and emits thermionic electrons into the space in front of the substrate.

また、この発明の合成装置は、プラズマCVD法により
基板表面上にて窒化硼素を合成するための装置であって
、基板を支持する基板支持材と、この基板支持材と所定
距離を隔てて基板支持材の前方に対向配置された電極と
、基板支持材とffl極とに接続されており、基板支持
材と電極との間に高周波電力を給電するための高周波電
源と、基板支持材の前方に硼素源および窒素源ガスを供
給するガス供給手段と、基板支持材の前方に熱電子を放
射する熱電子放射手段とを備えることを特徴とする。
Further, the synthesis apparatus of the present invention is an apparatus for synthesizing boron nitride on the surface of a substrate by a plasma CVD method, and includes a substrate support material that supports the substrate, and a substrate that is separated from the substrate support material by a predetermined distance. electrodes arranged opposite to each other in front of the support material; a high-frequency power source connected to the substrate support material and the ffl pole for supplying high-frequency power between the substrate support material and the electrode; It is characterized by comprising a gas supply means for supplying a boron source and a nitrogen source gas to the substrate, and a thermionic emission means for emitting thermionic electrons in front of the substrate supporting material.

[作用] この発明では、高周波によるプラズマ励起だけでなく熱
電子放射部材より放射される熱電子によっても原料ガス
の活性化が行なわれる。(の結果、気相合成反応にrg
Jk4する化学秤の濃度が高められ、高純度高結晶性の
窒化硼素が得られる。もっとも、結晶性に優れた窒化n
素の得られる理由は、必ずしも明確ではないが、既存の
プラズマCVD法に加えて熱電子放射部材による熱活性
を利用し、またプラズマ生成法として熱電子放射部材と
基板支持材を兼ねる電極との間に容量結合型の高周波電
力の給電を行なっているため、プラズマ・エネルギの密
度が高く、原料ガスの分解・活性化が従来のプラズマC
VD法よりも著しく促進されるためと考えられる。また
、結果として、硬質窒化硼素の形成に必要な活性種の温
度も増大するために、hBNや非晶質窒化硼素を含まな
いV1質窒化硼素が得られるものと考えられ、硬質窒化
硼素以外の形態の窒化硼素が選択的に:[ツチング除去
される効果も奏されていると考えられる。
[Operation] In the present invention, the raw material gas is activated not only by plasma excitation by high frequency but also by thermoelectrons emitted from the thermionic emission member. (As a result, rg
The concentration of Jk4 in the chemical balance is increased, and highly pure and highly crystalline boron nitride is obtained. However, nitride n, which has excellent crystallinity,
The reason why this element can be obtained is not necessarily clear, but in addition to the existing plasma CVD method, thermal activation by a thermionic emission member is used, and as a plasma generation method, a thermionic emission member and an electrode that also serves as a substrate support material are used. Because capacitively coupled high-frequency power is supplied between
This is thought to be due to the fact that it is much more accelerated than the VD method. In addition, as a result, the temperature of the active species required to form hard boron nitride increases, so it is thought that V1 boron nitride, which does not contain hBN or amorphous boron nitride, can be obtained. It is thought that the effect of selectively removing boron nitride in the form of:

し実施例の説明] 図面は、この発明の一実施例の合成装置を示す略図的断
面図である。反応槽1内に基板支持材2が収納されてい
る。該基板支持材2の−L面に、その上に窒化硼素を形
成するための基板3が@はされている。また、基板支持
材2の前方(この実施例では上方)には、所定距離を隔
てて電極4が対向配置されている。ffi極電極、後述
するように、熱電子放射部材を兼ねるように構成されて
いる。
DESCRIPTION OF EMBODIMENTS] The drawing is a schematic cross-sectional view showing a synthesis apparatus according to an embodiment of the present invention. A substrate support material 2 is housed in a reaction tank 1 . A substrate 3 on which boron nitride is formed is placed on the -L surface of the substrate support material 2. In addition, electrodes 4 are disposed in front of (in this embodiment, above) the substrate supporting material 2 and facing each other with a predetermined distance therebetween. The ffi electrode is configured to also serve as a thermionic emission member, as will be described later.

反応槽1には管路5および6が外部から挿入されており
、管路5および6を経て、それぞれ、窒素ガスおよびI
a素ガスが供給ざる。なお、窒素ガスおよび硼素ガスを
基板3と電極4との間の空間に円滑に導くために、好ま
しくは、電極4はメツシュ状の材料で構成される。なお
、7は排気口を示し、該排気口は図示しない減圧装置に
接続されており、反応槽1内の所定の圧力範囲(後述)
に保つことが可能とされている。
Pipes 5 and 6 are inserted into the reaction tank 1 from the outside, and nitrogen gas and I are supplied through the pipes 5 and 6, respectively.
A element gas is supplied. Note that in order to smoothly guide nitrogen gas and boron gas into the space between the substrate 3 and the electrode 4, the electrode 4 is preferably made of a mesh-like material. In addition, 7 indicates an exhaust port, and the exhaust port is connected to a pressure reducing device (not shown), and the exhaust port is connected to a predetermined pressure range within the reaction tank 1 (described later).
It is believed that it is possible to maintain

基板支持材2と電極4との間には高周波電源8が接続さ
れており、該基板支持材2とffi桶4との間に容量結
合型の給電を行ない、基板支持材2の前方空間(この実
施例では上方空間)にプラズマを形成させ、原料ガスを
活性化する。
A high frequency power source 8 is connected between the substrate support material 2 and the electrode 4, and capacitively coupled power is supplied between the substrate support material 2 and the ffi bucket 4, and the space in front of the substrate support material 2 ( In this embodiment, plasma is formed in the upper space to activate the raw material gas.

熱電子放射部材を兼ねる電極4には、熱電子放射部材加
熱用電+119も接続されており、該熱電子放射部材加
熱用′R源9により1500℃以上に加熱され、熱電子
を基板支持材2の前方(この実施例では上方)空間に放
射する。この熱電子放射によっても、原料ガスの活性化
が行なわれる。
A thermionic radiation member heating power source 9 is also connected to the electrode 4 which also serves as the thermionic radiation member, and the thermionic radiation member is heated to 1500°C or higher by the thermionic radiation member heating source 9, and thermionic radiation is transferred to the substrate support material. 2 into the space in front of (in this example above). This thermionic radiation also activates the raw material gas.

反応槽1の周囲には外部加熱炉10が配置されており、
外部加熱炉10により反応槽1内が、特に基板3が50
0℃以上1200℃以下の温度範囲に保持される。もつ
とも、場合によっては、基板支持材2に図示しない冷却
tamを設け、基板3を冷却し、好ましい温度に維持す
ることも可能である。
An external heating furnace 10 is arranged around the reaction tank 1,
The inside of the reaction tank 1 is heated by the external heating furnace 10, especially the substrate 3 is
The temperature is maintained within a temperature range of 0°C or higher and 1200°C or lower. However, depending on the case, it is also possible to provide a cooling tam (not shown) on the substrate support member 2 to cool the substrate 3 and maintain it at a preferred temperature.

図示した装置では、電極4が熱電子放射部材を兼ねてい
たが、熱電子放射部材をri電極と別体に構成してもよ
く、その場合図示の電極4の近傍に、好ましくは基板3
と電極4との間の空間に熱電子放射部材が配置される。
In the illustrated device, the electrode 4 also serves as the thermionic emission member, but the thermionic emission member may be configured separately from the ri electrode. In that case, the substrate 3 is preferably placed near the illustrated electrode 4.
A thermionic emission member is arranged in the space between the electrode 4 and the electrode 4.

図示の合成装置を用いて窒化硼素を合成するに際しては
、上述したように熱電子放射部材加熱用雷m9により熱
電子放射部材としての電極4を1500℃以上の温度に
加熱する。これによって熱1七子放射部材としてのff
l極4から熱電子をプラズマの形成される空間に放射さ
せる。同様に、外部加熱炉10を利用して反応槽1を加
熱し、Ω板3の温度を500℃〜1200℃の範囲に保
持する。
When synthesizing boron nitride using the illustrated synthesis apparatus, the electrode 4 as the thermionic emission member is heated to a temperature of 1500° C. or higher by the thermionic emission member heating lightning m9, as described above. This allows ff to function as a heat radiating member.
Thermionic electrons are emitted from the l pole 4 into the space where plasma is formed. Similarly, the reaction tank 1 is heated using the external heating furnace 10, and the temperature of the Ω plate 3 is maintained in the range of 500°C to 1200°C.

その状態で管路5.6から供給される窒素源ガスおよび
硼素源ガスを利用し、高周波電源8を駆動し°τ塁根板
3面方にプラズマを形成さu1原料ガスを活性化する。
In this state, using the nitrogen source gas and boron source gas supplied from the pipe 5.6, the high frequency power source 8 is driven to form plasma on three sides of the °τ base plate and activate the u1 raw material gas.

このようにして基板3の表面に硬質窒化硼素が析出され
る。
In this way, hard boron nitride is deposited on the surface of the substrate 3.

なお、上記窒素源ガスおよび硼S源ガスの圧力としては
、1X10− ’ 〜3x102Torr程度でよい。
Note that the pressure of the nitrogen source gas and the borosulfur source gas may be approximately 1×10 −' to 3×10 2 Torr.

上記実施例では、ii加熱された熱電子放射部材として
の?$!穫4による熱電子放射によって原料ガスの熱分
解・活性化が行なわれ、さらに高周波電源8により形成
されたプラズマによる原料ガスの活性化により、反応に
関与する化学種の濃度が高められる。
In the above embodiment, ii) as a heated thermionic emitting member? $! The raw material gas is thermally decomposed and activated by thermionic radiation from the high frequency power source 8, and the raw material gas is further activated by the plasma generated by the high frequency power source 8, thereby increasing the concentration of chemical species involved in the reaction.

また、高周波電源8による給電は、容量結合型の給電で
あるが、一方の電極とじての電極4が熱電子放射部材を
兼ねているため高温に加熱されており、したがって安定
放電の圧力範囲が極めて広<1X10−’〜4X10’
 Torr(7)範囲テノ膜形成を可能としている。
Furthermore, although the power supply by the high-frequency power supply 8 is a capacitively coupled power supply, the electrode 4, which is one of the electrodes, also serves as a thermionic emission member and is therefore heated to a high temperature, so that the pressure range for stable discharge is limited. Extremely wide <1X10-'~4X10'
This makes it possible to form a teno membrane in the Torr(7) range.

さらに、高周波プラズマを発生させるので、基板3が絶
縁材料からなるものであっても、DCプラズマと異なり
プラズマが基板3の表面に発生する。また、窒化ill
素牧はいかなる構造を取った場合であっても高い絶縁性
を有するが、DCプラズマの場合と異なり、コーティン
グ過程で成膜される窒化V11素の表面にもプラズマが
生成する。なお、電力導入側を基板支持材2に接続すれ
ば、基板3に自己バイアスがかけられ、ff0質(結晶
性および純度)をより向上することができる。
Furthermore, since high-frequency plasma is generated, plasma is generated on the surface of the substrate 3, unlike DC plasma, even if the substrate 3 is made of an insulating material. Also, nitride ill
No matter what structure it has, the material has high insulating properties, but unlike the case of DC plasma, plasma is also generated on the surface of the V11 nitride film formed during the coating process. Note that if the power introduction side is connected to the substrate support material 2, a self-bias is applied to the substrate 3, and the ff0 quality (crystallinity and purity) can be further improved.

この発明において用いる硼素源としては、ジボランや3
塩化硼素が好ましく、窒素源としては窒素またはアンモ
ニアが好ましい。もっとも、窒素源と硼素源とを同時に
含有するボラジンを用いることも可能である。
Boron sources used in this invention include diborane and 3
Boron chloride is preferred, and the nitrogen source is preferably nitrogen or ammonia. However, it is also possible to use borazine containing both a nitrogen source and a boron source.

また、反応容器内に導入するガスは、上記原料ガス以外
に、H2、Ar 、Kr 、XeあルイハRnを混合し
て使用しても差支えない。H2を含めて、これらのガス
は形成されるプラズマの強度を調整する役割も果たす。
Further, the gas introduced into the reaction vessel may be a mixture of H2, Ar, Kr, Xe, and RuihaRn in addition to the above-mentioned raw material gases. These gases, including H2, also serve to adjust the intensity of the plasma that is formed.

なお、反応ガス中の窒素原子に対する硼素原子の割合は
、0.01%以上100%以下(?)であることが望ま
しく、この範囲を逸脱すると硬質窒化硼素が生じにくく
なる。
Note that the ratio of boron atoms to nitrogen atoms in the reaction gas is desirably 0.01% or more and 100% or less (?), and if it deviates from this range, hard boron nitride is difficult to form.

熱電子放射材としての電極4の材質に関しては、高温に
おいて蒸気圧が低いこと、ならびに高融点であることが
要求され、さらに当然のことながら熱電子放射能に優れ
ていることが要求される。よッテ、W、Ta 、Moな
どの高融点金属やL a B。
Regarding the material of the electrode 4 as a thermionic emitting material, it is required to have a low vapor pressure at high temperatures and a high melting point, and of course, it is also required to have excellent thermionic emission. High melting point metals such as W, Ta, Mo, and L a B.

などを用いることが好ましい。この熱電子放射部材は上
述したように1500℃以上の温度に加熱して使用する
。この温度よりも低いとhBNや非晶質窒化硼素の析出
が支配的となるからである。
It is preferable to use the following. This thermionic emitting member is used by being heated to a temperature of 1500° C. or higher, as described above. This is because if the temperature is lower than this, precipitation of hBN and amorphous boron nitride becomes dominant.

また、基板3の表面温度は500℃以上1200’C以
下であることが必要であり、この範囲外では硬質窒化硼
素が析出しない。
Further, the surface temperature of the substrate 3 needs to be 500° C. or higher and 1200° C. or lower, and hard boron nitride will not precipitate outside this range.

反応槽1内(7)Il]は1X10− ’ 〜4X10
2T orrの極めて広い範囲でプラズマが安定に形成
・維持することができ硬質窒化硼素の析出を可能とする
が、低圧側では析出速度が極端に低くなるため、該圧力
範囲のうち1X10−’Torr以上がより好ましい。
Inside reaction tank 1 (7) Il] is 1X10-' ~ 4X10
Plasma can be stably formed and maintained in an extremely wide range of 2 Torr, making it possible to deposit hard boron nitride, but the deposition rate becomes extremely low on the low pressure side, so within this pressure range, 1X10-' Torr The above is more preferable.

この発明の合成方法において最も重要な要素は、す板支
)S材2とTi電極との間に形成されるプラズマの強度
である。プラズマ強度は放電電極の形状や構造が異なる
と同一電力を付加した場合でも異なる。したがって、プ
ラズマ強度はプラズマ形成空間の単位体積あたりに励起
電源より投入される電力で表わすことが好ましい。この
実施例では、電力密度が0.05W/c+e’よりも小
さい場合硬質窒化硼素を得ることはできない。また、1
00W/CIl+”よりも大きい場合には強いプラズマ
により基板3がエツチングされ、窒化硼素の析出が困難
となる。より好ましい範囲は0.5W/cm’以上5Q
w/am’であり、適度な速度で蒸着が進行する。
The most important factor in the synthesis method of the present invention is the intensity of the plasma formed between the S material 2 and the Ti electrode. The plasma intensity will vary depending on the shape and structure of the discharge electrode even when the same power is applied. Therefore, it is preferable that the plasma intensity is expressed by the power input from the excitation power source per unit volume of the plasma formation space. In this example, hard boron nitride cannot be obtained if the power density is less than 0.05 W/c+e'. Also, 1
00W/CIl+'', the substrate 3 will be etched by the strong plasma, making it difficult to deposit boron nitride.A more preferable range is 0.5W/cm' or more5Q.
w/am', and the deposition proceeds at a moderate rate.

なお、基板3の表面温度を上記適正な範囲に保持するた
めに、基板支持材2や反応4f11の内壁を冷却するに
置を設けてもよく、それによって基板3の温度を適切な
範囲に保持することも可能である。
In addition, in order to maintain the surface temperature of the substrate 3 within the above-mentioned appropriate range, a device may be provided to cool the substrate support material 2 and the inner wall of the reaction 4f11, thereby maintaining the temperature of the substrate 3 within the appropriate range. It is also possible to do so.

次に、この発明の具体的な実施例につき説明する。Next, specific examples of the present invention will be described.

実施例1 #5000のダイヤモンド砥粒により表面に傷入れ処理
を行なったSiウェハ(大きさは10I10ll10n
+mx0.5mm>を基板3として図示の合成装置を用
いて硬質窒化硼素のコーティングを行なった。
Example 1 A Si wafer (size: 10I10ll10n) whose surface was scratched with #5000 diamond abrasive grains.
+m x 0.5 mm> was used as the substrate 3 and coated with hard boron nitride using the synthesis apparatus shown in the figure.

まず、反応槽1内を1 xl 0−6Torr以下に排
気した後、原料ガスとして水素で希釈したB2H,(8
2Hli  1  %−1(2:99 % ) : 1
scMとH2:11005CをW路6から、またNH,
:1105Cを管路5から別々に反応槽1内に導入し、
反応容器内を0.5Torrに保持した。熱電子放射材
を兼ねる電極としてWフィラメントを使用し、2000
℃以上に一度加熱した後、20W/cm” (7)13
.56MH2の高周波を力を投入し、基板支持材2と電
極4との間にプラズマを形成させた。次に、基板3の表
面温度が900℃となるように上記フィラメント温度を
調整した。この場合、フィラメント−基板3間の距離は
101ffiとした。約3時間のコーティングを行なっ
た後、得られた膜をX線解析したところ、立方晶窒化硼
素の固有の鋭い回折ピークが得られた。また、コーテイ
ング膜の表面をSEMでml;したところ、粒径0.5
〜1μmの明瞭な稜線を有する多結晶の集合体がi察さ
れた。さらに、膜厚は破断面の12察により5μmであ
り、マイクロビッカース硬度の測定で膜の硬度は480
0であることが確められ1こ 。
First, after evacuating the inside of the reaction tank 1 to below 1xl 0-6 Torr, B2H diluted with hydrogen, (8
2Hli 1%-1 (2:99%): 1
scM and H2:11005C from W road 6, and NH,
: 1105C was separately introduced into the reaction tank 1 from the pipe line 5,
The inside of the reaction vessel was maintained at 0.5 Torr. A W filament was used as an electrode that also served as a thermionic emitting material, and 2000
20W/cm” (7) 13 after heating once above ℃
.. A high frequency wave of 56 MH2 was applied to form plasma between the substrate support material 2 and the electrode 4. Next, the filament temperature was adjusted so that the surface temperature of the substrate 3 was 900°C. In this case, the distance between the filament and the substrate 3 was set to 101ffi. After coating for about 3 hours, X-ray analysis of the resulting film revealed sharp diffraction peaks unique to cubic boron nitride. In addition, when the surface of the coating film was analyzed using SEM, the particle size was 0.5
Polycrystalline aggregates with clear edges of ~1 μm were observed. Furthermore, the thickness of the film was 5 μm based on 12 measurements of the fracture surface, and the hardness of the film was 480 μm when measured by micro-Vickers hardness.
It was confirmed that it was 0.

実施例2 市販のISOK−10fflN合金型番5PG422を
用いて基板3とし、実施例1と同じ装置を用いて硬質窒
化硼素のコーティングを行なった。
Example 2 A commercially available ISOK-10fflN alloy model number 5PG422 was used as the substrate 3, and hard boron nitride coating was performed using the same equipment as in Example 1.

熱電子放射部材を兼ねる電極4を構成するフィラメント
と、基板3表面との間の距離を10auaに保持した。
The distance between the filament constituting the electrode 4, which also serves as a thermionic emission member, and the surface of the substrate 3 was maintained at 10 aua.

反応容器内をlX10−’7orr以下に排気した後、
第1表に示す組成の原料ガス、圧力およびRF電力なら
びに基板表面温度にて、それぞれ、コーティングを施し
た。すなわち原料ガスを導入した後、所定の圧力に保持
しつつ、電極4を構成するフィラメントを一旦2000
℃以上の温度に昇温した後、所定のRF電力を付加しプ
ラズマを発生させ、基板3の表面温度を所定の表面温度
となるようにフィラメント温度を調整した。
After evacuating the inside of the reaction vessel to below lx10-'7 orr,
Coating was performed using raw material gases having the compositions shown in Table 1, pressures, RF power, and substrate surface temperatures, respectively. That is, after introducing the raw material gas, the filament constituting the electrode 4 is heated to 2,000 yen while maintaining the predetermined pressure.
After raising the temperature to .degree. C. or higher, a predetermined RF power was applied to generate plasma, and the filament temperature was adjusted so that the surface temperature of the substrate 3 became a predetermined surface temperature.

4時間コーティングした後、得られたコーテイング膜を
X線回折で評価した結果を、第2表に示す。
After coating for 4 hours, the resulting coating film was evaluated by X-ray diffraction, and the results are shown in Table 2.

(以下余白) No、1〜10の試料の内、No、1G;!RF電力が
本発明の適正範囲より低いため、また基材表面温度が低
いため、cBNが得られなかったものと思われる。また
、No8は基材表面温度が高すぎるためhBNが得られ
たものと考えられる。No、2゜3.4.6.7.9お
よび10のコーティングチップを用いて、以下の条件に
て切削試験を行なった。
(Margin below) No. 1G out of samples 1 to 10;! It seems that cBN could not be obtained because the RF power was lower than the appropriate range of the present invention and the substrate surface temperature was low. Moreover, it is considered that hBN was obtained in No. 8 because the base material surface temperature was too high. A cutting test was conducted using coated chips No., 2° 3.4.6.7.9 and 10 under the following conditions.

被削材: 30M415 (Hllc−60)切削速度
:1501/分 送り:0.1n+m/回転 切り込み:0.2mg+ ホルダ:FR21R−44A 切削時間:10分間 切削試験後のフランク摩耗は、N o、 2が10mm
Work material: 30M415 (Hllc-60) Cutting speed: 1501/min Feed: 0.1n+m/rotational depth of cut: 0.2mg+ Holder: FR21R-44A Cutting time: 10 minutes Flank wear after cutting test is No, 2 is 10mm
.

N003が0.981m、No、4が0.06mm、N
o。
N003 is 0.981m, No. 4 is 0.06mm, N
o.

6が0.071m、No、7が0.091m、No、9
が0.13On+m、No、10が0.11On+[’
あった。
6 is 0.071m, No. 7 is 0.091m, No. 9
is 0.13On+m, No, 10 is 0.11On+['
there were.

[発明の効果] 以−りのように、この発明によれば、硼素源と窒電源と
を含む原料ガスを反応槽内に導き、該原料ガスの活性化
を1500℃以上に加熱された熱電子放射材からの熱電
子放射と、基板の前方空間に形成されるプラズマの双方
により行なうため、非晶T:!mや六方晶窒化硼素をほ
とんど含まず、かつ結晶性に優れた硬質窒化硼素(cB
Nならびにウルツ型の硬質窒化硼素)の合成が可使とな
った。
[Effects of the Invention] As described above, according to the present invention, a raw material gas containing a boron source and a nitrogen source is introduced into a reaction tank, and the raw material gas is activated by heat heated to 1500°C or higher. Since this is performed using both thermionic radiation from the electron emitting material and plasma formed in the space in front of the substrate, amorphous T:! Hard boron nitride (cB) contains almost no m or hexagonal boron nitride and has excellent crystallinity.
The synthesis of N and Wurtz-type hard boron nitride has become possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明の一実施例の合成装置を示す略図的断
面図である。 図において、1は反応槽、2は基板支持材、3は基板、
4は熱電子放射部材を兼ねる電極、5゜6は原料ガスを
導入するための管路、8は高周波電源、9は熱電子放射
部材加熱用電源を示す。
The drawing is a schematic cross-sectional view showing a synthesis apparatus according to an embodiment of the present invention. In the figure, 1 is a reaction tank, 2 is a substrate support material, 3 is a substrate,
Reference numeral 4 indicates an electrode that also serves as a thermionic emission member, 5°6 indicates a conduit for introducing raw material gas, 8 indicates a high frequency power source, and 9 indicates a power source for heating the thermionic emission member.

Claims (4)

【特許請求の範囲】[Claims] (1)プラズマCVD法により基板上にて窒化硼素を合
成する方法であつて、 基板を500℃〜1200℃に加熱し、 硼素源および窒素源ガスを基板前方空間に供給し、 前記基板と、基板の前方に所定距離を隔てて対向配置さ
れた電極との間に高周波電源を用いて容量結合型の給電
を行ない高周波電力を印加し、かつ 前記基板の前方に配置されており、かつ1500℃以上
に加熱された熱電子放射部材に電圧を印加して熱電子を
基板前方空間に放射することを特徴とする、窒化硼素の
合成方法。
(1) A method of synthesizing boron nitride on a substrate by a plasma CVD method, which comprises heating the substrate to 500°C to 1200°C, supplying a boron source and a nitrogen source gas to a space in front of the substrate, and A capacitively coupled power supply is applied using a high frequency power supply between electrodes that are arranged facing each other at a predetermined distance in front of the substrate, and high frequency power is applied between the electrodes that are arranged in front of the substrate at a temperature of 1500°C. A method for synthesizing boron nitride, the method comprising applying a voltage to the heated thermionic emitting member to radiate thermionic electrons into the space in front of the substrate.
(2)前記電極として前記熱電子放射部材を兼ねるもの
を用いる、特許請求の範囲第1項記載の窒化硼素の合成
方法。
(2) The method for synthesizing boron nitride according to claim 1, wherein the electrode also serves as the thermionic emission member.
(3)プラズマCVD法により基板表面にて窒化硼素を
合成するための装置であって、 基板を支持する基板支持材と、 前記基板支持材と所定距離を隔てて基板支持材の前方に
対向配置された電極と、 前記基板支持材と電極とに接続されており、基板支持材
と電極との間に高周波電力を印加するための高周波電源
と、 前記基板支持材の前方に硼素源および窒素源ガスを供給
するガス供給手段と、 前記基板支持材の前方空間に熱電子を放射する熱電子放
射手段とを備える、窒化硼素の合成装置。
(3) An apparatus for synthesizing boron nitride on the surface of a substrate by a plasma CVD method, the device comprising: a substrate support material that supports the substrate; and a predetermined distance from the substrate support material and opposing arrangement in front of the substrate support material. a high-frequency power supply connected to the substrate support material and the electrode for applying high-frequency power between the substrate support material and the electrode; and a boron source and a nitrogen source in front of the substrate support material. A boron nitride synthesis apparatus, comprising: a gas supply means for supplying gas; and a thermionic emission means for emitting thermoelectrons into a space in front of the substrate support material.
(4)前記電極は、前記熱電子放射部材を兼ねる、特許
請求の範囲第3項記載の窒化硼素の合成装置。
(4) The boron nitride synthesis apparatus according to claim 3, wherein the electrode also serves as the thermionic emission member.
JP27437786A 1986-11-18 1986-11-18 Method and apparatus for synthesizing hard boron nitride Pending JPS63128179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27437786A JPS63128179A (en) 1986-11-18 1986-11-18 Method and apparatus for synthesizing hard boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27437786A JPS63128179A (en) 1986-11-18 1986-11-18 Method and apparatus for synthesizing hard boron nitride

Publications (1)

Publication Number Publication Date
JPS63128179A true JPS63128179A (en) 1988-05-31

Family

ID=17540810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27437786A Pending JPS63128179A (en) 1986-11-18 1986-11-18 Method and apparatus for synthesizing hard boron nitride

Country Status (1)

Country Link
JP (1) JPS63128179A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240265A (en) * 1989-03-14 1990-09-25 Mitsubishi Heavy Ind Ltd Production of cubic boron nitride
JPH02254168A (en) * 1989-03-27 1990-10-12 Yukio Ichinose Production of boron nitride
JPH038705A (en) * 1989-06-02 1991-01-16 Mitsubishi Heavy Ind Ltd Production of boron nitride
US5463901A (en) * 1991-09-27 1995-11-07 Sumitomo Electric Industries, Ltd. Stacked piezoelectric surface acoustic wave device with a boron nitride layer in the stack
DE4239132C2 (en) * 1991-11-20 2002-06-06 Denso Corp Method of fabricating an integrated pressure sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196710A (en) * 1981-05-25 1982-12-02 Semiconductor Energy Lab Co Ltd Plasma vapor phase method
JPS58156594A (en) * 1982-03-08 1983-09-17 Sumitomo Electric Ind Ltd Preparation of hard coating film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196710A (en) * 1981-05-25 1982-12-02 Semiconductor Energy Lab Co Ltd Plasma vapor phase method
JPS58156594A (en) * 1982-03-08 1983-09-17 Sumitomo Electric Ind Ltd Preparation of hard coating film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240265A (en) * 1989-03-14 1990-09-25 Mitsubishi Heavy Ind Ltd Production of cubic boron nitride
JPH02254168A (en) * 1989-03-27 1990-10-12 Yukio Ichinose Production of boron nitride
JPH038705A (en) * 1989-06-02 1991-01-16 Mitsubishi Heavy Ind Ltd Production of boron nitride
US5463901A (en) * 1991-09-27 1995-11-07 Sumitomo Electric Industries, Ltd. Stacked piezoelectric surface acoustic wave device with a boron nitride layer in the stack
DE4239132C2 (en) * 1991-11-20 2002-06-06 Denso Corp Method of fabricating an integrated pressure sensor

Similar Documents

Publication Publication Date Title
EP0476825B1 (en) A process for the synthesis of hard boron nitride
US5368897A (en) Method for arc discharge plasma vapor deposition of diamond
JP3605634B2 (en) Vapor phase synthesis of cubic boron nitride
JP4115545B2 (en) Method for reactively processing a workpiece, vacuum processing apparatus, and use of the same and apparatus
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JP2501589B2 (en) Vapor-phase synthetic diamond and its synthesis method
JPS6395200A (en) Production of hard boron nitride film
JP3476232B2 (en) Method for synthesizing C3N4 by plasma arc method
JP2569423B2 (en) Gas phase synthesis of boron nitride
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPH0481552B2 (en)
JPS6369973A (en) Production of cubic boron nitride film
JPH064915B2 (en) Method for synthesizing cubic boron nitride
JP2762561B2 (en) Method of synthesizing diamond film
JPH0419197B2 (en)
JPS63190170A (en) Production of hard boron nitride and synthetic apparatus therefor
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPS6369972A (en) Production of cubic boron nitride film
JPH0649635B2 (en) Diamond synthesis method
JPS62280364A (en) Method for synthesizing hard boron nitride
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPH08225394A (en) Method for carrying out vapor phase synthesis of diamond
JPH03199378A (en) Method for synthesizing boron nitride thin film
JPS62260062A (en) Method for synthesizing high hardness boron nitride
JPH01104775A (en) Method for synthesizing high-hardness boron nitride