JPS62162367A - Composite having carbon coat - Google Patents

Composite having carbon coat

Info

Publication number
JPS62162367A
JPS62162367A JP61277520A JP27752086A JPS62162367A JP S62162367 A JPS62162367 A JP S62162367A JP 61277520 A JP61277520 A JP 61277520A JP 27752086 A JP27752086 A JP 27752086A JP S62162367 A JPS62162367 A JP S62162367A
Authority
JP
Japan
Prior art keywords
carbon
composite
substrate
pin junction
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61277520A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP61277520A priority Critical patent/JPS62162367A/en
Publication of JPS62162367A publication Critical patent/JPS62162367A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To obtain a semiconductor film or a wear-resistant film having a good contact property by arranging a composite of a coat mainly consisting of carbon comprising PIN junction on a substrate made of glass etc. by decomposing a gas of hydrocarbon group. CONSTITUTION:C2H8 8 is introduced by using H2 7 as a carrier and it is excited 4 and decomposed and heated 9 to 150-450 deg.C. By applying a high-frequency energy 2 intensively, uncoupled coupling hands of C are bumped against one another to make covalent bonds and a fine crystal carbon of 5-200Angstrom in size is spread over a substrate heated 11 to 150-450 deg.C. This carbon has a hardness similar to that of diamond and has an insulating property and H in C is 25% or under. At the time of excitation 4, B or P are doped to 0.1-5mol% to make it P- or N-type and a PIN junction is formed. An optical energy Eg is smaller in the I-layer compared with the P- and N-layers. In the P- and N-layers, Eg is selected as 2.6-4.5eV and 2-3eV in the I-layer. This carbon coat can be applied to a wear-resistant material or the light receiving and emitting elements having a PIN junction.

Description

【発明の詳細な説明】 本発明は、ガラス、金属またはセラミックス上に炭素被
膜をコーティングしようとするものであり、特にアセチ
レン、メタンのような炭化水素気体をプラズマ雰囲気中
に導入し分解せしめることにより、C−C結合を作り、
結果としてグラファイトのような導電性または不良導電
性の炭素を作るのではなく、光学的エネルギバンド中(
Egという)が2. OeV以上、好ましくは2.6〜
4.5eVを有するダイヤモンドに類似の絶縁性の炭素
を形成することを特徴としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention attempts to coat glass, metal, or ceramics with a carbon film, and in particular, by introducing a hydrocarbon gas such as acetylene or methane into a plasma atmosphere and decomposing it. , make a C-C bond,
As a result, rather than making carbon conductive or poorly conductive like graphite, it is
Eg) is 2. OeV or more, preferably 2.6~
It is characterized by the formation of insulating carbon similar to diamond with a voltage of 4.5 eV.

本発明はこの炭素に■価またはV価の不純物を5モル%
以下に添加し、PまたはN型の導電型を有せしめる。
In the present invention, this carbon contains 5 mol% of valent or V-valent impurities.
It is added below to have P or N type conductivity.

さらにこの本発明の炭素は、その硬度も4500Kg/
mm”以上、代表的には6500Kg/mm”というダ
イヤモンド類似の硬さを有する。そしてその結晶学的構
造はアモルファス(非晶質)または5〜200人の大き
さの微結晶性を有している。またこの炭素は水素、ハロ
ゲン元素が25モル%以下の量を同時に含有している。
Furthermore, the carbon of the present invention has a hardness of 4500 kg/
It has a hardness similar to that of diamond, typically 6,500 Kg/mm. Its crystallographic structure is amorphous or microcrystalline with a size of 5 to 200 people. Further, this carbon simultaneously contains hydrogen and halogen elements in an amount of 25 mol % or less.

さらに本発明の炭素は珪素がSi/C≦0.25の濃度
に添加されたいわゆる炭素を主成分とする炭素をも意味
する。
Furthermore, the carbon of the present invention also means carbon whose main component is so-called carbon to which silicon is added at a concentration of Si/C≦0.25.

本発明はこれらの炭素(以下本発明においては単に炭素
という)をガラス、金属またはセラミックス上に設けた
複合体を設けたものである。
The present invention provides a composite body in which these carbons (hereinafter simply referred to as carbon in the present invention) are provided on glass, metal, or ceramics.

本発明は、この炭素を形成させる際の基板に加える温度
を150〜450℃とし、従来より知られたCVD法に
おいて用いられる基板の温度に比べ500〜1500℃
も低い温度で形成したことを他の特徴とする。
In the present invention, the temperature applied to the substrate when forming this carbon is 150 to 450°C, which is 500 to 1500°C compared to the temperature of the substrate used in the conventional CVD method.
Another feature is that it was formed at a low temperature.

また本発明はこの炭素に■価の不純物であるホウ素を0
.1〜5モル%の濃度に添加し、P型の炭素を設け、ま
た7価の不純物であるリンを同様に0.1〜5モル%の
濃度に添加し、N型の炭素を設けることにより、この基
板上面の炭素をグラファイト構造とは異なる価電子制御
による半導電性を有せしめたことを他の特徴としている
In addition, the present invention eliminates boron, which is a valent impurity, to this carbon.
.. By adding phosphorus, a heptavalent impurity, to a concentration of 0.1 to 5 mol% and providing N-type carbon, P-type carbon is added to a concentration of 1 to 5 mol%. Another feature is that the carbon on the upper surface of this substrate has semiconductivity due to valence electron control, which is different from that of graphite structure.

さらに本発明は、この基板上にPIN接合またはNIP
接合を有する炭素を設けることにより、ダイオード特性
を有する半導体的特性を有せしめることを特徴としてい
る。
Furthermore, the present invention provides a PIN junction or NIP bond on this substrate.
By providing carbon with a junction, it is characterized by having semiconductor characteristics having diode characteristics.

さらに本発明の複合体はバルブ、耐磨耗材料、またはP
IN型を有する半導体としての装置例えば受光または発
光素子への応用が可能である。
Further, the composite of the present invention may be used as a valve, wear-resistant material, or P.
It is possible to apply it to a device as an IN type semiconductor, such as a light receiving or light emitting device.

以下に図面に従って本発明に用いられた複合体またはそ
の複合体の作製方法を記す。
The composite used in the present invention and the method for producing the composite will be described below according to the drawings.

実施例1 第1図は本発明の炭素を形成するためのプラズマCVD
装置の概要を示す。
Example 1 Figure 1 shows plasma CVD for forming carbon of the present invention.
An overview of the device is shown.

図面において反応性気体である炭化水素気体、例えばア
セチレンが(8)よりバルブ、流量計(5)をへて反応
系中の励起室(4)に導入される。さらに必要に応じて
、キャリアガスを水素またはへリュームにより(7)よ
りバルブ、流量計(6)をへて同様に励起室に至る。こ
こに■価または7価の不純物、例えばジボランまたはフ
ォスヒンを導入する場合はさらに同様にこの系に加えれ
ばよい。
In the drawing, a hydrocarbon gas, such as acetylene, which is a reactive gas, is introduced from (8) through a valve and a flow meter (5) into an excitation chamber (4) in the reaction system. Furthermore, if necessary, the carrier gas is supplied with hydrogen or helium (7) through a valve and a flow meter (6), and similarly reaches the excitation chamber. If a valent or heptavalent impurity, such as diborane or phosphin, is to be introduced here, it may be added to the system in the same manner.

これらの反応性気体は2.45GIIzのマイクロ波に
よる電磁エネルギにより0.1〜5に−のエネルギを加
えられ、励起室にて活性化、分解または反応させられる
。さらにこの反応性気体は反応炉(1)にて加熱炉(9
)により150〜450℃に加熱させ、さらに13.5
6M1lzの高周波エネルギ(2)により反応、重合さ
れ、C−C結合を多数形成した炭素を生成する。この際
、゛加える電磁エネルギが小さい場合はアモルファス構
造の炭素が生成される。他方、この電磁エネルギを強く
加えた場合は5〜200人の大きさのダイヤモンド形状
の微結晶性を有する炭素を生成させ得る。この反応は電
源(13)によりヒータ(11)を加熱し、さらにその
上の基板(10)を加熱して行う。そしてこの基板の上
面に被膜として反応生成物の炭素被膜が形成される。反
応後の不要物は排気口(12)よりロータリーポンプを
経て排気される。反応室(1)は0.001〜10to
rr代表的には0.1〜0.5torrに保持されてお
り、マイクロ波(3)、高周波(2)のエネルギにより
反応室(1)内はプラズマ状態が生成される。特に1G
IIz以上の周波数にあっては、C−H結合より水素を
分離し、0.1〜50MIIzの周波数にあってはC=
C結合、C=C結合を分解し、> C−C<結合または
−C−C−結合を作り、炭素の不対結合手同志を互いに
衝突させて共有結合させ、安定なダイヤモンド構造を有
せしめた。
These reactive gases are activated, decomposed or reacted in an excitation chamber by applying an energy of 0.1 to 5 - by microwave electromagnetic energy of 2.45 GIIz. Furthermore, this reactive gas is heated in a heating furnace (9) in a reactor (1).
) to 150-450°C, and further heated to 13.5°C.
It is reacted and polymerized by the high frequency energy (2) of 6M1lz to produce carbon having a large number of C--C bonds. At this time, if the applied electromagnetic energy is small, carbon with an amorphous structure is produced. On the other hand, if this electromagnetic energy is strongly applied, diamond-shaped microcrystalline carbon with a size of 5 to 200 people can be produced. This reaction is carried out by heating the heater (11) with the power source (13) and further heating the substrate (10) thereon. Then, a carbon film of the reaction product is formed as a film on the upper surface of this substrate. Unwanted substances after the reaction are exhausted from the exhaust port (12) via a rotary pump. Reaction chamber (1) is 0.001 to 10to
rr is typically maintained at 0.1 to 0.5 torr, and a plasma state is generated in the reaction chamber (1) by the energy of microwaves (3) and high frequency waves (2). Especially 1G
At frequencies above IIz, hydrogen is separated from the C-H bond, and at frequencies from 0.1 to 50 MIIz, C=
Decomposes C bonds and C=C bonds, creates >C-C< bonds or -C-C- bonds, and causes the unpaired bonds of carbon to collide with each other to covalently bond, creating a stable diamond structure. Ta.

かくしてガラス、金属、セラミックスよりなる被形成面
を有する基板上に炭素特に炭素中に水素を25モル%以
下含有する炭素またP、IまたはN型の導電型を有する
炭素を形成させた。
In this way, carbon, particularly carbon containing 25 mol % or less of hydrogen in carbon, or carbon having a conductivity type of P, I or N type, was formed on a substrate having a surface made of glass, metal or ceramics.

実施例2 第2図(^)は第1図の製造装置により作られた複合体
の一例である。第2図(A)はガラスの上にPまたはN
型の導電型を有する炭素膜を形成させた。この電気伝導
率は10” 〜10−”(0cm) −’を有し、自動
車の窓の内表面に設けて、ここに電流を0、O1〜IA
流すことにより発熱せしめ、雨等の環境による曇どめを
実施せしめた。
Example 2 FIG. 2 (^) is an example of a composite manufactured by the manufacturing apparatus shown in FIG. 1. Figure 2 (A) shows P or N on the glass.
A carbon film having the same conductivity type was formed. It has an electrical conductivity of 10" to 10-"(0cm)-', and is installed on the inner surface of a car window, where a current of 0, O1 to IA is applied.
By flushing, it generates heat and prevents fogging caused by rain or other environmental conditions.

これは自動車のみならず、多くの分野においてその応用
が可能である。
This can be applied not only to automobiles but also to many other fields.

実施例3 第2図(B)は実施例1を用いた本発明方法によってこ
の炭素(22)を基板(20)の表面全面に形成したも
のである。かかる炭素を板状の基板のみならず任意の形
状を有する基体(20)にも形成して、複合体とし得る
。更にこの複合体は切さく機の歯、耐摩耗性表面を有せ
しめる金属またはセラミックの表面とし得る。
Example 3 In FIG. 2(B), this carbon (22) was formed on the entire surface of a substrate (20) by the method of the present invention using Example 1. Such carbon can be formed not only on a plate-shaped substrate but also on a base (20) having an arbitrary shape to form a composite. Additionally, the composite may be a cutting machine tooth, a metal or ceramic surface providing a wear-resistant surface.

実施例4 第2図(C)は実施例1の作製方法によって得られた炭
素を用いた複合体の例である。即ち円錐状の穴があけら
れた被形成面を有するセラミックまたは金属の基板の表
面に炭素(22)を0.1〜3μの厚さに設けである。
Example 4 FIG. 2(C) is an example of a composite using carbon obtained by the manufacturing method of Example 1. That is, carbon (22) is provided to a thickness of 0.1 to 3 .mu.m on the surface of a ceramic or metal substrate having a surface on which conical holes are formed.

穴(23) 、 (23’)をインクジェット又は光通
信用の石英の紡錘ジグに用いる場合、0.05〜5μの
大きさを有し、かつこの穴が耐摩耗性を必要とするため
、かかる複合体はきわめて好都合であった。この炭素を
コーティングしないものに比べて、102〜10’倍も
の耐久性を有していた。
When the holes (23) and (23') are used in a quartz spindle jig for inkjet or optical communication, they have a size of 0.05 to 5μ, and these holes require wear resistance. The complex was extremely convenient. The durability was 102 to 10' times higher than that without carbon coating.

実施例5 第2図(ロ)は実施例1に示される方法で形成される炭
素を用いた本発明の他の複合体の実施例を示す。即ち基
板(20)上にPIN接合をまたは旧P接合を有する価
電子制御用の炭素を設けたものである。即ちPまたはN
型の炭素半導体(25)、I型の炭素、NまたはP型の
炭素半導体(27)よりなる炭素半導体(24)である
。このPまたはN型の炭素層は0.01〜5モル%例え
ば1〜3モル%の濃度にホウ素またはリンを添加した。
Example 5 FIG. 2(b) shows an example of another composite of the present invention using carbon formed by the method shown in Example 1. That is, carbon for controlling valence electrons having a PIN junction or a former P junction is provided on the substrate (20). i.e. P or N
The carbon semiconductors (24) include a type carbon semiconductor (25), an I type carbon semiconductor, and an N or P type carbon semiconductor (27). This P or N type carbon layer is doped with boron or phosphorus at a concentration of 0.01 to 5 mol%, for example 1 to 3 mol%.

これは(28)の部分にリフトオフ用の材料を選択的に
設け、全面に形成した後、リフトオフを第3図の製造方
法と同様の方法を用いて得たものである。本発明は基板
の全面に炭素を形成してもまたPN接合またはその他の
構造を設けてもよい。
This was obtained by selectively providing a material for lift-off in the portion (28) and forming it on the entire surface, and then using a method similar to the manufacturing method shown in FIG. 3 to perform lift-off. In the present invention, carbon may be formed on the entire surface of the substrate, or a PN junction or other structure may be provided.

この半導体のうち、炭素層(26)のエネルギバンド巾
は他の炭素層(25) 、 (27)に比べて小さく、
珪素またはゲルマニュームを添加して形成し、ここに電
極(29)を設け、縦方向に電流を基板との間に流すこ
とにより炭素の発光素子を基板上に集積化して設けるこ
とができた。かかる発光素子とする複合体にあっては、
基板はステンレス等の導体であることが必要である。こ
の場合、炭素層(25)、炭素層(27)はエネルギバ
ンド巾が2.6〜4.5eVであり、また炭素N (2
6)は2〜3eVとすることによって白色または緑、青
等の色の発光素子を基板上に設けることができた。
Among these semiconductors, the energy band width of the carbon layer (26) is smaller than that of the other carbon layers (25) and (27).
By adding silicon or germanium, providing an electrode (29) thereon, and passing a current between the substrate and the substrate in the vertical direction, a carbon light emitting element could be integrated and provided on the substrate. In such a composite body as a light emitting element,
The substrate must be made of a conductor such as stainless steel. In this case, the carbon layer (25) and the carbon layer (27) have an energy band width of 2.6 to 4.5 eV, and carbon N (2
In 6), by setting the voltage to 2 to 3 eV, it was possible to provide white, green, blue, or other colored light emitting elements on the substrate.

炭素被膜の選択的な除去方法として、基板全面に設けら
れた炭素に対し、酸化物雰囲気中にてレーザ光を選択的
にコンピュータ制御により行い、不要の部分の炭素を酸
化して炭酸ガスとして放出して除去する。このレーザ光
による選択エツチングは実施例2〜5に対しても、その
工業的応用に関して任意に用いることができる。
As a method for selectively removing the carbon film, laser light is selectively applied to the carbon provided on the entire surface of the substrate in an oxide atmosphere under computer control, and the unnecessary carbon is oxidized and released as carbon dioxide gas. and remove it. This selective etching using laser light can also be used in Examples 2 to 5 as desired for industrial applications.

以上の説明より明らかな如く、本発明はガラス、金属ま
たはセラミックの表面または内部に炭素または炭素を主
成分とした被膜をコーティングして設けたものである。
As is clear from the above description, the present invention provides a film in which carbon or a film containing carbon as a main component is coated on the surface or inside of glass, metal, or ceramic.

この複合体は他の多くの実施例にみられる如く、その応
用は計り知れないものであり、特にこの炭素が450℃
以下の低温で形成され、その硬度また基板に対する密着
性がきわめて優れているのが特徴である。
As seen in many other examples, the applications of this composite are immeasurable, especially when this carbon is heated to 450°C.
It is characterized by its extremely high hardness and excellent adhesion to the substrate.

本発明におけるセラミックはアルミナ、ジルコニア、ま
たはそれらに炭素またはランタン等の希土類元素が添加
された任意の材料を用いることができる。また金属にあ
っては、ステンレス、モリブデン、タングステン等の少
なくとも300〜450℃の温度に耐えられる材料なら
ばすべてに応用可能である。またガラスは石英のみなら
ずソーダガラス等に対しても被膜化が可能であり、その
応用はきわめて広い。
As the ceramic in the present invention, alumina, zirconia, or any material to which a rare earth element such as carbon or lanthanum is added can be used. Furthermore, as for metals, any material such as stainless steel, molybdenum, tungsten, etc. that can withstand temperatures of at least 300 to 450° C. can be used. Further, glass can be coated not only on quartz but also on soda glass, etc., and its applications are extremely wide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の炭素を被形成面上に作製する製造装置
の概要を示す。 第2図(^)〜(D)は本発明の複合体の実施例を示す
FIG. 1 shows an outline of a manufacturing apparatus for manufacturing carbon of the present invention on a surface to be formed. FIGS. 2(^) to (D) show examples of composites of the present invention.

Claims (1)

【特許請求の範囲】 1、PINまたはNIP接合を有するとともに、炭素を
主成分とすることを特徴とする炭素被膜を有する複合体
。 2、特許請求の範囲第1項において、PまたはN型半導
体に比べてI型半導体は小さいエネルギバンド巾は有す
ることを特徴とする炭素被膜を有する複合体。 3、特許請求の範囲第1項において、PおよびN型半導
体は2.6〜4.5eVの光学的エネルギバンド巾を有
し、I型半導体は2〜3eVのエネルツギバンド巾を有
することを特徴とする炭素被膜を有する複合体。 4、特許請求の範囲第1項において、炭素は微結晶性を
有することを特徴とする炭素被膜を有する複合体。
[Claims] 1. A composite having a PIN or NIP junction and a carbon coating characterized by containing carbon as a main component. 2. A composite material having a carbon film according to claim 1, wherein the I-type semiconductor has a smaller energy band width than the P- or N-type semiconductor. 3. Claim 1 states that the P and N type semiconductors have an optical energy band width of 2.6 to 4.5 eV, and the I type semiconductor has an energy band width of 2 to 3 eV. A composite material with a characteristic carbon coating. 4. A composite body having a carbon coating according to claim 1, wherein the carbon has microcrystalline properties.
JP61277520A 1986-11-19 1986-11-19 Composite having carbon coat Pending JPS62162367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61277520A JPS62162367A (en) 1986-11-19 1986-11-19 Composite having carbon coat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61277520A JPS62162367A (en) 1986-11-19 1986-11-19 Composite having carbon coat

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56146930A Division JPS5848428A (en) 1981-09-17 1981-09-17 Compound material having carbon film and manufacture therefor

Publications (1)

Publication Number Publication Date
JPS62162367A true JPS62162367A (en) 1987-07-18

Family

ID=17584736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61277520A Pending JPS62162367A (en) 1986-11-19 1986-11-19 Composite having carbon coat

Country Status (1)

Country Link
JP (1) JPS62162367A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033497A (en) * 2000-07-14 2002-01-31 Nihon University Solar cell and panel thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143180A (en) * 1977-05-18 1978-12-13 Energy Conversion Devices Inc Amorphous semiconductor structure and method of producing same
JPS5464981A (en) * 1977-10-12 1979-05-25 Energy Conversion Devices Inc High temperature amorphous semiconductor member and method of producing same
JPS5511329A (en) * 1978-07-08 1980-01-26 Shunpei Yamazaki Semiconductor device
JPS5513938A (en) * 1978-07-17 1980-01-31 Shunpei Yamazaki Photoelectronic conversion semiconductor device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143180A (en) * 1977-05-18 1978-12-13 Energy Conversion Devices Inc Amorphous semiconductor structure and method of producing same
JPS5464981A (en) * 1977-10-12 1979-05-25 Energy Conversion Devices Inc High temperature amorphous semiconductor member and method of producing same
JPS5511329A (en) * 1978-07-08 1980-01-26 Shunpei Yamazaki Semiconductor device
JPS5513938A (en) * 1978-07-17 1980-01-31 Shunpei Yamazaki Photoelectronic conversion semiconductor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033497A (en) * 2000-07-14 2002-01-31 Nihon University Solar cell and panel thereof

Similar Documents

Publication Publication Date Title
EP0946959B1 (en) Diamond fim deposition method
KR100852329B1 (en) Method for Manufacturing Diamond-Like Carbon Film
US5902650A (en) Method of depositing amorphous silicon based films having controlled conductivity
US4292343A (en) Method of manufacturing semiconductor bodies composed of amorphous silicon
JPS5848428A (en) Compound material having carbon film and manufacture therefor
Wang et al. Multiphase structure of hydrogenated amorphous silicon carbide thin films
JPS62167886A (en) Composite body having carbon film
KR100262259B1 (en) Diamond film and process for preparing the same
JPS62162366A (en) Composite having carbon coat
JPS62162367A (en) Composite having carbon coat
Schmolla et al. LOW-TEMPERATURE DOUBLE-PLASMA PROCESS FOR BN FILMS ON SEMICONDUCTORS
JPH0427691B2 (en)
JPS62167884A (en) Composite body having carbon film
KR100334351B1 (en) Low temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same
Gupta et al. Electrical conductivity studies of chemical vapor deposited sulfur-incorporated nanocomposite carbon thin films
JPH0757472B2 (en) Polishing tool coated with carbon film and method for producing the same
JPS62180073A (en) Amorphous carbon film and its production
KR20020086222A (en) A method of producing a diamond film and a diamond film produced thereby
JPH0427690B2 (en)
JPH04175295A (en) Production of semiconductive diamond
JPH1081589A (en) Diamond film and its production
JPH02283078A (en) Light emitting element
JPS62161960A (en) Formation of complex having carbon film
JPH01157411A (en) Removing method for carbon
JPH02244045A (en) Photomask