JPH01157411A - Removing method for carbon - Google Patents

Removing method for carbon

Info

Publication number
JPH01157411A
JPH01157411A JP63292201A JP29220188A JPH01157411A JP H01157411 A JPH01157411 A JP H01157411A JP 63292201 A JP63292201 A JP 63292201A JP 29220188 A JP29220188 A JP 29220188A JP H01157411 A JPH01157411 A JP H01157411A
Authority
JP
Japan
Prior art keywords
carbon
substrate
glass
ceramic
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63292201A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP63292201A priority Critical patent/JPH01157411A/en
Publication of JPH01157411A publication Critical patent/JPH01157411A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and selectively remove a carbonaceus material coated on a substrate, ceramic, glass, etc., with plasma CVD, having a hardness similar to diamond, by subjecting the carbonaceus material to changing into CO2 in the oxide atmosphere with a computer controlled laser beam. CONSTITUTION:Reactive gas 8 such as C2H2 and carrier gas 7 such as H2, He are introduced to an exciting chamber 4, activated with electromagnetic energy 3 such as microwave, etc., to react or decompose, and sent to a reaction furnace 1. In the reaction furnace, they are reacted and polymerized by high frequency energy 2, together with heating at 150-450 deg.C in a heater 9 and thereby, the substrate 10 made of metal, ceramic, etc., heated with a heater 11 is coated with formed carbon having the hardness and insulation performance similar to diamond. Then, by selectively irradiating the carbon formed on the carbon-coated substrate with laser by controlling with a computer in the oxide atmosphere, the carbon is oxidized and changed to CO2 in a desired pattern to remove.

Description

【発明の詳細な説明】 本発明は、光学的バンド巾が2.OeV以上、特に2.
6〜4.5eVを有する炭素または炭素を主成分とする
被膜をガラス、金属またはセラミックの表面にコーティ
ングすることにより、ガラス板の補強材、また機械的ス
トレスに対する保護材を得んとしている複合体等を除去
する技術に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention has an optical bandwidth of 2. OeV or more, especially 2.
A composite material intended to provide a reinforcing material for glass plates and a protective material against mechanical stress by coating the surface of glass, metal, or ceramic with carbon or a film mainly composed of carbon having a voltage of 6 to 4.5 eV. Regarding the technology for removing etc.

本発明で対象する炭素は、ガラス、金属またはセラミッ
クス上に炭素被膜をコーティングし、その機械的強度を
補強しようとするものであり、特にアセチレン、メタン
のような炭化水素気体をプラズマ雰囲気中に導入し分解
せしめることにより、C−C結合を作り、結果としてグ
ラファイトのような導電性または不良導電性の炭素を作
るのではなく、光学的エネルギバンド巾(Egという)
が2、OeV以上、好ましくは2.6〜4.5eVを有
するダイヤモンドに類似の絶縁性の炭素を形成すること
を特徴としている。さらにこの本発明の炭素は、その硬
度も4500Kg/mm”以上、代表的には6500K
g/mm2というダイヤモンド類似の硬さを有する。そ
してその結晶学的構造はアモルファス(非晶質)または
5〜200人の大きさの微結晶性を有している。またこ
の炭素は水素、ハロゲン元素が25モル%以下の量を同
時に含有している。
Carbon, which is the object of the present invention, is used to coat glass, metal, or ceramics with a carbon film to strengthen their mechanical strength, and in particular, hydrocarbon gases such as acetylene and methane are introduced into the plasma atmosphere. Rather than creating C-C bonds and resulting in conductive or poorly conductive carbon such as graphite, the optical energy band width (Eg) is
is characterized by the formation of insulating carbon similar to diamond, which has a voltage of 2.0 eV or more, preferably 2.6 to 4.5 eV. Furthermore, the carbon of the present invention has a hardness of 4500Kg/mm or more, typically 6500K.
It has a hardness of g/mm2 similar to diamond. Its crystallographic structure is amorphous or microcrystalline with a size of 5 to 200 people. Further, this carbon simultaneously contains hydrogen and halogen elements in an amount of 25 mol % or less.

本発明はこれらの炭素(以下本発明においては単に炭素
という)をガラス、金属またはセラミックス上に設けた
複合体等除去することに関する。
The present invention relates to removing these carbons (hereinafter simply referred to as carbon in the present invention) from composites provided on glass, metal, ceramics, etc.

この炭素は形成させる際の基板に加える温度を150〜
450℃とし、従来より知られたCVD法において用い
られる基板の温度に比べ500〜1500℃も低い温度
で形成したことを他の特徴とする。
When forming this carbon, the temperature applied to the substrate is 150~
Another feature is that it is formed at a temperature of 450° C., which is 500 to 1500° C. lower than the temperature of the substrate used in the conventionally known CVD method.

またこの炭素に■価の不純物であるホウ素を0゜1〜5
モル%の濃度に添加し、P型の炭素を設け、また7価の
不純物であるリンを同様に0.1〜5モル%の濃度に添
加し、N型の炭素を設けることにより、この基板上面の
炭素をグラファイト構造とは異なる価電子制御による半
導電性を有せしめたことを他の特徴としている。
In addition, boron, which is a valent impurity, is added to this carbon by 0°1 to 5
By adding P-type carbon to a concentration of 0.1 to 5 mol% and providing P-type carbon, and also adding phosphorus, which is a heptavalent impurity, to a concentration of 0.1 to 5 mol% to provide N-type carbon, this substrate Another feature is that the carbon on the top surface has semiconductivity due to valence electron control, which is different from the graphite structure.

さらにこの基板上にPIN接合またはNIP接合を有す
る炭素を設けることにより、ダイオード特性を有する半
導体的特性を有せしめることを特徴としている。
Furthermore, by providing carbon having a PIN junction or NIP junction on this substrate, it is characterized in that it has semiconductor characteristics having diode characteristics.

また本発明は基板特にガラスまたはセラミックを用い、
その後この基板の一部を選択的に除去してインクジェッ
トノズル、光通信用石英ガラスの引き出し用ノズルとし
て設けるものである。
Further, the present invention uses a substrate, particularly glass or ceramic,
Thereafter, a part of this substrate is selectively removed and provided as an inkjet nozzle or a nozzle for extracting quartz glass for optical communication.

またガラス基板上に選択的に炭素被膜を設け、電子ビー
ム露光装置または紫外線の露光装置のフォトマスクとし
て用いることを他の特徴としている。
Another feature is that a carbon film is selectively provided on a glass substrate and used as a photomask for an electron beam exposure device or an ultraviolet exposure device.

さらに本発明の複合体はバルブ、耐磨耗材料、またはP
IN型を有する半導体としての装置例えば受光または発
光素子への応用が可能である。
Further, the composite of the present invention may be used as a valve, wear-resistant material, or P.
It is possible to apply it to a device as an IN type semiconductor, such as a light receiving or light emitting device.

以下に図面に従って本発明に用いられた複合体の作製方
法を記す。
The method for producing the composite used in the present invention will be described below according to the drawings.

被膜作製例1 第1図は本発明で用いる炭素を形成するためのプラズマ
CVD装置の概要を示す。
Film Preparation Example 1 FIG. 1 shows an outline of a plasma CVD apparatus for forming carbon used in the present invention.

図面において反応性気体である炭化水素気体、例えばア
セチレンが(8)よりバルブ、流量計(5)をへて反応
系中の励起室(4)に導入される。さらに必要に応じて
、キャリアガスを水素またはへリュームにより(7)よ
りバルブ、流量計(6)をへて同様に励起室に至る。こ
こに■価または7価の不純物、例えばジボランまたはフ
ォスヒンを導入する場合はさらに同様にこの系に加えれ
ばよい。
In the drawing, a hydrocarbon gas, such as acetylene, which is a reactive gas, is introduced from (8) through a valve and a flow meter (5) into an excitation chamber (4) in the reaction system. Furthermore, if necessary, the carrier gas is supplied with hydrogen or helium (7) through a valve and a flow meter (6), and similarly reaches the excitation chamber. If a valent or heptavalent impurity, such as diborane or phosphin, is to be introduced here, it may be added to the system in the same manner.

これらの反応性気体は2.45G)Izのマイクロ波に
よる電磁エネルギにより0.1〜5Kwのエネルギを加
えられ、励起室にて活性化、分解または反応させられる
。さらにこの反応性気体は反応炉(1)にて加熱炉(9
)により150〜450″Cに加熱させ、さらに13.
56MHzの高周波エネルギ(2)により反応、重合さ
れ、C−C結合を多数形成した炭素を生成する。この際
、加える電磁エネルギが小さい場合はアモルファス構造
の炭素が生成される。他方、この電磁エネルギを強く加
えた場合は5〜200人の大きさのダイヤモンド形状の
微結晶性を有する炭素を生成させ得る。この反応は電源
(13)によりヒータ(11)を加熱し、さらにその上
の基板(10)を加熱して行う。そしてこの基板の上面
に被膜として反応生成物の炭素被膜が形成される。反応
後の不要物は排気口(12)よりロータリーポンプを経
て排気される0反応室(1)は0.001〜10tor
r代表的には0.1〜Q、5torrに保持されており
、マイクロ波(3)、高周波(2)のエネルギにより反
応室(1)内はプラズマ状態が生成される。特にIGH
z以上の周波数にあっては、C−H結合より水素を分離
し、0゜1〜50MHzの周波数にあってはC−C結合
、C=C結合を分解し、;C−C<結合または−C−C
−結合を作り、炭素の不対結合手同志を互いに衝突させ
て共有結合させ、安定なダイヤモンド構造を有せしめた
These reactive gases are activated, decomposed, or reacted in an excitation chamber by applying 0.1 to 5 Kw of electromagnetic energy using microwaves of 2.45 G) Iz. Furthermore, this reactive gas is heated in a heating furnace (9) in a reactor (1).
) to 150-450″C, and further 13.
It is reacted and polymerized by 56 MHz high frequency energy (2) to produce carbon having many C--C bonds. At this time, if the applied electromagnetic energy is small, carbon with an amorphous structure is produced. On the other hand, if this electromagnetic energy is strongly applied, diamond-shaped microcrystalline carbon with a size of 5 to 200 people can be produced. This reaction is carried out by heating the heater (11) with the power source (13) and further heating the substrate (10) thereon. Then, a carbon film of the reaction product is formed as a film on the upper surface of this substrate. Unwanted substances after the reaction are exhausted from the exhaust port (12) via a rotary pump.The reaction chamber (1) has a pressure of 0.001 to 10 torr.
r is typically maintained at 0.1 to Q and 5 torr, and a plasma state is generated in the reaction chamber (1) by the energy of microwaves (3) and high frequency waves (2). Especially IGH
At frequencies above z, hydrogen is separated from C-H bonds, and at frequencies from 0°1 to 50 MHz, C-C bonds, C=C bonds are decomposed, and C-C< bonds or -C-C
- By creating bonds, the unpaired bonds of carbon collided with each other to create a covalent bond, resulting in a stable diamond structure.

かくしてガラス、金属、セラミックスよりなる被形成面
を有する基板上に炭素特に炭素中に水素を25モル%以
下含有する炭素またP、■またはN型の導電型を有する
炭素を形成させた。
In this way, carbon, particularly carbon containing 25 mol % or less of hydrogen in carbon, or carbon having P, ■, or N type conductivity, was formed on a substrate having a surface made of glass, metal, or ceramic.

被膜作製例2 第2図(A)は第1図の製造装置により作られた複合体
の一例である。第2図(A)はガラスの上にPまたはN
型の導電型を有する炭素膜を形成させた。この電気伝導
率はio−’〜10−2(0cm) −’を有し、自動
車の窓の内表面に設けて、ここに電流を0.01〜IA
流すことにより発熱せしめ、雨等の環境による曇どめを
実施せしめた。
Film Preparation Example 2 FIG. 2(A) is an example of a composite made by the manufacturing apparatus shown in FIG. 1. Figure 2 (A) shows P or N on the glass.
A carbon film having the same conductivity type was formed. The electrical conductivity is io-'~10-2 (0cm)-', and the electric current is applied to the inner surface of the car window from 0.01 to IA.
By flushing, it generates heat and prevents fogging caused by rain or other environmental conditions.

これは自動車のみならず、多くの分野においてその応用
が可能である。
This can be applied not only to automobiles but also to many other fields.

被膜作製例3 第2図(B)は実施例1を用いた本発明方法によってこ
の炭素(22)を基板(20)の表面全面に形成したも
のである。かかる炭素を板状の基板のみならず任意の形
状を有する基体(20)にも形成して、複合体とし得る
。更にこの複合体は切さく機の歯、耐摩耗性表面を有せ
しめる金属またはセラミックの表面とし得る。
Film Preparation Example 3 In FIG. 2(B), this carbon (22) was formed on the entire surface of the substrate (20) by the method of the present invention using Example 1. Such carbon can be formed not only on a plate-shaped substrate but also on a base (20) having an arbitrary shape to form a composite. Additionally, the composite may be a cutting machine tooth, a metal or ceramic surface providing a wear-resistant surface.

被膜作製例4 第2図(C)は実施例1の作製方法によって得られた炭
素を用いた複合体の例である。即ち円錐状の穴があけら
れた被形成面を有するセラミックまたは金属の基板の表
面に炭素(22)を0.1〜3μmの厚さに設けである
。穴(23) 、 (23”)をインクジェット又は光
通信用の石英の紡錘ジグに用いる場合、0.05〜5μ
mの大きさを有し、かつこの穴が耐摩耗性を必要とする
ため、かかる複合体はきわめて好都合であった。この炭
素をコーティングしないものに比べて、102〜104
倍もの耐久性を有していた。
Coating Production Example 4 FIG. 2(C) is an example of a composite using carbon obtained by the production method of Example 1. That is, carbon (22) is provided to a thickness of 0.1 to 3 μm on the surface of a ceramic or metal substrate having a surface on which conical holes are formed. When using the holes (23) and (23") in a quartz spindle jig for inkjet or optical communication, the diameter is 0.05 to 5μ.
Such a composite was highly advantageous since it has a size of m and this hole requires wear resistance. Compared to the one without this carbon coating, 102 to 104
It was twice as durable.

被膜作製例5 第2図(D)は実施例1に示される方法で形成される炭
素を用いた本発明の他の複合体の実施例を示す。即ち基
板(20)上にPIN接合をまたはNIP接合を有する
価電子制御用の炭素を設けたものである。即ちPまたは
N型の炭素半導体(25)、■型の炭素、NまたはP型
の炭素半導体(27)よりなる炭素半導体(24)であ
る。このPまたはN型の炭素層は0.01〜5モル%例
えば1〜3モル%の濃度にホウ素またはリンを添加した
。これは(28)の部分にリフトオフ用の材料を選択的
に設け、全面に形成した後、リフトオフを第3図の製造
方法と同様の方法を用いて得たものである。本発明は基
板の全面に炭素を形成してもまたPN接合またはその他
の構造を設けてもよい。
Film Preparation Example 5 FIG. 2(D) shows an example of another composite of the present invention using carbon formed by the method shown in Example 1. That is, carbon for controlling valence electrons having a PIN junction or an NIP junction is provided on the substrate (20). That is, the carbon semiconductors (24) are P- or N-type carbon semiconductors (25), ■-type carbon, and N- or P-type carbon semiconductors (27). This P or N type carbon layer is doped with boron or phosphorus at a concentration of 0.01 to 5 mol%, for example 1 to 3 mol%. This was obtained by selectively providing a material for lift-off in the portion (28) and forming it on the entire surface, and then using a method similar to the manufacturing method shown in FIG. 3 to perform lift-off. In the present invention, carbon may be formed on the entire surface of the substrate, or a PN junction or other structure may be provided.

この半導体のうち、炭素IJ (26)のエネルギバン
ド巾は他の炭素層(25) 、 (27)に比べて小さ
く、珪素またはゲルマニュームを添加して形成し、ここ
に電極(29)を設け、縦方向に電流を基板との間に流
すことにより炭素の発光素子を基板上に集積化して設け
ることができた。かかる発光素子とする複合体にあって
は、基板はステンレス等の導体であることが必要である
。この場合、炭素層(25)、炭素層(27)はエネル
ギバンド巾が2.6〜4.5eVであり、また炭素層(
26)は2〜3eVとすることによって白色または緑、
青等の色の発光素子を基板上に設けることができた。
Among these semiconductors, the energy band width of the carbon IJ (26) is smaller than that of the other carbon layers (25) and (27), and is formed by adding silicon or germanium, and an electrode (29) is provided here. Carbon light-emitting elements could be integrated and provided on the substrate by passing a current between the substrate and the substrate in the vertical direction. In such a composite body as a light emitting element, the substrate needs to be made of a conductor such as stainless steel. In this case, the carbon layer (25) and the carbon layer (27) have an energy band width of 2.6 to 4.5 eV, and the carbon layer (
26) becomes white or green by setting it to 2 to 3 eV,
A light emitting element of a color such as blue could be provided on the substrate.

被膜作製例6 第3図はフォトマスクを設けた場合の構造である。すな
わち第3図(A)においては、ガラス特に石英ガラス(
20)上に選択的にエツチングして被膜(29)を設け
、この上面に炭素被膜を0.1〜1μmの厚さに実施例
1の方法で形成した。qの後リフトオフを行うことによ
り、選択的に炭素被膜(21)層を設けた。これは超L
SI等の半導体用のマスクとしてきわめてすぐれたもの
であり、電子ビームまたは遠紫外光に対してマスク効果
を有するとともに、耐摩耗性に優れており、また半永久
的に使用が可能である。
Film Preparation Example 6 FIG. 3 shows a structure in which a photomask is provided. That is, in FIG. 3(A), glass, especially quartz glass (
20) A film (29) was selectively etched on the top surface, and a carbon film with a thickness of 0.1 to 1 μm was formed on the top surface by the method of Example 1. By performing lift-off after q, a carbon film (21) layer was selectively provided. This is super L
It is extremely excellent as a mask for semiconductors such as SI, has a masking effect against electron beams or far ultraviolet light, has excellent abrasion resistance, and can be used semi-permanently.

かかるフォトマスク用の炭素被膜の作製に際し識別しや
すくするため、若干の色調をつけることは有効である。
When producing such a carbon film for a photomask, it is effective to give it a slight color tone to make it easier to identify.

このためには炭素被膜の作成の際同時に着色用不純物を
添加したプラズマCVD方法を用いることもできる。
For this purpose, it is also possible to use a plasma CVD method in which coloring impurities are added at the same time as the carbon film is created.

炭素被膜の選択的な除去方法として、基板全面に設けら
れた炭素に対し、酸化物雰囲気中にてレーザ光を選択的
にコンピュータ制御により行い、不要の部分の炭素を酸
化して炭酸ガスとして放出して除去する。その結果、第
3図(B)のごときマスクを作ることができた。
As a method for selectively removing the carbon film, laser light is selectively applied to the carbon provided on the entire surface of the substrate in an oxide atmosphere under computer control, and the unnecessary carbon is oxidized and released as carbon dioxide gas. and remove it. As a result, a mask as shown in FIG. 3(B) could be made.

このレーザ光による選択エツチングは被膜作製例1〜5
に対しても、その工業的応用に関して任意に用いること
ができる。また選択的に除去を行う方法としては残した
い部分にフォトレジスト等によりマスクを形成し、同様
に酸化物雰囲気中にてプラズマ処理を行い炭素を炭酸ガ
スに変化せしめて除去することも可能である。
This selective etching with laser light is performed in coating preparation examples 1 to 5.
It can also be used optionally with respect to its industrial application. In addition, as a method of selectively removing carbon, it is also possible to form a mask using photoresist or the like on the parts that you want to leave and perform plasma treatment in a similar oxide atmosphere to convert carbon into carbon dioxide gas and remove it. .

さらに全面的に炭素を除去する場合は被処理物を酸化物
雰囲気中におき、熱またはプラズマ処理を施こし炭素を
酸化させ炭酸ガスに変化せしめて除去することができる
Furthermore, when carbon is to be completely removed, the object to be treated can be placed in an oxide atmosphere and subjected to heat or plasma treatment to oxidize the carbon and convert it into carbon dioxide gas.

以上の説明より明らかな如く、本発明はガラス、金属ま
たはセラミックの表面または内部に炭素または炭素を主
成分とした被膜をコーティングして設けたものを酸化物
雰囲気中にて炭素を酸化して炭酸ガスに変化せしめて除
去するものであり、選択的に除去することが必要であれ
ばマスク又はレーザ光を用いて部分的に除去することが
可能である。
As is clear from the above description, the present invention provides carbon or carbon-based coatings that are coated on the surface or inside of glass, metals, or ceramics to produce carbon dioxide by oxidizing carbon in an oxide atmosphere. It is removed by converting it into a gas, and if selective removal is required, it can be partially removed using a mask or laser light.

またこの除去の対象となる炭素被膜は数多くの作製例に
みられる如く、その応用は計り知れないものであり、特
にこの炭素が450°C以下の低温で形成され、その硬
度また基板に対する密着性がきわめて優れているのが特
徴である。
In addition, the carbon film that is the target of this removal has immeasurable applications, as seen in numerous production examples.In particular, this carbon film is formed at a low temperature of 450°C or less, and its hardness and adhesion to the substrate are extremely important. It is characterized by being extremely good.

本発明で用いられたセラミックはアルミナ、ジルコニア
、またはそれらに炭素またはランタン等の希土類元素が
添加された任意の材料を用いることができる。また金属
にあっては、ステンレス、モリブデン、タングステン等
の少な(とも300〜450″Cの温度に耐えられる材
料ならばすべてに応用可能である。またガラスは石英の
みならずソーダガラス等に対しても被膜化が可能であり
、その応用はきわめて広い。
The ceramic used in the present invention may be alumina, zirconia, or any material to which a rare earth element such as carbon or lanthanum is added. Regarding metals, stainless steel, molybdenum, tungsten, etc. can be applied to all materials that can withstand temperatures of 300 to 450"C. Also, glass can be used not only for quartz but also for soda glass, etc. It can also be made into a film, and its applications are extremely wide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の炭素を被形成面上に作製する製造装置
の概要を示す。 第2図(A)〜(D)および第3図は本発明で用いる炭
素の作製例を示す。
FIG. 1 shows an outline of a manufacturing apparatus for manufacturing carbon of the present invention on a surface to be formed. 2(A) to 3(D) and FIG. 3 show examples of preparing carbon used in the present invention.

Claims (1)

【特許請求の範囲】 1、基板上に設けられたダヤモンドと類似の硬さを有す
る炭素または炭素を主成分とする炭素を酸化物雰囲気中
にて酸化させ炭酸ガスに変化せしめることにより除去す
ることを特徴とする炭素の除去法。 2、特許請求の範囲第1項において前記炭素に対し酸化
物雰囲気中にてレーザ光を照射し、酸化せしめ炭酸ガス
として除去することを特徴とする炭素の除去方法。
[Claims] 1. Removal by oxidizing carbon having a hardness similar to that of diamond provided on a substrate or carbon containing carbon as a main component in an oxide atmosphere and converting it into carbon dioxide gas. A carbon removal method characterized by: 2. A method for removing carbon according to claim 1, which comprises irradiating the carbon with laser light in an oxide atmosphere to oxidize it and remove it as carbon dioxide gas.
JP63292201A 1988-11-18 1988-11-18 Removing method for carbon Pending JPH01157411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63292201A JPH01157411A (en) 1988-11-18 1988-11-18 Removing method for carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63292201A JPH01157411A (en) 1988-11-18 1988-11-18 Removing method for carbon

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56146930A Division JPS5848428A (en) 1981-09-17 1981-09-17 Compound material having carbon film and manufacture therefor

Publications (1)

Publication Number Publication Date
JPH01157411A true JPH01157411A (en) 1989-06-20

Family

ID=17778839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63292201A Pending JPH01157411A (en) 1988-11-18 1988-11-18 Removing method for carbon

Country Status (1)

Country Link
JP (1) JPH01157411A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277521A (en) * 1985-05-31 1986-12-08 Mita Ind Co Ltd Paper lift-up stopper
JPH0237087A (en) * 1988-07-28 1990-02-07 Suzuki Motor Co Ltd Body structure of automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277521A (en) * 1985-05-31 1986-12-08 Mita Ind Co Ltd Paper lift-up stopper
JPH0237087A (en) * 1988-07-28 1990-02-07 Suzuki Motor Co Ltd Body structure of automobile

Similar Documents

Publication Publication Date Title
EP0946959B1 (en) Diamond fim deposition method
KR101190136B1 (en) A method for forming a carbon nanotube and a plasma cvd apparatus for carrying out the method
US7811149B2 (en) Method for fabricating carbon nanotube-based field emission device
US6221154B1 (en) Method for growing beta-silicon carbide nanorods, and preparation of patterned field-emitters by chemical vapor depositon (CVD)
KR20010085509A (en) Process for controlled growth of carbon nanotubes
US20040056271A1 (en) Nanotip arrays
JPS5848428A (en) Compound material having carbon film and manufacture therefor
JP4474596B2 (en) Method and apparatus for forming silicon nanocrystal structure
Takami et al. Catalyst-free growth of networked nanographite on Si and SiO2 substrates by photoemission-assisted plasma-enhanced chemical vapor deposition
JP2006036593A (en) Method and apparatus for manufacturing monolayer carbon nanotube
KR100262259B1 (en) Diamond film and process for preparing the same
JPS62167886A (en) Composite body having carbon film
KR101018668B1 (en) Method for forming silicon nano-crystalline structures terminated with oxygen or nitrogen, and silicon nano-crystalline structures terminated with oxygen or nitrogen formed thereby
JPS62162366A (en) Composite having carbon coat
JP2006176859A (en) Method for producing silicon nano-crystal structure
JPH01157411A (en) Removing method for carbon
Watanabe et al. Direct carbon patterning on a conducting substrate in an organic liquid
JP5032042B2 (en) Plasma CVD apparatus and film forming method
JPH01152621A (en) Manufacture of composite body with carbon film
JPS62167883A (en) Production of composite body having carbon film
JPS62167884A (en) Composite body having carbon film
JPH02244045A (en) Photomask
JPS62162367A (en) Composite having carbon coat
JPH02283078A (en) Light emitting element
JP2006305554A (en) Method of forming catalyst and method of manufacturing carbon film using the same