JPS62161960A - Formation of complex having carbon film - Google Patents

Formation of complex having carbon film

Info

Publication number
JPS62161960A
JPS62161960A JP27751586A JP27751586A JPS62161960A JP S62161960 A JPS62161960 A JP S62161960A JP 27751586 A JP27751586 A JP 27751586A JP 27751586 A JP27751586 A JP 27751586A JP S62161960 A JPS62161960 A JP S62161960A
Authority
JP
Japan
Prior art keywords
carbon
substrate
reaction
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27751586A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP56146930A external-priority patent/JPS5848428A/en
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP27751586A priority Critical patent/JPS62161960A/en
Publication of JPS62161960A publication Critical patent/JPS62161960A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a complex having a high-hardness film which has good adhesiveness at a low temp. by introducing a gaseous carbide into a plasma discharge atmosphere to cause the activation, cracking or reaction thereof and forming a carbon film of a specific optical band width on a substrate. CONSTITUTION:The gaseous carbide 8 such as C2H2 or CH4 is conducted together with a carrier gas 7 such as H2 or He into an excitation chamber 4, where plasma is excited by about 2.45GHz microwaves 3 to cause the activation, cracking or reaction of the above-mentioned reactive gas 8. The gas 8 is then conducted into a reaction furnace 1 and is heated to 150-450 deg.C in a heating furnace 9; further high-frequency energy of about 13.56MHz is impressed thereto to cause the reaction and polymn. of the gas and to form many C-C bonds. The high-hardness carbon film of C or essentially consisting of C having 2.6-4.5eV optical energy band width is thus formed on the substrate 10 heated to 150-450 deg.C via a heater 11 by a power source 13.

Description

【発明の詳細な説明】 本発明は、光学的バンド巾が2.OeV以上、特に2.
6〜4.5eVを有する炭素または炭素を主成分とする
被膜をダラス、金属またはセラミックの表面にコーティ
ングすることにより、ガラス板の補強材、また機械的ス
トレスに対する保護材を得んとしている複合体の作成方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention has an optical bandwidth of 2. OeV or more, especially 2.
A composite material intended to be used as a reinforcing material for glass plates and as a protective material against mechanical stress by coating the surface of a metal or ceramic with carbon or a film mainly composed of carbon having a voltage of 6 to 4.5 eV. Regarding how to create.

本発明は、ガラス、金属またはセラミックス上に炭素被
膜をコーティングし、その機械的強度を補強しようとす
るものであり、特にアセチレン、メタンのような炭化水
素気体をプラズマ雰囲気中に導入し分解せしめることに
より、C−C結合を作り、結果としてグラファイトのよ
うな導電性または不良導電性め炭素を作るのではなく、
光学的エネルギバンド巾(Egという)が2.6〜4.
5eVを有するダイヤモンドに類似の絶縁性の炭素を形
成することを特徴としている。さらにこの本発明の炭素
は、その硬度も4500Kg/mm”以上、代表的には
6500Kg#nmzというダイヤモンド類似の硬さを
有する。そしてその結晶学的構造はアモルファス(非晶
質)または5〜200人の大きさの微結晶性を有してい
る。またこの炭素は水素、ハロゲン元素が25モル%以
下の量を同時に含有している。
The present invention aims to strengthen the mechanical strength of glass, metal, or ceramic by coating a carbon film thereon, and in particular, introduces hydrocarbon gas such as acetylene or methane into a plasma atmosphere to decompose it. Rather than creating C-C bonds and resulting in conductive or poorly conductive carbon like graphite,
The optical energy band width (referred to as Eg) is 2.6 to 4.
It is characterized by the formation of insulating carbon similar to diamond with a voltage of 5 eV. Furthermore, the carbon of the present invention has a hardness of 4500 Kg/mm" or more, typically 6500 Kg#nmz, which is similar to diamond. Its crystallographic structure is amorphous or 5 to 200 Kg/mm". It has human-sized microcrystallinity.This carbon also contains hydrogen and halogen elements in an amount of 25 mol% or less.

また本発明の炭素に■価または7価の不純物を5モル%
以下に添加し、PまたはN型の導電型を有せしめ得る。
In addition, 5 mol% of valent or heptavalent impurities are added to the carbon of the present invention.
It can be added below to have P or N type conductivity.

さらに本発明の炭素は珪素がSi/C≦0.25の濃度
に添加されたいわゆる炭素を主成分とする炭素をも意味
する。
Furthermore, the carbon of the present invention also means carbon whose main component is so-called carbon to which silicon is added at a concentration of Si/C≦0.25.

本発明はこれらの炭素(以下本発明においては単に炭素
という)をガラス、金属またはセラミックス上に設けた
複合体を設けたものである。
The present invention provides a composite body in which these carbons (hereinafter simply referred to as carbon in the present invention) are provided on glass, metal, or ceramics.

本発明は、この炭素を形成させる際の基板に加える温度
を150〜450℃とし、従来より知られたCVD法に
おいて用いられる基板の温度に比べ500〜1500℃
も低い温度で形成したことを他の特徴とする。
In the present invention, the temperature applied to the substrate when forming this carbon is 150 to 450°C, which is 500 to 1500°C compared to the temperature of the substrate used in the conventional CVD method.
Another feature is that it was formed at a low temperature.

また本発明はこの炭素に■価の不純物であるホウ素を0
.1〜5モル%の濃度に添加し、P型の炭素を設け、ま
た7価の不純物であるリンを同様に0.1〜5モル%の
濃度に添加し、N型の炭素を設けることにより、この基
板上面の炭素をグラファイト構造とは異なる価電子制御
による半導電性を有せしめたことを他の特徴としている
In addition, the present invention eliminates boron, which is a valent impurity, to this carbon.
.. By adding phosphorus, a heptavalent impurity, to a concentration of 0.1 to 5 mol% and providing N-type carbon, P-type carbon is added to a concentration of 1 to 5 mol%. Another feature is that the carbon on the upper surface of this substrate has semiconductivity due to valence electron control, which is different from that of graphite structure.

さらに本発明は、この基板上にPIN接合またはNIP
接合を有する炭素を設けることにより、ダイオード特性
を有する半導体的特性を有せしめることを特徴としてい
る。
Furthermore, the present invention provides a PIN junction or NIP bond on this substrate.
By providing carbon with a junction, it is characterized by having semiconductor characteristics having diode characteristics.

また本発明は基板特にガラスまたはセラミックを用い、
その後この基板の一部を選択的に除去してインクジェッ
トノズル、光通信用石英ガラスの引き出し用ノズルとし
て設けるものである。
Further, the present invention uses a substrate, particularly glass or ceramic,
Thereafter, a part of this substrate is selectively removed and provided as an inkjet nozzle or a nozzle for extracting quartz glass for optical communication.

また本発明は、ガラス基板上に選択的に炭素被膜を設け
、電子ビーム露光装置または紫外線の露光装置のフォト
マスクとして用いることを他の特徴としている。
Another feature of the present invention is that a carbon film is selectively provided on a glass substrate and used as a photomask for an electron beam exposure device or an ultraviolet exposure device.

さらに本発明の複合体はバルブ、耐磨耗材料、またはP
IN型を有する半導体デバイスとしての装置、例えば受
光または発光素子への応用が可能である。
Further, the composite of the present invention may be used as a valve, wear-resistant material, or P.
The present invention can be applied to an IN-type semiconductor device, such as a light receiving or light emitting device.

以下に図面に従って本発明に用いられた複合体またはそ
の複合体の作製方法を記す。
The composite used in the present invention and the method for producing the composite will be described below according to the drawings.

実施例1 第1図は本発明の炭素を形成するためのプラズマCVD
装置の概要を示す。
Example 1 Figure 1 shows plasma CVD for forming carbon of the present invention.
An overview of the device is shown.

図面において反応性気体である炭化水素気体、例えばア
セチレンが(8)よりバルブ、流量計(5)をへて反応
系中の励起室(4)に導入される。さらに必要に応じて
、キャリアガスを水素またはヘリュームにより(7)よ
りバルブ、流量計(6)をへて同様に励起室に至る。こ
こに■価または7価の不純物、例えばジボランまたはフ
ォスヒンを導入する場合はさらに同様にこの系に加えれ
ばよい。
In the drawing, a hydrocarbon gas, such as acetylene, which is a reactive gas, is introduced from (8) through a valve and a flow meter (5) into an excitation chamber (4) in the reaction system. Furthermore, if necessary, the carrier gas is supplied with hydrogen or helium (7) through a valve and a flow meter (6) to reach the excitation chamber in the same manner. If a valent or heptavalent impurity, such as diborane or phosphin, is to be introduced here, it may be added to the system in the same manner.

これらの反応性気体は2.45GIIzのマイクロ波に
よる電磁エネルギにより0.1〜5Kwのエネルギを加
えられ、励起室にて活性化、分解または反応させられる
。さらにこの反応性気体は反応炉(1)にて加熱炉(9
)により150〜450℃に加熱させ、さらに13.5
6MIIzO高周波エネルギ(2)により反応、重合さ
れ、C−C結合を多数形成した炭素を生成する。この際
、加える電磁エネルギが小さい場合はアモルファス構造
の炭素が生成される。他方、この電磁エネルギを強く加
えた場合は5〜200人の大きさのダイヤモンド形状の
微結晶性を有する炭素を生成させ得る。この反応は電源
(13)によりヒータ(11)を加熱し、さらにその上
の基板(10)を加熱して行う。そしてこの基板の上面
に被膜として反応生成物の炭素被膜が形成される。反応
後の不要物は排気口(12)よりロータリーポンプを経
て排気される。反応室(1)は0.001〜10tor
r代表的には0.1〜Q、5torrに保持されており
、マイクロ波(3)、高周波(2)のエネルギにより反
応室(1)内はプラズマ状態が生成される。特にIGH
z以上の周波数にあっては、’C−H結合より水素を分
離し、0.1〜50MHzの周波数にあってはC=C結
合、C=C結合を分解し、> C−C<結合または−C
−C−結合を作り、炭素の不対結合手同志を互いに衝突
させて共有結合させ、安定なダイヤモンド構造を有せし
めた。
These reactive gases are activated, decomposed or reacted in an excitation chamber by applying 0.1 to 5 Kw of electromagnetic energy using microwaves of 2.45 GIIz. Furthermore, this reactive gas is heated in a heating furnace (9) in a reactor (1).
) to 150-450°C, and further heated to 13.5°C.
6MIIzO is reacted and polymerized by high frequency energy (2) to produce carbon having a large number of C--C bonds. At this time, if the applied electromagnetic energy is small, carbon with an amorphous structure is produced. On the other hand, if this electromagnetic energy is strongly applied, diamond-shaped microcrystalline carbon with a size of 5 to 200 people can be produced. This reaction is carried out by heating the heater (11) with the power source (13) and further heating the substrate (10) thereon. Then, a carbon film of the reaction product is formed as a film on the upper surface of this substrate. Unwanted substances after the reaction are exhausted from the exhaust port (12) via a rotary pump. The reaction chamber (1) has a pressure of 0.001 to 10 tor.
r is typically maintained at 0.1 to Q and 5 torr, and a plasma state is generated in the reaction chamber (1) by the energy of microwaves (3) and high frequency waves (2). Especially IGH
At frequencies above z, hydrogen is separated from 'C-H bonds, and at frequencies from 0.1 to 50 MHz, C=C bonds and C=C bonds are decomposed, and >C-C< bonds. or -C
-C- bonds were created, and the unpaired carbon bonds collided with each other to form a covalent bond, resulting in a stable diamond structure.

かくしてガラス、金属、セラミックスよりなる被形成面
を有する基板上に炭素特に炭素中に水素を25モル%以
下含有する炭素またP、IまたはN型の導電型を有する
炭素を形成させた。
In this way, carbon, particularly carbon containing 25 mol % or less of hydrogen in carbon, or carbon having a conductivity type of P, I or N type, was formed on a substrate having a surface made of glass, metal or ceramics.

かかる本発明方法による炭素被膜の形成は、板状の基板
のみならず任意の形状を有する基体(20)にも形成し
て、複合体とし得る。更にこの複合体は切さく機の歯、
耐摩耗性表面を有せしめる金属またはセラミックの表面
とし得る。
The carbon film formed by the method of the present invention can be formed not only on a plate-shaped substrate but also on a substrate (20) having an arbitrary shape to form a composite. Furthermore, this complex is the tooth of the cutting machine,
It can be a metal or ceramic surface that provides a wear-resistant surface.

以上の説明より明らかな如く、本発明はガラス、金属ま
たはセラミックの表面または内部に炭素または炭素を主
成分とした被膜をコーティングして設けたものである。
As is clear from the above description, the present invention provides a film in which carbon or a film containing carbon as a main component is coated on the surface or inside of glass, metal, or ceramic.

この複合体は他の多くの実施例にみられる如く、その応
用は計り知れないものであり、特にこの炭素が450℃
以下の低温で形成され、その硬度また基板に対する密着
性がきわめて優れているのが特徴である。
As seen in many other examples, the applications of this composite are immeasurable, especially when this carbon is heated to 450°C.
It is characterized by its extremely high hardness and excellent adhesion to the substrate.

本発明におけるセラミックはアルミナ、ジルコニア、ま
たはそれらに炭素またはランタン等の希土類元素が添加
された任意の材料を用いることができる。また金属にあ
っては、ステンレス、モリブデン、タングステン等の少
なくとも300〜450℃の温度に耐えられる材料なら
ばすべてに応用可能である。またガラスは石英のみなら
ずソーダガラス等に対しても被膜化が可能であり、その
応用はきわめて広い。
As the ceramic in the present invention, alumina, zirconia, or any material to which a rare earth element such as carbon or lanthanum is added can be used. Furthermore, as for metals, any material such as stainless steel, molybdenum, tungsten, etc. that can withstand temperatures of at least 300 to 450° C. can be used. Further, glass can be coated not only on quartz but also on soda glass, etc., and its applications are extremely wide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の炭素を被形成面上に作製する製造装置
の概要を示す。
FIG. 1 shows an outline of a manufacturing apparatus for manufacturing carbon of the present invention on a surface to be formed.

Claims (1)

【特許請求の範囲】 1、アセチレンまたはメタンの如き炭化物気体をプラズ
マ放電雰囲気内に導入して活性化、分解または反応せし
めることにより、光学的エネルギバンド巾が2.6〜4
.5eVを有する炭素または炭素を主成分とする被膜を
前記雰囲気内に設置させた基板または基体上に形成する
ことを特徴とする炭素被膜を有する複合体の作成方法。 2、特許請求の範囲第1項において、基板または基体は
150〜450℃に加熱され、これらの上に微結晶構造
を有する炭素または炭素を主成分とする被膜が形成され
たことを特徴とする炭素被膜を有する複合体の作成方法
。 3、特許請求の範囲第1項において、基板または基体は
ガラス、金属またはセラミックスよりなることを特徴と
する炭素被膜を有する複合体の作成方法。 4、特許請求の範囲第1項において、プラズマ放電雰囲
気はマイクロ波を用いて設けられたこを特徴とする炭素
被膜を有する複合体の作成方法。
[Claims] 1. By introducing a carbide gas such as acetylene or methane into a plasma discharge atmosphere and activating, decomposing or reacting it, the optical energy band width can be increased from 2.6 to 4.
.. A method for producing a composite body having a carbon film, characterized in that carbon having a voltage of 5 eV or a film mainly composed of carbon is formed on a substrate or a base body placed in the atmosphere. 2. In claim 1, the substrate or base body is heated to 150 to 450°C, and a carbon having a microcrystalline structure or a film mainly composed of carbon is formed thereon. A method for creating a composite having a carbon film. 3. A method for producing a composite body having a carbon coating according to claim 1, wherein the substrate or base body is made of glass, metal, or ceramics. 4. A method for producing a composite body having a carbon coating according to claim 1, characterized in that the plasma discharge atmosphere is provided using microwaves.
JP27751586A 1981-09-17 1986-11-19 Formation of complex having carbon film Pending JPS62161960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27751586A JPS62161960A (en) 1981-09-17 1986-11-19 Formation of complex having carbon film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP56146930A JPS5848428A (en) 1981-09-17 1981-09-17 Compound material having carbon film and manufacture therefor
JP27751586A JPS62161960A (en) 1981-09-17 1986-11-19 Formation of complex having carbon film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56146930A Division JPS5848428A (en) 1981-09-17 1981-09-17 Compound material having carbon film and manufacture therefor

Publications (1)

Publication Number Publication Date
JPS62161960A true JPS62161960A (en) 1987-07-17

Family

ID=26477628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27751586A Pending JPS62161960A (en) 1981-09-17 1986-11-19 Formation of complex having carbon film

Country Status (1)

Country Link
JP (1) JPS62161960A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOLID STATE COMMUN *

Similar Documents

Publication Publication Date Title
JPS59128281A (en) Manufacture of silicon carbide coated matter
US4292343A (en) Method of manufacturing semiconductor bodies composed of amorphous silicon
JPS5848428A (en) Compound material having carbon film and manufacture therefor
JPS62138395A (en) Preparation of diamond film
JPS62167886A (en) Composite body having carbon film
JPS62162366A (en) Composite having carbon coat
JPS62161960A (en) Formation of complex having carbon film
JPS62167884A (en) Composite body having carbon film
JPH0366280B2 (en)
JPS62167885A (en) Production of composite body having carbon film
JPH0361633B2 (en)
JPH0427691B2 (en)
JPS60137898A (en) Production of thin diamond film
JPH0543393A (en) Method for preparing carbon material
JPH0237087B2 (en)
JPH0361369A (en) Manufacture of diamond like carbon film
JPH02244045A (en) Photomask
JPS62162367A (en) Composite having carbon coat
JPH02248038A (en) Manufacture of polycrystalline semiconductor substance layer
JP2584480B2 (en) Diamond film manufacturing method
JP2977619B2 (en) Diamond film formation method
JPS6383271A (en) Production of diamond-like carbon film
JP2636856B2 (en) Method for producing diamond thin film
JPH01157411A (en) Removing method for carbon
JPS6369973A (en) Production of cubic boron nitride film