JPS6214396A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS6214396A
JPS6214396A JP60153804A JP15380485A JPS6214396A JP S6214396 A JPS6214396 A JP S6214396A JP 60153804 A JP60153804 A JP 60153804A JP 15380485 A JP15380485 A JP 15380485A JP S6214396 A JPS6214396 A JP S6214396A
Authority
JP
Japan
Prior art keywords
emitter
current
potential
word
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60153804A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Hamada
濱田 満広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60153804A priority Critical patent/JPS6214396A/en
Publication of JPS6214396A publication Critical patent/JPS6214396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To attain a stable writing operation by inserting a resistance between an emitter of a final step transistor of a word driver circuit selecting a word line and an electrode of the lowest potential. CONSTITUTION:A resistance Rw is inserted between word drivers WD1, WD2 and an electrode of the lowest potential. A Tr Q5 absorbs a current 67mA passing through a word line W2 and when adding its base current, an emitter current of the Tr Q5 becomes 70mA. When determining Rw so as to satisfy 2V+70mAXRwOMEGA=3.3V, an emitter potential of Q1 is raised to 2V+70 mAXRwOMEGA, which can be same as the base potential of Q1. Rw becomes 18.5OMEGA and by inserting 18.5OMEGA between the emitter of a final step transistor of a word driver and an electrode of the lowest potential, Q1 is prevented from being turned on. Thereby, the effect of a parasitic transistor is restricted and a stable writing operation can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気的に書込み可能な読み出し専用半導体記憶
装置に関するものである 〔従来の技術〕 一般に電気的に書込み可能な読み出し専用半導体記憶装
置では書込み動作は次の様に行う。すなわち外部の電流
源より100mA前後の電流を記憶セルを構成するベー
スオープンのnpn )ランジスタ(以下、npnTr
 と記す)のエミッタ側からコレクタ側へ流し込み、そ
のエミッタ・ペースi合を短絡することにより情報を書
き込む。この書き       1込み動作は高電圧、
大電流を伴うので種々の寄生効果が生ずる。その内、ワ
ード線として作用する夛 2つの記憶セルのコレクタ領域間に形成さ扛る    
   (npnTr による寄生電流路について述べる
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electrically writable read-only semiconductor memory device. [Prior Art] In general, electrically writable read-only semiconductor memory devices The write operation is performed as follows. In other words, a current of around 100 mA is applied from an external current source to an open-base NPN transistor (hereinafter referred to as NPNTr) that constitutes a memory cell.
) from the emitter side to the collector side, and information is written by short-circuiting the emitter-pace connection. This write 1 operation is performed at high voltage.
Since large currents are involved, various parasitic effects occur. Among them, there is a layer formed between the collector regions of two memory cells that acts as a word line.
(The parasitic current path due to npnTr will be described.

記憶セルはベースオープンのnpn T r で、sb
、;第2図に示す様にコレクタがワードfJW1.W、
に、示す。デジット線りは通常一層目のアルミ配線が 
     1ツタ、ベースに対応する。
The memory cell is base open npn T r and sb
,; As shown in FIG. 2, the collector stores the word fJW1. W,
, shown below. Digit wiring usually has the first layer of aluminum wiring.
1 ivy, corresponding to the base.

一〇−1 今、第2図の様にとなりあったワード線W、 W!とデ
ジット線りの間に誓込み済記tはセルQtcと未書込み
記憶セルQ、cが接続さ扛ているとする。寄生素子を考
えた等価回路を第4図に示す。Q、はコレクタC3、基
板、コレクタC1をコレクタ、ベース、エミッタとする
npnTr でありQ、は未書込み記憶セルQ、cのベ
ースB1、コレクタC1、基板をエミッタ、ベース、コ
レクタとするpnpTrである。D、は書込み済記憶セ
ルQ+cのBCダイオード、D鵞は未書込み記憶セルQ
、cのエミッタ □E雪、ベースB、より成るEBダイ
オード°である。
10-1 Now, the word lines W and W! are next to each other as shown in Figure 2. It is assumed that the cell Qtc and the unwritten memory cells Q and c are connected between the digit line t and the digit line. An equivalent circuit considering parasitic elements is shown in FIG. Q is an npnTr whose collector, base, and emitter are the collector C3, substrate, and collector C1, and Q is a pnpTr whose emitter, base, and collector are the base B1, collector C1, and substrate of the unwritten memory cell Q,c. . D is the BC diode of the written memory cell Q+c, and D is the unwritten memory cell Q.
, c emitter □E snow, base B, EB diode °.

RはQlのベースそしてQ、のコレクタの役割をしてい
る基板の部分と基板全体を最低電位におとしている電極
GNDとの間の基板の抵抗である。
R is the resistance of the substrate between the portion of the substrate that serves as the base of Ql and the collector of Q, and the electrode GND that brings the entire substrate to the lowest potential.

第2図の未書込み記憶セルQ、cを書込もうとする。ワ
ードドライバーWD、をオン、WDIをオフにしてワー
ド線W章を選択し、デジットAm W tを選択し、デ
ジット線りよし書込み電流を記憶セルQ、cのエミッタ
からコレクタ方向に流す。この時の状況を第4図の等価
回路にて考える。書込もうとしているのは、すなわちE
B接合を短絡しようとしているのは、EBダイオードI
)2 である。
An attempt is made to write to unwritten memory cells Q and c in FIG. Turn on the word driver WD, turn off WDI, select the word line W, select the digit Am W t, and flow the digit line read write current from the emitter to the collector of the memory cells Q and c. Consider the situation at this time using the equivalent circuit shown in FIG. What you are trying to write is E
It is the EB diode I that is trying to short the B junction.
)2.

書込み電流はり、を通った後pnp Tr Qtのエミ
ッタからベースへぬけWD2に吸収さnる。デジット線
より100mA流し込んだ時Q、のエミッタ接地時の電
流増巾率βは電流値により0.1〜0.5まで変化し、
Q、のコレクタ電流もそのβの値に応じて9〜33mA
流れる。このコレクタ[流は基板へのも扛電流であり寄
生抵抗Rを通り最低電位′成極GNDに達する。このR
は前述の通9 pnpTrQ2のコレクタとして働いて
いる基板の一領域から最低電位電極GNI)′1での抵
抗であり、この値は基板の比抵抗により異なるが大体1
000前後の値をとる。pnpTr Q、のコレクタ電
流が最大の33mAとなるβ=0.5の時の各部分の電
位を計算してみる。この時WD、は100mA−33m
A= 67mA吸収しておりワード線W2は、すなわち
npnTr Q、のエミッタ電位は約2viで上昇する
。一方pnpTr Qtのコレクタから寄生抵抗Rを通
り最低電位電極GNDに向けて33mA流nるのでpn
pTr Qlのコレクタ、すなわちnpnTrQ、のべ
−x電位は100Ωx33mA=3.3Vまで上昇しう
る。結局npnTrQ1のベース・エミッタ間はオンす
るのに十分な順バイアスが印加さ扛るためQlのコレク
タには誓込み済記憶セルのBCダイオードDI を通じ
てデジット線りより書込み電流が供給できず書込み不良
の原因となっていた。
After passing through the write current, it passes from the emitter to the base of the pnp Tr Qt and is absorbed by WD2. When 100 mA is injected from the digit line, the current amplification rate β when the emitter is grounded changes from 0.1 to 0.5 depending on the current value,
The collector current of Q is also 9 to 33 mA depending on the value of β.
flows. This collector current is a current flowing to the substrate and passes through the parasitic resistance R to reach the lowest potential polarization GND. This R
is the resistance from the region of the substrate acting as the collector of the aforementioned pnpTrQ2 to the lowest potential electrode GNI)'1, and this value varies depending on the specific resistance of the substrate, but is approximately 1.
It takes a value around 000. Let us calculate the potential of each part when β=0.5, when the collector current of pnpTr Q is the maximum of 33 mA. At this time, WD is 100mA-33m
A = 67 mA is absorbed, and the emitter potential of the word line W2, that is, the npnTr Q, rises at about 2vi. On the other hand, 33 mA flows from the collector of pnpTr Qt through the parasitic resistance R toward the lowest potential electrode GND, so pn
The collector potential of pTr Ql, ie, npnTrQ, can rise to 100Ω x 33mA = 3.3V. Eventually, enough forward bias is applied between the base and emitter of npnTr Q1 to turn it on, and therefore a write current cannot be supplied to the collector of Ql from the digit line through the BC diode DI of the committed memory cell, resulting in a write failure. It was the cause.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の様に従来の方法では書込み済sd僧セルと記憶セ
ルのコレクタ領域間そして基板により寄生電流路が形成
されてしまい記憶セルを書込むことができないという問
題があった。
As described above, the conventional method has the problem that a parasitic current path is formed between the written SD memory cell and the collector region of the memory cell and by the substrate, making it impossible to write to the memory cell.

本発明の目的は書込み動作時に記憶七セのコレクタ領域
に寄生電流路が形成さ扛るのを防ぎ、安定した書込み動
作が行える半導体集積回路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor integrated circuit which can prevent parasitic current paths from being formed in the collector regions of seven memory cells during a write operation and can perform stable write operations.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明のベースオーブントランジスタの接合を破壊する
ことにより情報を書込む接合破壊型の記憶セルを有する
電気的に書込み可能な読み出し専用半導体記憶装置は、
ワード線を選択するワードドライバー11路の最終段ト
ランジスタのエミッタと最低′電位′I!!極の間に抵
抗を有している。
An electrically writable read-only semiconductor memory device having a junction-destroying memory cell in which information is written by breaking the junction of a base-oven transistor according to the present invention includes:
The emitter of the final stage transistor of the word driver 11 path that selects the word line and the lowest 'potential' I! ! It has resistance between the poles.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図に本発明の実施例を示す。同図においてワードド
ライバーWD、、WD、と最低電位電極の間に挿入した
RWが本発明による抵抗である。第5図に等価回路を示
す。同図で使用している記号とその素子の物理的構造は
従来例の第4図と同一であり、抵抗Rwが追加さ7して
いることが異なる。
FIG. 1 shows an embodiment of the present invention. In the figure, RW inserted between the word drivers WD, WD and the lowest potential electrode is the resistor according to the present invention. Figure 5 shows an equivalent circuit. The symbols used in this figure and the physical structure of the elements thereof are the same as those of the conventional example in FIG. 4, except that a resistor Rw is added.

従来例と同様に第1図においてワードドライバーWD、
とデジッ)WDにより未書込み記憶セルQ、cを選択し
書込み電流100mAを流しこむ本のとする。第5図で
この時の電位を調べてみる。EBダイオードD2の接合
を短絡すべくデジット線りからpnpTr Qlを経て
WD、に向け100mA流そうとしだ時Qtのβ=0.
5とするとQ、のベース電流は67 mA 、コレクタ
電流は33mAとなる。Rw=00の時は従来例の様に
npnTr Qlのエミッタ電位は2V1ベ一ス電位は
3.3V1で上昇しようとし、QIがオンすること(C
なる。本発明の目的はQ、のエミッタ電位を−Hげてそ
のエミッタ・ベース接合が順バイアスにならない様にす
ることである。第6図ICワードドライバーWl)。
As in the conventional example, in FIG. 1, the word driver WD,
Assume that unwritten memory cells Q and C are selected by WD and a write current of 100 mA is applied. Let's examine the potential at this time in Figure 5. When trying to flow 100 mA from the digit line to WD via pnpTr Ql in order to short-circuit the junction of EB diode D2, β of Qt = 0.
5, the base current of Q is 67 mA and the collector current is 33 mA. When Rw=00, the emitter potential of npnTr Ql is 2V1 and the base potential is 3.3V1, as in the conventional example, and the QI turns on (C
Become. The purpose of the present invention is to raise the emitter potential of Q to -H so that its emitter-base junction does not become forward biased. Figure 6 IC word driver Wl).

WD、の具体的な回路を示すが、その中でワード線W!
に流nる電流67mAを吸+17するのけTrQsであ
り、そのベース電流を加えるとTr Q5のエミッタ電
流は70mAになる。第5図でRwを2V+70mAx
Rwn−3.3Vを;繭たす様lζ決めるとQ、のエミ
ッタ電位は2V+70mAXRwΩ捷で上昇し、Qlの
ベース電位と同じにすることができる。
WD, a specific circuit is shown, in which the word line W!
Tr Qs absorbs 67 mA of current flowing through the Tr Qs, and when its base current is added, the emitter current of Tr Q5 becomes 70 mA. In Figure 5, Rw is 2V + 70mAx
When Rwn-3.3V is determined in a cocoon manner, the emitter potential of Q increases by 2V+70mAXRwΩ, and can be made the same as the base potential of Ql.

上式をRwについて解くとRw=18.50となりワー
ドドライバーの最終段トランジスタのエミッタと最低電
位電極の間に18.5Ω入扛ることによりQ、のオンを
防ぐことができる。なお、この18.50の抵抗により
ワードドライバー全体は18,5Ω×7QmA=1.3
v上昇するが、’F1を原電圧5Vを印加するならばワ
ードドライバーの最終段トランジスタはオンを保つこと
ができ、十分ワード線からの書込み電流67mAを吸収
する。
When the above equation is solved for Rw, Rw=18.50, and Q can be prevented from turning on by inserting 18.5Ω between the emitter of the final stage transistor of the word driver and the lowest potential electrode. In addition, due to this 18.50 resistance, the entire word driver is 18.5Ω x 7QmA = 1.3
Although v increases, if the original voltage of 5 V is applied to 'F1, the final stage transistor of the word driver can be kept on and can sufficiently absorb the write current of 67 mA from the word line.

読み出し時は一本のデジッl!Dから誉込み済記憶セル
に向かって1mA程度の電vIとが流fl、  8ビツ
ト病成の時はオンしているワードドライバーは8mAの
′−訛を引くことになる。本発明により挿入するRw=
1g、5Ωでの電位上昇はペース電流を無視すると18
,5ΩX8mA=148mVであり読み出し動作時に誤
動作することはない。
One digital when reading out! A voltage of about 1 mA flows from D to the loaded memory cell, and when an 8-bit disease occurs, the word driver that is on will draw 8 mA of '-'. Rw= inserted according to the present invention
The potential increase at 1g and 5Ω is 18 if the pace current is ignored.
, 5Ω×8mA=148mV, and there is no malfunction during read operation.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によ扛ばワードドライバーの
最終段トランジスタのエミッタと最低電位電極の間に抵
抗を挿入することにより寄生トランジスタ効果がおさえ
らn安定した臀込み動作が行える半導体記憶装置が得ら
扛る。
As explained above, according to the present invention, by inserting a resistor between the emitter of the final stage transistor of the word driver and the lowest potential electrode, the parasitic transistor effect can be suppressed, and a semiconductor memory device can perform stable stabilization operation. I get it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例、第2図は従来の記憶セルとワ
ードドライバーの接続図、M3図は第2図0記憶″′の
部分をデ″ト線方向で切断した      1時の断面
図、第4図は第2図の回路図に寄生素子を加えた等価回
路、第5図は第1図の回路図に寄生素子を加えた等価回
路図、第6図はワードドライバー回路図である。 D、、D、・・・・・・ダイオード。
Fig. 1 is an embodiment of the present invention, Fig. 2 is a connection diagram of a conventional memory cell and a word driver, and Fig. M3 is a cross section at 1 o'clock in Fig. 2, where the 0 memory section is cut in the direction of the data line. Figure 4 is an equivalent circuit diagram of the circuit diagram in Figure 2 plus parasitic elements, Figure 5 is an equivalent circuit diagram of the circuit diagram of Figure 1 plus parasitic elements, and Figure 6 is a word driver circuit diagram. be. D,,D,...Diode.

Claims (1)

【特許請求の範囲】[Claims]  ベースオープントランジスタ接合破壊型の記憶セルを
有する電気的に書込み可能な読み出し専用半導体記憶装
置において、ワード線を選択するワードドライバー回路
の最終段トランジスタのエミッタと最低電位電極との間
に抵抗を挿入したことを特徴とする半導体記憶装置。
In an electrically writable read-only semiconductor memory device having a base open transistor junction breakdown type memory cell, a resistor is inserted between the emitter of the final stage transistor of a word driver circuit that selects a word line and the lowest potential electrode. A semiconductor memory device characterized by:
JP60153804A 1985-07-12 1985-07-12 Semiconductor memory device Pending JPS6214396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60153804A JPS6214396A (en) 1985-07-12 1985-07-12 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60153804A JPS6214396A (en) 1985-07-12 1985-07-12 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS6214396A true JPS6214396A (en) 1987-01-22

Family

ID=15570483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60153804A Pending JPS6214396A (en) 1985-07-12 1985-07-12 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6214396A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132590A (en) * 1979-04-04 1980-10-15 Nec Corp Semiconductor device
JPS55163689A (en) * 1979-06-07 1980-12-19 Nec Corp Integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132590A (en) * 1979-04-04 1980-10-15 Nec Corp Semiconductor device
JPS55163689A (en) * 1979-06-07 1980-12-19 Nec Corp Integrated circuit

Similar Documents

Publication Publication Date Title
JP2002118238A (en) Mram memory cell
JPS5870493A (en) High speed prom device
JPS6214396A (en) Semiconductor memory device
KR910002502B1 (en) Memory circuit with sereal variable clamp type memory cell
JPH0210518B2 (en)
JPS61204964A (en) Semiconductor memory device
JP3107615B2 (en) Semiconductor storage device
JPH0329314B2 (en)
JPS6079772A (en) Semiconductor memory device
JP2591252B2 (en) Semiconductor memory device
JPS6246491A (en) Bipolar memory cell
JPS59151390A (en) Semiconductor storage cell
JP2699817B2 (en) Semiconductor memory device
SU752483A1 (en) Matrix store
JPS58139397A (en) Defect detection circuit for read only memory
JPS61202398A (en) Read-only semiconductor memory device capable of electrical writing
JPS6034055A (en) Read only semiconductor memory device
JPS6242358B2 (en)
JPH0259558B2 (en)
JPH04186597A (en) Semiconductor memory integrated circuit
JP2006310418A (en) Semiconductor device
JPS6151358B2 (en)
JPS6228515B2 (en)
JPS6151359B2 (en)
JPS593791A (en) Semiconductor storage circuit