JPS6159241B2 - - Google Patents

Info

Publication number
JPS6159241B2
JPS6159241B2 JP56099083A JP9908381A JPS6159241B2 JP S6159241 B2 JPS6159241 B2 JP S6159241B2 JP 56099083 A JP56099083 A JP 56099083A JP 9908381 A JP9908381 A JP 9908381A JP S6159241 B2 JPS6159241 B2 JP S6159241B2
Authority
JP
Japan
Prior art keywords
hydrogen
tife
alloy
activation
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56099083A
Other languages
Japanese (ja)
Other versions
JPS581032A (en
Inventor
Ryoichi Suzuki
Jiro Oono
Kenichi Yugawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP56099083A priority Critical patent/JPS581032A/en
Publication of JPS581032A publication Critical patent/JPS581032A/en
Publication of JPS6159241B2 publication Critical patent/JPS6159241B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】 本発明は水素吸蔵特性の優れた金属材料の製造
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of metal materials with excellent hydrogen storage properties.

水素は古くから化学原料,還元性雰囲気ガス,
金属精錬用還元剤などに広く使用されている。ま
た、近年においてはエネルギー媒体としての利
用、さらに近い将来には二次エネルギーとしての
大巾な利用が考えられている。
Hydrogen has long been used as a chemical raw material, a reducing atmosphere gas,
Widely used as a reducing agent for metal refining. In addition, in recent years, its use as an energy medium, and in the near future, its widespread use as secondary energy is being considered.

このような多種多様な水素の利用における問題
点の一つとして、水素の貯蔵・輸送がある。従来
水素を貯蔵あるいは輸送する場合、高圧縮して耐
圧容器で貯蔵あるいは輸送することが一般的であ
り、特殊な場合に−253℃という極低温の液体水
素として貯蔵・輸送する方法がとられていた。こ
れらの方法においては、耐圧,耐極低温など特殊
な容器が必要であつたり、冷却のために多量のエ
ネルギーを要したり、又、安全性の面で問題があ
る。
One of the problems in using such a wide variety of hydrogen is the storage and transportation of hydrogen. Conventionally, when storing or transporting hydrogen, it has generally been highly compressed and stored or transported in pressure-resistant containers, but in special cases, it has been stored and transported as liquid hydrogen at an extremely low temperature of -253°C. Ta. These methods require special containers that can withstand pressure and cryogenic temperatures, require a large amount of energy for cooling, and have problems in terms of safety.

近年、水素を粉末状のある種の金属あるいは合
金に吸蔵させて金属水素化物という形で貯蔵・輸
送する方法が考られており、この金属水素化物は
蓄熱,ヒートポンプ,冷暖房システム材料などの
エネルギー変換媒体としての利用も考えられるよ
うになつた。代表的な水素吸蔵合金として
LaNi5,TiFeなどが開発されている。しかしなが
ら、これらの材料においては次のような欠点があ
り、実用面で不十分であつた。すなわち、LaNi5
系においてはLaが資源的に豊富でなく、非常に
高価であるために広汎な多量の使用には耐えられ
ない。また、TiFeにおいては、Ti単体に比べて
水素吸収、放出が容易になつたとはいえ、なお
450℃の高温、水素圧30〜60Kg/cm2、1週間程度
の長期間に及ぶ活性化の操作が必要であり、合金
を耐圧容器に入れて、数10Kg/cm2の水素圧で数
100℃に加熱する操作は材料面,安全面で大きな
制約を受け、かつ活性化に要するエネルギー量も
非常に大きくなり、やはり実用性に欠ける。これ
らの欠点を改善する目的で水素吸蔵合金として
Ti−Mn系が開発されたが、これは活性化の面で
は優れているものの、合金が微粉化し易いこと、
残留水素量が多いなどの欠点がある。また、Ti
−Feの活性化を容易にする目的でFeの10〜20%
をMnで置換した合金TiFe0.9Mn0.1などが開発さ
れた。この合金の場合には、やはり活性化は容易
になるものの、水素の平衝解離圧が一定にならな
くなり(プラトーが無い)。また水素放出量が減
少するなどの欠点がある。
In recent years, methods have been developed to store and transport hydrogen in the form of metal hydrides by absorbing hydrogen into certain metals or alloys in powder form, and these metal hydrides can be used for energy conversion such as heat storage, heat pumps, and heating and cooling system materials. It is now possible to consider using it as a medium. As a typical hydrogen storage alloy
LaNi 5 , TiFe, etc. have been developed. However, these materials have the following drawbacks and are unsatisfactory for practical use. That is, LaNi 5
In this system, La is not abundant as a resource and is very expensive, so it cannot be used widely and in large quantities. In addition, although TiFe absorbs and releases hydrogen more easily than Ti alone, it still
The activation operation requires a long period of about one week at a high temperature of 450°C and a hydrogen pressure of 30 to 60 kg/cm 2 .
Heating to 100°C is subject to major restrictions in terms of materials and safety, and the amount of energy required for activation is also extremely large, making it impractical. As a hydrogen storage alloy to improve these drawbacks.
The Ti-Mn system was developed, but although this is excellent in terms of activation, the alloy is easily pulverized.
It has drawbacks such as a large amount of residual hydrogen. Also, Ti
−10-20% of Fe for the purpose of facilitating Fe activation
An alloy such as TiFe 0.9 Mn 0.1 in which Mn was substituted for Mn was developed. In the case of this alloy, activation is still easy, but the equilibrium dissociation pressure of hydrogen is not constant (there is no plateau). Furthermore, there are drawbacks such as a decrease in the amount of hydrogen released.

本発明者等は水素吸蔵のための活性化の容易
な、そして合金本来の優れた吸蔵特性を変えない
金属材料を得るべく種々研究を行ない、本方法を
見い出した。
The present inventors conducted various studies in order to obtain a metal material that can be easily activated for hydrogen storage and does not change the excellent storage characteristics inherent to the alloy, and discovered the present method.

本発明は、水素吸蔵合金として知られている
TiFe系またはLaNi5系合金の金属粉の表面に、無
電解メツキあるいは電気メツキによりNi,Cu,
Coの少なくとも一種をコーテイングすることを
特徴とする水素吸蔵金属材料の製造方法である。
本発明は、水素を吸蔵する金属粉、たとえば
TiFe合金粉の表面にNi,Cu,Coなどの水素雰囲
気でその酸化物が比較的容易に還元され易い元素
をメツキによりコーテイングするものである。活
性化が容易になる理由は、水素雰囲気によつて容
易に還元された金属Ni,Cuなどが水素分子を原
子状態に解離して金属内部に侵入させ、内部の
TiFe合金に吸蔵させることによると考えてい
る。
The present invention is known as a hydrogen storage alloy.
Ni, Cu , or
This is a method for producing a hydrogen storage metal material, which is characterized by coating with at least one type of Co.
The present invention provides hydrogen-absorbing metal powder, such as
The surface of TiFe alloy powder is coated with elements such as Ni, Cu, and Co whose oxides are relatively easily reduced in a hydrogen atmosphere. The reason why activation is easy is that metals such as Ni and Cu that are easily reduced in a hydrogen atmosphere dissociate hydrogen molecules into atomic states and penetrate into the metal, causing internal damage.
We believe that this is due to occlusion in the TiFe alloy.

本発明により、従来活性化に450〜500℃の高温
で、水素圧30〜60Kg/cm2で加圧、あるいは真空排
気のくり返し操作を1週間程度行う必要があつた
ものが、200℃以下、水素圧20〜30Kg/cm2で1日
以内と、処理温度,水素圧力,所要時間の全ての
面で飛躍的に性能向上が計られ実用性の高い水素
吸蔵金属材料が得られるようになつた。また本発
明により水素吸蔵合金の耐錆性を向上させ、外観
も良好になる。
With the present invention, activation at a high temperature of 450 to 500 degrees Celsius, pressurization at a hydrogen pressure of 30 to 60 kg/ cm2 , or repeated evacuation operations for about a week is now possible, but activation can be performed at temperatures below 200 degrees Celsius. With a hydrogen pressure of 20 to 30 kg/cm 2 within one day, the performance has been dramatically improved in all aspects of processing temperature, hydrogen pressure, and required time, and highly practical hydrogen storage metal materials can now be obtained. . Furthermore, the present invention improves the rust resistance of the hydrogen storage alloy and improves its appearance.

なお、メツキ方法は無電解メツキあるいは電気
メツキにより、1種あるいは2種以上(合金メツ
キ)の金属を粉末状の水素吸蔵金属材料表面に被
覆する。
The plating method involves coating the surface of the powdered hydrogen storage metal material with one or more metals (alloy plating) by electroless plating or electroplating.

実施例 1 TiFe合金を60メツシユ以下に粉砕した粉末20
gを、塩化ニツケル2gを含む1%塩酸水溶液
100ml中に約5分間浸漬し、無電解メツキを行つ
た。その後、水洗し、大気中で自然乾燥させ水素
吸蔵・放出能実験装置に入れ、200℃、20Kg/cm2
の水素雰囲気中で30分間、後真空排気30分間、こ
の繰返しを10回行い活性化させた。この10回の活
性化処理によつて十分水素吸蔵を行うようになる
ことが認められた。TiFe−Niメツキ水素吸蔵材
料の25℃における水素吸蔵能,水素化物の平衝解
離圧を測定し、TiFe合金と同様の良好なプラト
ー領域をもつ平衝解離圧が得られた。第1図に吸
蔵能,放出能を示す組成−水素圧力等温線を示し
た。参考に従来のTiFe,TiFe0.9Mn0.1
TiFe0.8Ni0.2,TiFeCu0.1の組成−水素圧力等温
線を第2図に示した。
Example 1 Powder 20 made by pulverizing TiFe alloy into 60 meshes or less
g, 1% aqueous hydrochloric acid solution containing 2 g of nickel chloride
Electroless plating was performed by immersing it in 100 ml for about 5 minutes. After that, it was washed with water, air-dried in the air, and placed in a hydrogen absorption/release capacity experimental device at 200℃ and 20Kg/cm 2 .
This process was repeated 10 times for 30 minutes in a hydrogen atmosphere and 30 minutes for post-evacuation to activate the product. It was confirmed that sufficient hydrogen storage was achieved through these 10 activation treatments. The hydrogen storage capacity and equilibrium dissociation pressure of hydrides at 25℃ of the TiFe-Ni plating hydrogen storage material were measured, and the equilibrium dissociation pressure with a good plateau region similar to that of the TiFe alloy was obtained. Figure 1 shows composition-hydrogen pressure isotherms showing storage capacity and desorption capacity. For reference, conventional TiFe, TiFe 0.9 Mn 0.1 ,
Figure 2 shows the composition - hydrogen pressure isotherms of TiFe0.8Ni0.2 and TiFeCu0.1 .

実施例 2 TiFe合金を60メツシユ以下に粉砕した粉末20
gを硫酸銅2gを含む1%硫酸水溶液100ml中に
約5分間浸漬してメツキし、その後水洗、大気中
で自然乾燥させ、水素吸蔵放出能実験装置に入
れ、200℃、30Kg/cm2の水素雰囲気中で30分間、
後真空排気30分間、この繰返しを10回行い、活性
化させた。実施例1と同様に、従来のTiFeで450
℃以上の高温を必要としていたのに対し200℃で
良く、又水素圧力も低くて良く、処理時間も大巾
に改善できることが認められた。また、Coメツ
キについても第1図のように良好な結果が得られ
た。
Example 2 Powder 20 made by pulverizing TiFe alloy into 60 meshes or less
g was immersed in 100 ml of a 1% sulfuric acid aqueous solution containing 2 g of copper sulfate for about 5 minutes, then washed with water, air-dried in the air, placed in a hydrogen storage and release capacity experimental device, and heated to 30 kg/cm 2 at 200°C. for 30 minutes in a hydrogen atmosphere.
This process was repeated 10 times during post-evacuation for 30 minutes for activation. 450 with conventional TiFe as in Example 1
It has been found that 200°C can be used instead of the previously required high temperature of 0.9°C or higher, that the hydrogen pressure can be lowered, and that the processing time can be greatly improved. Also, good results were obtained for Co plating as shown in Figure 1.

第2図に示されるように、従来活性化を容易に
させる目的で開発されたTiFe0.9Mn0.1などはいず
れも解離圧にプラトー領域を持たなくなつてしま
うか、又は解離圧が極端に低下してしまうが、本
発明による水素吸蔵金属材料はTiFeの優れた性
質を失う事なく、活性化性能を飛躍的に向上させ
ることができた。
As shown in Figure 2, TiFe 0 . 9 Mn 0 . However, the hydrogen storage metal material according to the present invention was able to dramatically improve the activation performance without losing the excellent properties of TiFe.

以上のように、本発明は実用性,経済性の面で
多大な効果をもたらすものであるから、産業界に
稗益するところが極めて大である。
As described above, the present invention brings about great effects in terms of practicality and economy, and therefore will greatly benefit the industrial world.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による水素吸蔵材料の吸蔵能,
放出能を示す25℃における組成−水素圧力等温
線、第2図は従来のTiFe、及び活性化を容易に
する目的で開発されたTiFe系合金の組成−水素
圧力等温線を示すものである。
Figure 1 shows the storage capacity of the hydrogen storage material according to the present invention.
Figure 2 shows the composition-hydrogen pressure isotherm at 25°C showing the release ability. Figure 2 shows the composition-hydrogen pressure isotherm of conventional TiFe and a TiFe-based alloy developed for the purpose of facilitating activation.

Claims (1)

【特許請求の範囲】[Claims] 1 水素を吸蔵するTiFe系またはLaNi5系合金の
金属粉の表面に、無電解メツキあるいは電気メツ
キによりNi,Cu,Coの少なくとも一種をコーテ
イングすることを特徴とする水素吸蔵金属材料の
製造方法。
1. A method for producing a hydrogen-absorbing metal material, which comprises coating the surface of hydrogen-absorbing TiFe-based or LaNi 5 -based alloy metal powder with at least one of Ni, Cu, and Co by electroless plating or electroplating.
JP56099083A 1981-06-27 1981-06-27 Production of hydrogen absorbing metallic material Granted JPS581032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56099083A JPS581032A (en) 1981-06-27 1981-06-27 Production of hydrogen absorbing metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56099083A JPS581032A (en) 1981-06-27 1981-06-27 Production of hydrogen absorbing metallic material

Publications (2)

Publication Number Publication Date
JPS581032A JPS581032A (en) 1983-01-06
JPS6159241B2 true JPS6159241B2 (en) 1986-12-15

Family

ID=14238008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56099083A Granted JPS581032A (en) 1981-06-27 1981-06-27 Production of hydrogen absorbing metallic material

Country Status (1)

Country Link
JP (1) JPS581032A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935001A (en) * 1982-08-23 1984-02-25 Mitsubishi Steel Mfg Co Ltd Preparation of hydrogen storing material
JPS60190570A (en) * 1984-03-09 1985-09-28 Agency Of Ind Science & Technol Production of hydrogen occluding alloy material
JPS6119063A (en) * 1984-07-05 1986-01-27 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JPS6130682A (en) * 1984-07-23 1986-02-12 Daido Steel Co Ltd Hydrogen occluding material
JPS6227301A (en) * 1985-07-26 1987-02-05 Nippon Yakin Kogyo Co Ltd Hydrogen occluding and releasing material having superior resistance to poisoning by impure gas
JP2612006B2 (en) * 1987-10-08 1997-05-21 シャープ株式会社 Method for producing hydrogen storage alloy material for battery electrode
JPH0382734A (en) * 1989-08-25 1991-04-08 Nippon Yakin Kogyo Co Ltd Rare earth metal-series hydrogen storage alloy
JPH0812778B2 (en) * 1989-09-11 1996-02-07 工業技術院長 Method for manufacturing hydrogen storage electrode
JPH07118704A (en) * 1993-10-25 1995-05-09 Matsushita Electric Ind Co Ltd Hydrogen storage alloy powder, nickel-hydrogen battery having the powder in negative electrode active material and production of the powder
JP3377650B2 (en) * 1995-05-10 2003-02-17 住友金属鉱山株式会社 Method for producing metal-coated rare earth element-containing powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148624A (en) * 1975-06-17 1976-12-21 Mitsubishi Heavy Ind Ltd Method of fabricating hydrogen occlusive metals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148624A (en) * 1975-06-17 1976-12-21 Mitsubishi Heavy Ind Ltd Method of fabricating hydrogen occlusive metals

Also Published As

Publication number Publication date
JPS581032A (en) 1983-01-06

Similar Documents

Publication Publication Date Title
CN108411182B (en) Zr-Ti-Cr-V complex phase hydrogen storage alloy and preparation method thereof
Maeland et al. Hydride formation rates of titanium-based BCC solid solution alloys
JPS6159241B2 (en)
US4278466A (en) Titanium alloy composition and method for the storage of hydrogen
US4222770A (en) Alloy for occlusion of hydrogen
US4537761A (en) Hydrogen storage system
Mi et al. Crystal structure and hydrogen storage properties of (La, Ce) Ni 5− x M x (M= Al, Fe, or Co) alloys
Pourarian et al. Hydrogen storage in CeNi5− xCux
Ivey et al. Metal hydrides for energy storage
US4512965A (en) Hydrogen storage materials of hyperstoichiometric alloys
JPS5938293B2 (en) Titanium-chromium-vanadium hydrogen storage alloy
JPS626739B2 (en)
US4349527A (en) Iron-titanium-niobium alloy
JPS581040A (en) Quaternary alloy of rare earth metals for occlusion of hydrogen
Suzuki et al. Hydrogen absorption-desorption characteristics of Ti-Co-Fe alloys
Han et al. A study of the hydriding kinetics of Mg2Ni at the near isothermal condition
JP2000239703A (en) Manufacture of hydrogen storage alloy powder excellent in oxidation resistance
JPH0784636B2 (en) Hydrogen storage alloy
Dutta et al. Synthesis and hydrogen storage characteristics of the composite alloy La2Mg17-x wt% MmNi4. 5Al0. 5
Bruzzone et al. Hydrogen storage in a beryllium substituted TiFe compound
Oesterreicher et al. Water formation on oxygen exposure of some hydrides of intermetallic compounds
JPS6369701A (en) Metallic material for occluding hydrogen
JPS5947022B2 (en) Alloy for hydrogen storage
JPS58217655A (en) Hydrogen occluding multi-component alloy
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy