JPH07118704A - Hydrogen storage alloy powder, nickel-hydrogen battery having the powder in negative electrode active material and production of the powder - Google Patents

Hydrogen storage alloy powder, nickel-hydrogen battery having the powder in negative electrode active material and production of the powder

Info

Publication number
JPH07118704A
JPH07118704A JP5265330A JP26533093A JPH07118704A JP H07118704 A JPH07118704 A JP H07118704A JP 5265330 A JP5265330 A JP 5265330A JP 26533093 A JP26533093 A JP 26533093A JP H07118704 A JPH07118704 A JP H07118704A
Authority
JP
Japan
Prior art keywords
alloy powder
cobalt
hydrogen storage
storage alloy
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5265330A
Other languages
Japanese (ja)
Inventor
Katsunori Komori
克典 児守
Toru Yamamoto
徹 山本
Tadao Kimura
忠雄 木村
Yoshinori Toyoguchi
吉徳 豊口
Gohei Suzuki
剛平 鈴木
Seiji Yamaguchi
誠二 山口
Munehisa Ikoma
宗久 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5265330A priority Critical patent/JPH07118704A/en
Publication of JPH07118704A publication Critical patent/JPH07118704A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To produce a durable nickel-hydrogen battery at a low cost by uniformly depositing a small amt. of Co on the surface of a hydrogen storage alloy powder and using the obtained hydrogen storage alloy powder. CONSTITUTION:Co is uniformly deposited on the surface of a hydrogen storage alloy powder by CVD. Otherwise, the alloy powder is added to an aq. cobalt sulfate soln. and agitated, aq. KOH is added to the soln. to make it alkaline, and the powder is washed with water to deposit a Co compd. uniformly on the powder surface. The Co-deposited alloy powder or the alloy coated with a Co compd. is heat-treated, and a hydrogen storage alloy powder with the grain surface having a high content of Co is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素を可逆的に吸蔵・放
出し、ニッケル水素蓄電池などに使用される水素吸蔵合
金粉末およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy powder for reversibly storing and releasing hydrogen, which is used in nickel-metal hydride storage batteries and a method for producing the same.

【0002】[0002]

【従来の技術】近年、可逆的に水素を吸蔵・放出する水
素吸蔵合金粉末を負極に用いたニッケル・水素蓄電池
が、エネルギー密度が高く、充放電サイクル寿命も長い
二次電池として注目されている。
2. Description of the Related Art In recent years, a nickel-hydrogen storage battery using a hydrogen storage alloy powder that reversibly stores and releases hydrogen as a negative electrode has attracted attention as a secondary battery having a high energy density and a long charge-discharge cycle life. .

【0003】水素吸蔵合金には主に希土類元素/ニッケ
ル(Ni)などからなるAB5タイプと、ジルコン(Z
r)/マンガン(Mn)などからなるAB2タイプなど
がある。
The hydrogen storage alloys are mainly AB5 type consisting of rare earth elements / nickel (Ni) and zircon (Z).
For example, there is an AB2 type composed of r) / manganese (Mn).

【0004】AB5タイプ水素吸蔵合金では、従来より
合金中へのコバルト(Co)元素添加(Co系合金)に
よりニッケル水素蓄電池の充放電サイクル寿命が向上す
ることが知られており、AB5タイプのニッケル水素蓄
電池用水素吸蔵合金においてはCoは必須元素となって
いる。
It has been conventionally known that the AB5 type hydrogen storage alloy improves the charge / discharge cycle life of a nickel-hydrogen storage battery by adding a cobalt (Co) element (Co-based alloy) to the alloy. Co is an essential element in the hydrogen storage alloy for hydrogen storage batteries.

【0005】しかし、Coは高価なため合金コストのか
なり大きな割合を占める。さらに、Coは資源量に制約
があるため、大形、中形のニッケル水素蓄電池を量産す
る場合にはCo含有量の削減が必要である。
However, since Co is expensive, it accounts for a considerable proportion of the alloy cost. Further, since Co has a limited resource amount, it is necessary to reduce the Co content when mass-producing large-sized or medium-sized nickel-hydrogen storage batteries.

【0006】そのためCoを含有しない合金の使用が考
えられるが、これらの合金では極端に電池の寿命特性が
短い。
Therefore, it is considered to use alloys not containing Co, but these alloys have extremely short battery life characteristics.

【0007】合金表面にCoが存在することにより、C
o系合金においては充放電サイクルでの合金の微粉化が
抑えられるなどの効果があり、電池の長寿命化が達成さ
れるものと考えられている。そのためCo系合金以外に
も水素吸蔵合金に金属CoまたはCo化合物を混合充填
するなどの試みが行われてきた(特開平1−19796
5号公報、特開平5−36405号公報)。
Due to the presence of Co on the alloy surface, C
It is considered that the o-based alloy has an effect of suppressing pulverization of the alloy in the charge / discharge cycle, and that the life of the battery can be extended. Therefore, in addition to Co alloys, attempts have been made to mix and fill hydrogen storage alloys with metallic Co or Co compounds (Japanese Patent Laid-Open No. Hei 1-19796).
No. 5, JP-A-5-36405).

【0008】また、合金のCoメッキも試みられてきた
(特開昭58−1032号公報)。
Co plating of alloys has also been tried (Japanese Patent Laid-Open No. 58-1032).

【0009】[0009]

【発明が解決しようとする課題】しかし、金属Coまた
はCo化合物を単に充填する方法では、長寿命の効果を
得るために多量(通常10wt%以上)のCoを必要と
した。
However, in the method of simply filling with metallic Co or a Co compound, a large amount (usually 10 wt% or more) of Co is required to obtain the effect of long life.

【0010】一方、Coメッキは無電解メッキでは電解
液の寿命が短くコスト的に高価となる。また、電解メッ
キでは極板形成後でしかメッキができず粒子表面全面を
均一にメッキできないため電池寿命特性の改善効果が少
ないという欠点がある。
On the other hand, in Co plating, the life of the electrolytic solution is short and the cost is high in electroless plating. In addition, the electrolytic plating has a drawback that the effect of improving the battery life characteristics is small because the plating can be performed only after the electrode plate is formed and the entire surface of the particles cannot be uniformly plated.

【0011】さらにメッキ工程では粒子表面に均一に薄
く形成することが困難でCo量の削減が困難という課題
も有していた。
Further, in the plating process, it is difficult to form a uniform thin film on the particle surface, and it is difficult to reduce the amount of Co.

【0012】本発明は上記従来の課題を解決するもの
で、Co含有量が少なくても、長寿命のニッケル・水素
蓄電池を提供することができる水素吸蔵合金粉末および
その製造方法を提供することを目的とする。
The present invention is to solve the above-mentioned conventional problems, and to provide a hydrogen storage alloy powder capable of providing a long-life nickel-hydrogen storage battery even if the Co content is small, and a method for producing the same. To aim.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
本発明の水素吸蔵合金粉末およびその製造方法は水素吸
蔵合金粉末の表面に化学気相蒸着法によりCoを均一に
付着させるか、または、水素吸蔵合金粉末を硫酸コバル
トの水溶液中に加えて攪拌し、次にこの硫酸コバルト水
溶液中にKOH水溶液を加えてアルカリ性にし、その後
前記水素吸蔵合金粉末を水洗することにより前記水素吸
蔵合金粉末の表面にコバルト化合物を均一に析出させ、
そのCoを均一に付着させた水素吸蔵合金粉末またはそ
のコバルト化合物を均一に析出させた水素吸蔵合金粉末
を熱処理し表面付近にCoを拡散させた水素吸蔵合金粉
末を得るものである。
In order to achieve this object, the hydrogen storage alloy powder and the method for producing the same according to the present invention are to deposit Co uniformly on the surface of the hydrogen storage alloy powder by a chemical vapor deposition method, or The surface of the hydrogen storage alloy powder is obtained by adding the hydrogen storage alloy powder to an aqueous solution of cobalt sulfate and stirring, and then adding an aqueous KOH solution to the aqueous solution of cobalt sulfate to make it alkaline, and then washing the hydrogen storage alloy powder with water. Uniformly deposit the cobalt compound on the
The hydrogen-absorbing alloy powder having Co uniformly attached thereto or the hydrogen-absorbing alloy powder having the cobalt compound uniformly deposited thereon is heat-treated to obtain hydrogen-absorbing alloy powder having Co diffused near the surface.

【0014】[0014]

【作用】Coを含有した水素吸蔵合金粉末はこれをニッ
ケル水素蓄電池に用いた場合、充放電サイクルに伴う合
金の微細化が少なく合金の表面が酸化されにくいことに
より充放電サイクル寿命が長いことが知られている。
When the hydrogen-absorbing alloy powder containing Co is used in a nickel-hydrogen storage battery, the alloy may not be finely divided with the charge / discharge cycle and the surface of the alloy may be hardly oxidized, so that the charge / discharge cycle life may be long. Are known.

【0015】本発明における化学気相蒸着法では極めて
薄いCoの層を水素吸蔵合金粉末表面に均一に薄く付着
させることができる。そのため少量のCoで効果的に合
金の表面を覆うことができ、その結果ニッケル水素蓄電
池の低コスト化が可能となる。
In the chemical vapor deposition method of the present invention, an extremely thin layer of Co can be uniformly and thinly deposited on the surface of the hydrogen storage alloy powder. Therefore, the surface of the alloy can be effectively covered with a small amount of Co, and as a result, the cost of the nickel-hydrogen storage battery can be reduced.

【0016】一方、水素吸蔵合金粉末を硫酸コバルトの
水溶液中に加えて攪拌し、次にこの硫酸コバルト水溶液
中にKOH水溶液を加えてアルカリ性にし、その後前記
水素吸蔵合金粉末を水洗することにより水素吸蔵合金粉
末の表面にコバルト化合物を析出させる方法でも、コバ
ルト化合物の層を水素吸蔵合金粉末の表面に均一に薄く
付けることができる。そのため化学気相蒸着法の場合と
同様に、少量のコバルト化合物で効果的に水素吸蔵合金
粉末の表面を覆うことができ、その結果少量のCo量で
これを用いたニッケル水素蓄電池の長寿命化を達成でき
る。
On the other hand, the hydrogen storage alloy powder is added to an aqueous solution of cobalt sulfate and stirred, and then a KOH aqueous solution is added to the aqueous solution of cobalt sulfate to make it alkaline, and then the hydrogen storage alloy powder is washed with water to store hydrogen. The method of depositing the cobalt compound on the surface of the alloy powder also makes it possible to uniformly thin the layer of the cobalt compound on the surface of the hydrogen storage alloy powder. Therefore, as in the case of the chemical vapor deposition method, the surface of the hydrogen storage alloy powder can be effectively covered with a small amount of cobalt compound, and as a result, the life of the nickel-hydrogen storage battery using this with a small amount of Co can be extended. Can be achieved.

【0017】さらには、600℃〜1000℃で5分間
〜120分間と比較的低温、短時間の熱処理により表面
に付着したCoを合金中の表面付近に拡散させることに
より、アルカリ中へのCo溶出を最小限にすることがで
きる。また傾斜的にCoの含有率を表面付近で高めるこ
とにより、予めCoを組成中に含む合金に比べて、少な
いCo量で充放電サイクル時における水素吸蔵合金粉末
の微細化を防ぐことができる。
Further, Co adhered to the surface is diffused near the surface in the alloy by heat treatment at 600 ° C. to 1000 ° C. for 5 minutes to 120 minutes at a relatively low temperature for a short time, so that Co is dissolved in the alkali. Can be minimized. Further, by gradually increasing the Co content near the surface, it is possible to prevent the hydrogen storage alloy powder from becoming finer during charge / discharge cycles with a smaller amount of Co than in an alloy containing Co in advance in the composition.

【0018】なお、Co層およびコバルト化合物層の厚
さとしては、0.05μmから0.2μm程度であれば
十分微細化を防げることが分かった。
It has been found that the Co layer and the cobalt compound layer having a thickness of about 0.05 μm to 0.2 μm can sufficiently prevent miniaturization.

【0019】[0019]

【実施例】【Example】

(実施例1)以下に本発明の実施例1を図面を用いて説
明する。
(Embodiment 1) Embodiment 1 of the present invention will be described below with reference to the drawings.

【0020】水素吸蔵合金の母合金としてランタン(L
a)を20重量%含むミッシュメタル(Mm)、ニッケ
ル(Ni)、マンガン(Mn)、アルミニウム(A
l)、銅(Cu)を所定の割合で混合し、高周波溶解炉
でMmNi3.7 Mn0.4 Al0.3Cu0.6 の組成の水素
吸蔵合金のインゴットを作製した。このインゴットを粉
砕して平均粒径30μmの水素吸蔵合金粉末(以下合金
粉末という)を得た。
Lanthanum (L) was used as the mother alloy of the hydrogen storage alloy.
a) 20% by weight of misch metal (Mm), nickel (Ni), manganese (Mn), aluminum (A)
1) and copper (Cu) were mixed at a predetermined ratio, and an ingot of a hydrogen storage alloy having a composition of MmNi 3.7 Mn 0.4 Al 0.3 Cu 0.6 was prepared in a high frequency melting furnace. This ingot was crushed to obtain hydrogen storage alloy powder (hereinafter referred to as alloy powder) having an average particle diameter of 30 μm.

【0021】次に、図1に示すCVD装置を用いてプラ
ズマ式の化学気相蒸着法(CVD)でこの合金粉末表面
にCo膜の付着を行った。反応ガスの出発物質には酢酸
コバルト1を用いて加熱装置2でこれを300℃に加熱
し、キャリアガスとして窒素ボンベ3からの窒素と、水
素ボンベ4からの水素の混合ガスを流量計5を用いて流
量600cm3 /分で石英管6に流した。CVD装置に
は合金粉末7へのCoの均一蒸着を行うために改造を施
した。すなわち、高周波電源8に接続された高周波コイ
ル9内の合金粉末7を載せる試料台10が上下に振動す
るような機構を設け、振動により合金粉末7が気流中に
舞うような仕組みにした。また、気流中に舞っている合
金粉末7の温度を上げるため、赤外線ランプ11で約3
00℃程度の加熱を行った。なお、石英管6内の圧力は
トラップ12を経由したロータリーポンプ13を用いて
5×10-1torrに設定した。
Next, a Co film was deposited on the surface of the alloy powder by plasma-type chemical vapor deposition (CVD) using the CVD apparatus shown in FIG. Cobalt acetate 1 was used as a starting material of the reaction gas, and this was heated to 300 ° C. by a heating device 2, and a mixed gas of nitrogen from a nitrogen cylinder 3 and hydrogen from a hydrogen cylinder 4 was used as a carrier gas in a flow meter 5. It was used to flow through the quartz tube 6 at a flow rate of 600 cm 3 / min. The CVD apparatus was modified in order to uniformly deposit Co on the alloy powder 7. That is, a mechanism was provided in which the sample table 10 on which the alloy powder 7 in the high-frequency coil 9 connected to the high-frequency power source 8 is placed vibrates up and down, and the alloy powder 7 flies in the airflow due to the vibration. In addition, in order to raise the temperature of the alloy powder 7 that is flying in the air flow, the infrared lamp 11 is used to
Heating was performed at about 00 ° C. The pressure in the quartz tube 6 was set to 5 × 10 -1 torr using the rotary pump 13 via the trap 12.

【0022】このCVD装置により作製した合金粉末7
はCo層で連続的に均一に被われていることを、走査型
電子顕微鏡(SEM)で合金粉末7を観察することによ
り確認した。またオージェ分析により、Co層の厚さは
約0.1μmであることが分かった。これはCoの重量
分率としては2.0%であった。
Alloy powder 7 produced by this CVD apparatus
It was confirmed by observing the alloy powder 7 with a scanning electron microscope (SEM) that the Co layer was continuously and uniformly covered. Also, Auger analysis revealed that the thickness of the Co layer was about 0.1 μm. This was 2.0% as a weight fraction of Co.

【0023】また、反応ガスの出発材料にコバルトジク
ロペンタジエニル、沃化コバルト、塩化コバルト、コバ
ルトニトロシルトリカルボニル、コバルトアセチルアセ
トネートを用いた場合にも同様な粉末が得られた。
Similar powders were also obtained when cobalt diclopentadienyl, cobalt iodide, cobalt chloride, cobalt nitrosyltricarbonyl and cobalt acetylacetonate were used as starting materials for the reaction gas.

【0024】このようにして得られた水素吸蔵合金粉末
100重量部に水を16重量部加えて負極用ペーストを
作製した。このペーストをリードを取り付けた縦7cm
横4cmの発泡ニッケル製の基板に充填、乾燥後、プレ
スして厚さを0.5mmとし、カルボキシメチルセルロ
ース(CMC)を塗布して負極板とした。このとき負極
板に充填された合金は約6.3gである。
16 parts by weight of water was added to 100 parts by weight of the hydrogen storage alloy powder thus obtained to prepare a negative electrode paste. This paste is 7 cm in length with leads attached
The substrate was filled with a foamed nickel substrate having a width of 4 cm, dried, and pressed to have a thickness of 0.5 mm, and carboxymethyl cellulose (CMC) was applied to form a negative electrode plate. At this time, the alloy filled in the negative electrode plate was about 6.3 g.

【0025】上記のようにして作製した負極板1枚、焼
結式水酸化ニッケル正極板4枚を厚さ0.15mmのス
ルホン化したポリプロピレン(PP)製のセパレータで
袋状に包み、負極板を各2枚の正極板で挟んでアクリル
板で固定した。これを円筒形アクリル製の電槽に入れ、
リード部を極柱に溶接した後、水酸化カリウム水溶液
(比重1.30g/cm3 )を主成分とする電解液を多
量に(300g)注液し、細孔を有するPP製の蓋をし
た後、一旦真空にして脱泡を行い、液リッチの負極規制
の評価電池を作製した。この電池に参照電極として、水
銀電極(Hg/HgO)を組み込んだ。
One negative electrode plate and four sintered nickel hydroxide positive electrode plates produced as described above were wrapped in a bag shape with a sulfonated polypropylene (PP) separator having a thickness of 0.15 mm to form a negative electrode plate. Was sandwiched between two positive electrode plates and fixed with an acrylic plate. Put this in a cylindrical acrylic battery case,
After welding the lead portion to the pole, a large amount (300 g) of an electrolytic solution containing a potassium hydroxide aqueous solution (specific gravity: 1.30 g / cm 3 ) as a main component was injected, and a PP lid having pores was put on. Then, it was evacuated once to perform defoaming to prepare a liquid-rich negative electrode regulation evaluation battery. A mercury electrode (Hg / HgO) was incorporated into this battery as a reference electrode.

【0026】図2に上記液リッチ負極規制の評価電池で
充放電サイクル試験を行った時の負極放電容量の変化を
示す。充放電サイクル試験時は充電は1250mAで1
時間行い、放電も1250mAで1時間または電位が−
0.6V(vs.Hg/HgO)になるまで行った。容
量確認は100サイクルごとに行った。容量確認時の充
電は190mAで12時間行い、放電は380mAで−
0.6V(vs.Hg/HgO)まで行った。
FIG. 2 shows changes in the negative electrode discharge capacity when a charge / discharge cycle test was conducted on the above-mentioned liquid-rich negative electrode regulation evaluation battery. At the time of charge / discharge cycle test, charging is 1250mA, 1
Discharge for 1 hour at 1250 mA or potential-
It carried out until it became 0.6V (vs.Hg / HgO). The capacity was confirmed every 100 cycles. When checking the capacity, the battery is charged at 190 mA for 12 hours and discharged at 380 mA-
It went to 0.6 V (vs. Hg / HgO).

【0027】(実施例2)次に本発明の実施例2を図面
を用いて説明する。
Second Embodiment Next, a second embodiment of the present invention will be described with reference to the drawings.

【0028】まず、実施例1と同じように作製した組成
MmNi3.7 Mn0.4 Al0.3 Cu 0.6 の母合金の粉末
(粒径20μm)100重量部とCoSO4 ・7H2
3重量部に水を加えて攪拌した。この時pHは6〜8に
なる。ここに濃度31wt%のKOH水溶液を徐々に注
ぎこみ攪拌した。pHが12〜13になるまでKOHを
加えて、合金粉末表面にコバルト化合物を析出させた。
その後アルカリがぬけるまで前記合金粉末を水洗し、脱
水、乾燥してコバルト化合物析出合金粉末を得た。
First, the composition prepared in the same manner as in Example 1
MmNi3.7Mn0.4Al0.3Cu 0.6Mother alloy powder
(Particle size 20 μm) 100 parts by weight and CoSOFour・ 7H2O
Water was added to 3 parts by weight and stirred. At this time the pH is 6-8
Become. A KOH aqueous solution with a concentration of 31 wt% is gradually poured here.
Stirred and stirred. KOH until the pH is 12-13
In addition, a cobalt compound was deposited on the surface of the alloy powder.
After that, wash the alloy powder with water until the alkali is removed and remove it.
Water and drying were performed to obtain a cobalt compound precipitation alloy powder.

【0029】この合金粉末をSEMで観察したところ直
径約0.2μmの細かい粒が合金表面に均一に付着して
いた。X線回折の結果からこの細かい粒子は水酸化コバ
ルトと酸化コバルトの混合物と考えられる。この時のC
oの重量分率は約5.5%であった。
When the alloy powder was observed by SEM, fine particles having a diameter of about 0.2 μm were uniformly attached to the surface of the alloy. From the results of X-ray diffraction, these fine particles are considered to be a mixture of cobalt hydroxide and cobalt oxide. C at this time
The weight fraction of o was about 5.5%.

【0030】この合金粉末を用いて実施例1と同じよう
に液リッチ負極規制の評価電池を作製した。この評価電
池の充放電サイクル試験の結果を図2に示す。 (実施例3)次に、本発明の実施例3を図面を用いて説
明する。
Using this alloy powder, an evaluation battery under liquid-rich negative electrode regulation was prepared in the same manner as in Example 1. The results of the charge / discharge cycle test of this evaluation battery are shown in FIG. (Third Embodiment) Next, a third embodiment of the present invention will be described with reference to the drawings.

【0031】実施例1で得られた均一にCoで被覆され
た合金粉末に対し、真空雰囲気で熱処理を行った。熱処
理の条件は400℃から1100℃の範囲で5分から6
時間行った。しかし、1100℃以上の温度で熱処理を
行うと粉末試料が溶解し焼結状態となってしまうことが
分かった。また実施例2から得られたCo化合物析出合
金粉末でも同様の熱処理を行ったが、やはり1100℃
以上の温度で溶解した。
The alloy powder uniformly coated with Co obtained in Example 1 was heat-treated in a vacuum atmosphere. The heat treatment conditions are from 400 ° C to 1100 ° C for 5 minutes to 6 minutes.
I went on time. However, it was found that when the heat treatment was performed at a temperature of 1100 ° C. or higher, the powder sample was melted into a sintered state. The same heat treatment was performed on the Co compound precipitation alloy powder obtained from Example 2, but it was still 1100 ° C.
It melted at the above temperature.

【0032】1000℃以下の温度で熱処理した合金粉
末を用いて実施例1と同様の方法で液リッチ負極規制の
評価電池を作製した。このうち、800℃で60分間熱
処理した合金を用いた評価電池の充放電サイクル試験の
結果を図2に示す。EPMA分析で合金粉末の断面組織
を調べた所、粉末の表面にCoが偏在していることが分
かった。
Using the alloy powder heat-treated at a temperature of 1000 ° C. or lower, a liquid-rich negative electrode regulation evaluation battery was prepared in the same manner as in Example 1. Of these, the results of the charge / discharge cycle test of the evaluation battery using the alloy heat-treated at 800 ° C. for 60 minutes are shown in FIG. When the cross-sectional structure of the alloy powder was examined by EPMA analysis, it was found that Co was unevenly distributed on the surface of the powder.

【0033】また比較例1としてCoを付着させていな
い組成MmNi3.7 Mn0.4 Al0. 3 Cu0.6 の母合金
の粉末を負極に用い、同一構成の評価電池を作製した。
Further using powder of mother alloy of Comparative Example 1 as not to adhere the Co composition MmNi 3.7 Mn 0.4 Al 0. 3 Cu 0.6 the negative electrode, to produce a rated battery of the same configuration.

【0034】さらに比較例2としてCoを合金組成中に
含むMmNi3.55Mn0.4 Al0.3Co0.75の合金粉末
(Co含有率11%)を作製して負極に用い、同一構成
の評価電池を作製した。
Furthermore Co was used to MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75 alloy powder (Co content 11%) negative electrode was prepared, including in the alloy composition as Comparative Example 2 was produced to evaluate batteries with the same configuration.

【0035】実施例1〜3と比較例1,2の合金粉末を
用いた評価電池の寿命特性を示す図2において、実施例
1〜3と比較例1,2の負極の初期放電容量はいずれも
290mAh/g程度であった。充放電サイクル試験の
結果は比較例1の場合は200サイクル時にピーク時の
容量の80%より少くなった。しかし本発明の実施例の
場合は500サイクル経過時でもピーク時の容量の80
%以上を確保した。そして実施例1では500サイクル
後の放電容量は230mAh/gで、ピーク時の容量に
対する500サイクル経過後の容量の割合(容量維持
率)は89%であった。また実施例2では容量維持率9
1%、実施例3では92%であった。これに対して比較
例1の500サイクル経過時の容量維持率は63%であ
り、比較例2では91%であった。本実施例では全合金
重量に対するCoの比率が2〜5.5wt%であるにも
かかわらず、Co11wt%を合金組成内に含む比較例
2の合金と比べて電池の寿命特性に遜色のない合金を提
供することができる。
In FIG. 2, which shows the life characteristics of the evaluation batteries using the alloy powders of Examples 1 to 3 and Comparative Examples 1 and 2, the initial discharge capacities of the negative electrodes of Examples 1 to 3 and Comparative Examples 1 and 2 are Was about 290 mAh / g. In the case of Comparative Example 1, the result of the charge-discharge cycle test was less than 80% of the peak capacity at 200 cycles. However, in the case of the embodiment of the present invention, the peak capacity of
Secured more than%. In Example 1, the discharge capacity after 500 cycles was 230 mAh / g, and the ratio of the capacity after 500 cycles to the peak capacity (capacity retention rate) was 89%. Further, in Example 2, the capacity retention rate is 9
1%, and in Example 3 it was 92%. On the other hand, the capacity retention rate after 500 cycles of Comparative Example 1 was 63%, and that of Comparative Example 2 was 91%. In the present example, although the ratio of Co to the total alloy weight was 2 to 5.5 wt%, the alloy had the same battery life characteristics as the alloy of Comparative Example 2 containing 11 wt% of Co in the alloy composition. Can be provided.

【0036】表1は実施例3における各種熱処理条件に
対する充放電サイクル試験における500サイクル経過
時の容量維持率の値を示したものである。
Table 1 shows the value of the capacity retention rate after 500 cycles in the charge / discharge cycle test under various heat treatment conditions in Example 3.

【0037】[0037]

【表1】 [Table 1]

【0038】1100℃以上で熱処理したものは先に記
述したように溶解した。500℃以下で熱処理した合金
粉末は熱処理していない合金と差がなく温度が低すぎて
Coの拡散が起こっていないと考えられる。また6時間
以上熱処理した合金は比較的容量維持率が小さいので、
Coの拡散が進行しすぎて表面と内部のCo含有率が等
しくなった結果、他の条件で熱処理した合金に比べて表
面付近のCo含有率が希薄になったものと考えられる。
したがって本発明における熱処理条件は600℃〜10
00℃の温度範囲で5分間〜120分間処理が適当と考
えられる。
Those heat-treated at 1100 ° C. or higher melted as described above. It is considered that the alloy powder heat-treated at 500 ° C. or lower has no difference from the alloy not heat-treated and the temperature is too low to cause Co diffusion. Also, the alloy that has been heat treated for 6 hours or more has a relatively small capacity retention rate,
It is considered that the Co content near the surface was diluted as compared with the alloy heat-treated under other conditions, as a result of the excessive diffusion of Co and the equalization of the Co content on the surface with that in the interior.
Therefore, the heat treatment condition in the present invention is 600 ° C to 10 ° C.
Treatment in the temperature range of 00 ° C. for 5 minutes to 120 minutes is considered appropriate.

【0039】また、本実施例においてCo層またはコバ
ルト化合物層の厚さが0.05μm〜0.2μmで合金
粉末の微粉化が妨げた。0.2μm以上ではCo含有量
が大きくなり低コスト化および資源的にも課題を有する
ことになる。
Further, in the present embodiment, when the thickness of the Co layer or the cobalt compound layer was 0.05 μm to 0.2 μm, the pulverization of the alloy powder was hindered. If it is 0.2 μm or more, the Co content becomes large, which causes problems in cost reduction and resources.

【0040】[0040]

【発明の効果】以上の説明により明らかなように本発明
の水素吸蔵合金粉末およびその製造方法によれば、極め
て薄いCoまたはコバルト化合物の層を水素吸蔵合金粉
末表面に均一に付けることができる。そのため少量のC
oで効果的に合金粉末の表面を覆うことができ、その結
果Co量を抑制でき、これを用いたニッケル水素蓄電池
の長寿命を達成できる。高価で資源量の乏しいCoを減
らせるため、合金コストが安くなりCoの資源量につい
ての不安が解消される。
As is clear from the above description, according to the hydrogen storage alloy powder and the method for producing the same of the present invention, an extremely thin layer of Co or cobalt compound can be uniformly applied to the surface of the hydrogen storage alloy powder. Therefore, a small amount of C
The surface of the alloy powder can be effectively covered with o, and as a result, the amount of Co can be suppressed, and the long life of the nickel-hydrogen storage battery using this can be achieved. Since expensive and resource-poor Co can be reduced, alloy cost is reduced and anxiety about Co resource is eliminated.

【0041】さらに、比較的低温、短時間の熱処理によ
り表面に付着したCoを合金中の表面付近に拡散させる
ことにより傾斜的にCoの含有率を表面付近で高め、ア
ルカリ中へのCo溶出を最小限に抑えることができ、予
めCoを組成中に含む合金に比べて、少ないCo量で充
放電サイクル数の経過による負極合金粉末の微細化を防
ぐことができる。
Further, the Co content adhering to the surface is diffused near the surface in the alloy by heat treatment at a relatively low temperature for a short time, so that the content ratio of Co is gradually increased near the surface to elute Co into the alkali. It can be minimized, and the negative electrode alloy powder can be prevented from becoming finer due to the passage of the number of charge / discharge cycles with a smaller amount of Co as compared with an alloy containing Co in the composition in advance.

【0042】以上のように本発明の水素吸蔵合金粉末お
よびその製造方法によって低コストで長寿命のニッケル
水素蓄電池を提供することができる。
As described above, the hydrogen storage alloy powder and the method for producing the same according to the present invention can provide a low cost, long life nickel-metal hydride storage battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の水素吸蔵合金粉末の製造法
における化学気相蒸着法の装置の略図
FIG. 1 is a schematic diagram of an apparatus for chemical vapor deposition in a method for producing hydrogen storage alloy powder according to Example 1 of the present invention.

【図2】本発明の実施例1〜3と比較例1,2の水素吸
蔵合金粉末を負極に用いた評価電池の充放電サイクル試
験における負極放電容量の変化を示したグラフ
FIG. 2 is a graph showing changes in the negative electrode discharge capacity in a charge / discharge cycle test of an evaluation battery using the hydrogen storage alloy powders of Examples 1 to 3 of the present invention and Comparative Examples 1 and 2 as a negative electrode.

【符号の説明】[Explanation of symbols]

1 醋酸コバルト 2 加熱装置 3 窒素ボンベ 4 水素ボンベ 5 流量計 6 石英管 7 水素吸蔵合金粉末 8 高周波電源 9 高周波コイル 10 試料台 11 赤外線ランプ 12 トラップ 13 ロータリーポンプ 1 Cobalt Acetate 2 Heating Device 3 Nitrogen Cylinder 4 Hydrogen Cylinder 5 Flow Meter 6 Quartz Tube 7 Hydrogen Storage Alloy Powder 8 High Frequency Power Supply 9 High Frequency Coil 10 Sample Stage 11 Infrared Lamp 12 Trap 13 Rotary Pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 鈴木 剛平 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 山口 誠二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 生駒 宗久 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshinori Toyokuchi 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Gohei Suzuki, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. 72) Inventor Seiji Yamaguchi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】化学気相蒸着法によりコバルトを均一に付
着させた表面を備えた水素吸蔵合金粉末。
1. A hydrogen storage alloy powder having a surface on which cobalt is uniformly deposited by a chemical vapor deposition method.
【請求項2】コバルト層の厚さが0.05から0.2μ
mの範囲である請求項1記載の水素吸蔵合金粉末。
2. The cobalt layer has a thickness of 0.05 to 0.2 μm.
The hydrogen storage alloy powder according to claim 1, which is in a range of m.
【請求項3】水素吸蔵合金粉末を硫酸コバルトの水溶液
中に加えて攪拌し、次にこの硫酸コバルトの水溶液中に
苛性カリ水溶液を加えてアルカリ性にし、その後前記水
素吸蔵合金粉末を水洗することにより、コバルト化合物
を均一に析出させた表面を備えた水素吸蔵合金粉末。
3. A hydrogen storage alloy powder is added to an aqueous solution of cobalt sulfate and stirred, and then an aqueous caustic potash solution is added to the aqueous solution of cobalt sulfate to make it alkaline, and then the hydrogen storage alloy powder is washed with water. A hydrogen storage alloy powder having a surface on which a cobalt compound is uniformly deposited.
【請求項4】コバルト化合物層の厚さが0.05から
0.2μmの範囲である請求項3記載の水素吸蔵合金粉
末。
4. The hydrogen storage alloy powder according to claim 3, wherein the thickness of the cobalt compound layer is in the range of 0.05 to 0.2 μm.
【請求項5】コバルト化合物が、コバルト酸化物および
コバルト水酸化物または、コバルト酸化物またはコバル
ト水酸化物の少なくとも一方である請求項3または4記
載の水素吸蔵合金粉末。
5. The hydrogen storage alloy powder according to claim 3, wherein the cobalt compound is at least one of cobalt oxide and cobalt hydroxide, or cobalt oxide or cobalt hydroxide.
【請求項6】表面に化学気相蒸着法によりコバルトを均
一に付着させた水素吸蔵合金粉末、または、水素吸蔵合
金粉末を硫酸コバルトの水溶液中に加えて攪拌し、次に
この硫酸コバルトの水溶液中に苛性カリ水溶液を加えて
アルカリ性にし、その後前記水素吸蔵合金粉末を水洗す
ることにより、コバルト化合物を均一に析出させた前記
水素吸蔵合金粉末を、真空中または不活性ガス雰囲気中
で熱処理することにより、前記水素吸蔵合金粉末の表面
付近で傾斜的にコバルト含有率を高くした水素吸蔵合金
粉末。
6. A hydrogen storage alloy powder having cobalt uniformly deposited on its surface by a chemical vapor deposition method or a hydrogen storage alloy powder is added to an aqueous solution of cobalt sulfate and stirred, and then this aqueous solution of cobalt sulfate is added. By adding a caustic potash aqueous solution to make it alkaline, and then washing the hydrogen storage alloy powder with water, the hydrogen storage alloy powder on which a cobalt compound is uniformly deposited is heat treated in a vacuum or in an inert gas atmosphere. A hydrogen-absorbing alloy powder in which the cobalt content is gradually increased near the surface of the hydrogen-absorbing alloy powder.
【請求項7】請求項1ないし6のいずれかに記載の水素
吸蔵合金を負極活物質に有するニッケル・水素蓄電池。
7. A nickel-hydrogen storage battery comprising the hydrogen storage alloy according to claim 1 as a negative electrode active material.
【請求項8】水素吸蔵合金粉末の表面に化学気相蒸着法
によりコバルトを均一に付着させる水素吸蔵合金粉末の
製造方法。
8. A method for producing a hydrogen storage alloy powder, wherein cobalt is uniformly deposited on the surface of the hydrogen storage alloy powder by a chemical vapor deposition method.
【請求項9】化学気相蒸着法に用いる反応ガスの出発材
料が、酢酸コバルト、コバルトニトロシルトリカルボニ
ル、沃化コバルト、塩化コバルト、コバルトアセチルア
セトネート、コバルトジクロペンタジエニルのいずれか
である請求項8記載の水素吸蔵合金粉末の製造方法。
9. The starting material of the reaction gas used in the chemical vapor deposition method is any one of cobalt acetate, cobalt nitrosyltricarbonyl, cobalt iodide, cobalt chloride, cobalt acetylacetonate and cobalt diclopentadienyl. Item 9. A method for producing a hydrogen storage alloy powder according to Item 8.
【請求項10】水素吸蔵合金粉末を硫酸コバルトの水溶
液中に加えて攪拌し、次にこの硫酸コバルト水溶液中に
苛性カリ水溶液を加えてアルカリ性にし、その後前記水
素吸蔵合金粉末を水洗することにより、前記水素吸蔵合
金粉末の表面にコバルト化合物を均一に析出させる水素
吸蔵合金粉末の製造方法。
10. The hydrogen-absorbing alloy powder is added to an aqueous solution of cobalt sulfate and stirred, and then an aqueous solution of caustic potassium is added to the aqueous solution of cobalt sulfate to make it alkaline, and then the hydrogen-absorbing alloy powder is washed with water. A method for producing hydrogen storage alloy powder, wherein a cobalt compound is uniformly deposited on the surface of hydrogen storage alloy powder.
【請求項11】コバルト化合物が、コバルト酸化物およ
びコバルト水酸化物または、コバルト酸化物またはコバ
ルト水酸化物のいづれか一方である請求項10記載の水
素吸蔵合金粉末の製造方法。
11. The method for producing a hydrogen storage alloy powder according to claim 10, wherein the cobalt compound is one of cobalt oxide and cobalt hydroxide, or cobalt oxide or cobalt hydroxide.
【請求項12】その表面に化学気相蒸着法によりコバル
トを均一に付着させた水素吸蔵合金粉末、または、水素
吸蔵合金粉末を硫酸コバルトの水溶液中に加えて攪拌
し、次にこの硫酸コバルトの水溶液中に苛性カリ水溶液
を加えてアルカリ性にし、その後前記水素吸蔵合金粉末
を水洗することにより、コバルト化合物を均一に析出さ
せた前記水素吸蔵合金粉末を、真空中または不活性ガス
雰囲気中で熱処理することにより、前記水素吸蔵合金粉
末の表面付近で傾斜的にコバルト含有率を高くする水素
吸蔵合金粉末の製造方法。
12. A hydrogen storage alloy powder having cobalt uniformly deposited on its surface by a chemical vapor deposition method, or a hydrogen storage alloy powder is added to an aqueous solution of cobalt sulfate and stirred, and then this cobalt sulfate is added. A caustic potash solution is added to the aqueous solution to make it alkaline, and then the hydrogen storage alloy powder is washed with water to heat-treat the hydrogen storage alloy powder in which a cobalt compound is uniformly deposited, in a vacuum or an inert gas atmosphere. According to the method for producing a hydrogen storage alloy powder, the cobalt content is gradually increased near the surface of the hydrogen storage alloy powder.
【請求項13】熱処理の条件が、600℃から1000
℃の温度範囲で、5分間から120分間である請求項1
2記載の水素吸蔵合金粉末の製造方法。
13. The heat treatment condition is 600 ° C. to 1000 ° C.
The temperature range of ° C is 5 minutes to 120 minutes.
2. The method for producing the hydrogen storage alloy powder according to 2.
JP5265330A 1993-10-25 1993-10-25 Hydrogen storage alloy powder, nickel-hydrogen battery having the powder in negative electrode active material and production of the powder Pending JPH07118704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5265330A JPH07118704A (en) 1993-10-25 1993-10-25 Hydrogen storage alloy powder, nickel-hydrogen battery having the powder in negative electrode active material and production of the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5265330A JPH07118704A (en) 1993-10-25 1993-10-25 Hydrogen storage alloy powder, nickel-hydrogen battery having the powder in negative electrode active material and production of the powder

Publications (1)

Publication Number Publication Date
JPH07118704A true JPH07118704A (en) 1995-05-09

Family

ID=17415694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5265330A Pending JPH07118704A (en) 1993-10-25 1993-10-25 Hydrogen storage alloy powder, nickel-hydrogen battery having the powder in negative electrode active material and production of the powder

Country Status (1)

Country Link
JP (1) JPH07118704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0765705A1 (en) * 1995-09-27 1997-04-02 Furukawa Denchi Kabushiki Kaisha Manufacturing method for a hydrogen storage alloy powder for batteries
CN104043824A (en) * 2014-06-29 2014-09-17 桂林理工大学 Modification method for improving electrochemical performance of AB3 type hydrogen storage alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS5927505A (en) * 1982-08-09 1984-02-14 Hitachi Maxell Ltd Ferromagnetic metal powder
JPS63223104A (en) * 1987-03-12 1988-09-16 Sekometsukusu Kk Production of sintered hard alloy product
JPS649603A (en) * 1987-07-01 1989-01-12 Kao Corp Ferromagnetic metal powder and manufacture thereof
JPH059504A (en) * 1991-07-08 1993-01-19 Agency Of Ind Science & Technol Material for hydrogen occlusion alloy and production thereof
JPH05267029A (en) * 1992-03-24 1993-10-15 Titan Kogyo Kk Ferromagnetic iron oxide powder for magnetic recording

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS5927505A (en) * 1982-08-09 1984-02-14 Hitachi Maxell Ltd Ferromagnetic metal powder
JPS63223104A (en) * 1987-03-12 1988-09-16 Sekometsukusu Kk Production of sintered hard alloy product
JPS649603A (en) * 1987-07-01 1989-01-12 Kao Corp Ferromagnetic metal powder and manufacture thereof
JPH059504A (en) * 1991-07-08 1993-01-19 Agency Of Ind Science & Technol Material for hydrogen occlusion alloy and production thereof
JPH05267029A (en) * 1992-03-24 1993-10-15 Titan Kogyo Kk Ferromagnetic iron oxide powder for magnetic recording

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0765705A1 (en) * 1995-09-27 1997-04-02 Furukawa Denchi Kabushiki Kaisha Manufacturing method for a hydrogen storage alloy powder for batteries
CN104043824A (en) * 2014-06-29 2014-09-17 桂林理工大学 Modification method for improving electrochemical performance of AB3 type hydrogen storage alloy

Similar Documents

Publication Publication Date Title
US5506070A (en) Metal hydride electrode, nickel electrode and nickel-hydrogen battery
JP3661190B2 (en) Hydrogen storage electrode and manufacturing method thereof
JPH07326353A (en) Manufacture of hydrogen storage alloy electrode
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JPH07118704A (en) Hydrogen storage alloy powder, nickel-hydrogen battery having the powder in negative electrode active material and production of the powder
JP4743997B2 (en) Hydrogen storage alloy electrode
JP2010231940A (en) Alkaline secondary battery
JP2002033116A (en) Alkaline storage battery
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH03245460A (en) Hydrogen storage alloy electrode, its manufacture and sealed alkaline storage battery using the electrode
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JPH10255779A (en) Manufacture for nickel hydrogen storage battery
JPH11204104A (en) Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof
JP3789704B2 (en) Method for producing hydrogen storage alloy electrode
JPH07282807A (en) Manufacture of hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JP2002042801A (en) Hydrogen storage alloy electrode and its production
JP2020038795A (en) Manufacturing method of electrode alloy
JP2001196092A (en) Sealed nickel-hydrogen battery and manufacturing method therefor
JPH04169061A (en) Hydrogen absorbing alloy electrode for alkaline storage battery
JP2002367609A (en) Manufacturing method of hydrogen storage alloy electrode material