JP2612006B2 - Method for producing hydrogen storage alloy material for battery electrode - Google Patents

Method for producing hydrogen storage alloy material for battery electrode

Info

Publication number
JP2612006B2
JP2612006B2 JP62255480A JP25548087A JP2612006B2 JP 2612006 B2 JP2612006 B2 JP 2612006B2 JP 62255480 A JP62255480 A JP 62255480A JP 25548087 A JP25548087 A JP 25548087A JP 2612006 B2 JP2612006 B2 JP 2612006B2
Authority
JP
Japan
Prior art keywords
storage alloy
hydrogen storage
hydrogen
alloy material
battery electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62255480A
Other languages
Japanese (ja)
Other versions
JPH0196301A (en
Inventor
哲也 米田
伸 佐藤
善光 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62255480A priority Critical patent/JP2612006B2/en
Publication of JPH0196301A publication Critical patent/JPH0196301A/en
Application granted granted Critical
Publication of JP2612006B2 publication Critical patent/JP2612006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水素の吸収・放出を行う水素吸蔵合金材
料、特に表面に炭素体が被覆されてなる電池電極用水素
吸蔵合金材料の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a hydrogen storage alloy material for absorbing and releasing hydrogen, in particular, a hydrogen storage alloy material for a battery electrode having a surface coated with a carbon body. About.

(従来の技術) 近年、水素吸蔵合金材料の研究、開発が盛んに行わ
れ、様々な分野において該材料がもつ種々の特性を生か
した利用が図られている。
(Prior Art) In recent years, research and development of a hydrogen storage alloy material have been actively carried out, and utilization in various fields utilizing various characteristics of the material has been attempted.

例えば、水素吸蔵合金材料がもつ水素の吸収・放出と
いった主たる特性を生かして水素の貯蔵および輸送への
利用が考えられている。従来は水素を耐圧性のある容器
に高圧に圧縮して保存しているが、それには温度の上昇
に伴い容器の臨界圧に近づくようなことがないよう非常
に頑丈な容器が必要とされていた。しかし、水素吸蔵合
金材料を用いることにより、通常の容器より低い圧力で
安全に貯蔵、輸送ができるため、容器を簡便にすること
ができるといった利点がある。
For example, utilization of hydrogen in storage and transport has been considered by taking advantage of the main characteristics of the hydrogen storage alloy material such as absorption and release of hydrogen. Conventionally, hydrogen is compressed and stored in a pressure-resistant container at high pressure, but this requires a very sturdy container so that the temperature does not approach the critical pressure of the container. Was. However, the use of the hydrogen storage alloy material has the advantage that the container can be stored and transported safely at a lower pressure than that of a normal container, so that the container can be simplified.

また、水素吸蔵合金材料は、水素のみを吸収するとい
った特性があることから、該材料により水素の吸収・放
出を繰り返し行い、これによって水素の精製を行うこと
も可能である。
Further, since the hydrogen storage alloy material has a characteristic of absorbing only hydrogen, it is possible to repeatedly absorb and release hydrogen with the material, thereby purifying the hydrogen.

さらに、水素吸蔵合金材料は、水素の吸収・放出の際
に活性な原子状水素を生成することから、燃料電池の水
素極、アルカリ電池の水素極としての応用も可能であ
る。
Further, the hydrogen storage alloy material generates active atomic hydrogen upon absorption and release of hydrogen, so that it can be applied as a hydrogen electrode of a fuel cell or a hydrogen electrode of an alkaline battery.

(発明が解決しようとする問題点) ところで、この水素吸蔵合金材料は比較的高価である
ため、上述したいずれの分野でも繰り返し使用できるこ
とが望まれる。
(Problems to be Solved by the Invention) Incidentally, since this hydrogen storage alloy material is relatively expensive, it is desired that it can be repeatedly used in any of the fields described above.

しかしながら、従来の水素吸蔵合金材料にあっては、
雰囲気からの表面への汚染による水素吸収・放出能力の
低下、および水素吸収・放出の繰り返しによる格子膨脹
・収縮からくる微粉化によって、周辺機器の機能を麻痺
させてしまうといった問題があった。
However, in the conventional hydrogen storage alloy material,
There has been a problem that the functions of peripheral devices are paralyzed by reduction of the ability of absorbing and releasing hydrogen due to contamination of the surface from the atmosphere and pulverization caused by lattice expansion and contraction due to repeated absorption and release of hydrogen.

(発明の目的) 本発明は、上記従来の問題に鑑みなされたものであっ
て、炭素体を水素吸蔵合金粉末の表面に被覆することに
より、微粉化が起こり難く、熱伝導性に優れ、しかも雰
囲気による表面の汚染を受け難い電池電極用水素吸蔵合
金材料の製造方法を提供することを目的としている。
(Object of the Invention) The present invention has been made in view of the above-mentioned conventional problems. By coating a surface of a hydrogen-absorbing alloy powder with a carbon body, pulverization hardly occurs, and excellent heat conductivity is obtained. An object of the present invention is to provide a method for producing a hydrogen storage alloy material for a battery electrode which is less susceptible to surface contamination by an atmosphere.

(発明の構成) 本発明に係る電池電極用水素吸蔵合金材料の製造方法
は、水素吸蔵合金粉末の表面に、1500℃以下の低温熱分
解による気相堆積法により炭素堆積物として形成される
炭素体を堆積させることを特徴とするものである。
(Constitution of the Invention) The method for producing a hydrogen storage alloy material for a battery electrode according to the present invention is a method of forming carbon deposits on a surface of a hydrogen storage alloy powder by vapor phase deposition by low-temperature pyrolysis at 1500 ° C or lower. It is characterized by depositing the body.

より詳しくは、出発原料として炭化水素類を用い、こ
の炭化水素類を気化し、反応系内において1000℃程度の
低温で気相熱分解して得られる炭素体を、1000℃程度の
温度で気化乃至融解、溶解、凝集を起こさない水素吸蔵
合金粉末の表面に直接気相堆積させることを特徴とする
ものである。
More specifically, using hydrocarbons as starting materials, the hydrocarbons are vaporized, and a carbon body obtained by gas phase pyrolysis at a low temperature of about 1000 ° C in the reaction system is vaporized at a temperature of about 1000 ° C. In addition, the present invention is characterized in that gas phase deposition is performed directly on the surface of a hydrogen storage alloy powder that does not cause melting, melting, or aggregation.

ここでの水素吸蔵合金粉末とは、粒径が75μm以下の
ものであり、TiNi系、VNi系、ZrNi系、TiCu系等の1000
℃程度の温度でも気化、融解、溶解、および凝集を起こ
さない組成の合金であり、特に、Ti2-xNix(0.6≦x≦
1.2)で示される合金が望ましい。
Here, the hydrogen storage alloy powder has a particle size of 75 μm or less, and may be a TiNi-based, VNi-based, ZrNi-based, TiCu-based
An alloy with a composition that does not vaporize, melt, dissolve, or agglomerate even at temperatures of about ℃, especially Ti 2-x Ni x (0.6 ≦ x ≦
The alloy shown in 1.2) is desirable.

本発明における炭化水素類とは、脂肪族炭化水素(特
に不飽和炭化水素)、芳香族炭化水素、脂環式炭化水素
およびそれらの誘導体のことであり、具体例としては、
例えば、ベンゼンナフタレン、アントラセン、ヘキサメ
チルベンゼン、2−ブチン、アセチレン、ビフェニル、
ジフェニルアセチレン、シクロヘキサン等が挙げられ、
特にベンゼン等の芳香族炭化水素類が好ましい。
The hydrocarbons in the present invention are aliphatic hydrocarbons (especially unsaturated hydrocarbons), aromatic hydrocarbons, alicyclic hydrocarbons and derivatives thereof, and specific examples thereof include:
For example, benzene naphthalene, anthracene, hexamethylbenzene, 2-butyne, acetylene, biphenyl,
Diphenylacetylene, cyclohexane and the like,
Particularly, aromatic hydrocarbons such as benzene are preferred.

上記炭化水素類を低温熱分解する際の濃度、温度は、
出発原料となる有機材料により異なるが、数ミリモルパ
ーセントの濃度、1000℃程度以下の温度に制御され、炭
素体の堆積量は数μm以下に制御される。
The concentration and temperature at which the hydrocarbons are pyrolyzed at low temperature are as follows:
Although it depends on the organic material used as the starting material, the concentration is controlled to several millimoles, the temperature is controlled to about 1000 ° C. or less, and the deposition amount of the carbon body is controlled to several μm or less.

また炭化水素類を気化する方法としては、アルゴンガ
スをキャリアガスとするバブラ法が通常であるが、水素
吸蔵合金および出発原料となる有機材料によっては水素
とアルゴンの混合ガスまたは水素ガスをキャリアガスと
するバブラ法、あるいは蒸発法、昇華法等によって行う
ことができる。
As a method for vaporizing hydrocarbons, a bubbler method using argon gas as a carrier gas is usually used, but depending on the hydrogen storage alloy and the organic material used as a starting material, a mixed gas of hydrogen and argon or a hydrogen gas is used as a carrier gas. Or an evaporation method, a sublimation method, or the like.

(発明の効果) 本発明によれば、微粉化が起こり難く、また熱乃至電
気伝導性に優れ、しかも雰囲気からの被毒による特性劣
化を起こさないといった利点を有し、長期間にわたる使
用においても安定した特性を示す電池電極用水素吸蔵合
金材料を提供することができる。
(Effects of the Invention) According to the present invention, there is an advantage that pulverization hardly occurs, heat and electric conductivity are excellent, and characteristics are not deteriorated by poisoning from an atmosphere. A hydrogen storage alloy material for a battery electrode exhibiting stable characteristics can be provided.

(実施例) 以下、本発明の実施例を示すが、本発明はこれに限定
されるものではない。
(Example) Hereinafter, an example of the present invention will be described, but the present invention is not limited thereto.

本例では、水素吸蔵合金にTiNiを、またTiNi粉末の表
面上に堆積させる炭素体作製のための出発物質としてベ
ンゼンを用いた。
In this example, TiNi was used as the hydrogen storage alloy, and benzene was used as a starting material for producing a carbon body to be deposited on the surface of the TiNi powder.

まず、TiとNiを化学量論比で1:1となるようにTi粉末
とNi粉末を秤量し、アルミナ製乳鉢を用いて均一に混合
した。この混合粉末を錠剤成形器を用いて直径15mm、厚
さ5mmのペレットに作製した。このペレットをアルゴン
アーク溶解炉内でアーク溶解し、均一なTiNi合金を作製
した後、粉砕し、最大粒径75μm、平均粒径40μmの水
素吸蔵合金粉末を得た。
First, Ti powder and Ni powder were weighed so that the stoichiometric ratio of Ti and Ni was 1: 1 and uniformly mixed using an alumina mortar. This mixed powder was formed into a pellet having a diameter of 15 mm and a thickness of 5 mm using a tableting machine. The pellets were arc-melted in an argon arc melting furnace to produce a uniform TiNi alloy and then pulverized to obtain a hydrogen storage alloy powder having a maximum particle size of 75 μm and an average particle size of 40 μm.

このようにして得られた水素吸蔵合金粉末を第1図に
示した炭素体堆積用装置内の試料ホルダー7に載せ、以
下の手順により水素吸蔵合金の表面上に炭素体を堆積さ
せた。
The hydrogen storage alloy powder thus obtained was placed on the sample holder 7 in the carbon body deposition apparatus shown in FIG. 1, and a carbon body was deposited on the surface of the hydrogen storage alloy by the following procedure.

まず、一旦脱水処理を施しさらに真空移送による蒸留
精製操作を行ったベンゼンが収納された容器1内に、ア
ルゴン供給器2よりアルゴンガスを供給してベンゼンの
バブルを行い、このベンゼンをパイレックス製ガラス管
3を介して石英製反応管4へ給送した。その際、容器1
をベンゼンの蒸発による吸熱分だけ加熱することにより
温度を一定に保ち、またニードル弁5,6を適宜操作して
ベンゼン量を最適化した。
First, argon gas is supplied from an argon supply unit 2 into a container 1 in which benzene that has been subjected to a dehydration treatment and further subjected to a distillation purification operation by vacuum transfer is bubbled with benzene, and the benzene is made of Pyrex glass. It was fed through a tube 3 to a quartz reaction tube 4. At that time, container 1
Was heated by the amount of heat absorbed by the evaporation of benzene to keep the temperature constant, and the amount of benzene was optimized by appropriately operating the needle valves 5 and 6.

一方、反応管4に設置された試料ホルダー7上には、
水素吸蔵合金粉末が載置されており、また反応管4の外
周囲には加熱炉8が周設されている。この加熱炉8によ
り試料ホルダー7および水素吸蔵合金を約800℃の温度
に維持し、パイレックス製ガラス管3から供給されるベ
ンゼンを熱分解し、水素吸蔵合金の粉末表面に炭素体を
堆積させた。なお、熱分解反応後の反応管4内に残留す
るガスは排気設備9,10により排気し除去した。
On the other hand, on the sample holder 7 installed in the reaction tube 4,
A hydrogen storage alloy powder is placed, and a heating furnace 8 is provided around the outer periphery of the reaction tube 4. The heating furnace 8 kept the sample holder 7 and the hydrogen storage alloy at a temperature of about 800 ° C., thermally decomposed benzene supplied from the Pyrex glass tube 3, and deposited carbon bodies on the surface of the powder of the hydrogen storage alloy. . The gas remaining in the reaction tube 4 after the thermal decomposition reaction was exhausted and removed by exhaust equipments 9 and 10.

このようにして得られた電池電極用水素吸蔵合金材料
についてCoKα線を光源とするX線回折を行った。その
結果を第2図Aに示す。また、アーク溶解炉により得ら
れたTiNiを粉砕して得られた粉末、すなわち炭素体を堆
積させる以前の水素吸蔵合金粉末についても上記と同様
のX線回折を行った。その結果を第2図Bに示す。
The thus obtained hydrogen storage alloy material for a battery electrode was subjected to X-ray diffraction using CoKα radiation as a light source. The result is shown in FIG. 2A. The same X-ray diffraction as described above was also performed on powder obtained by pulverizing TiNi obtained by an arc melting furnace, that is, on a hydrogen storage alloy powder before depositing a carbon body. The result is shown in FIG. 2B.

これらの結果より、本発明による方法によって得られ
る電池電極用水素吸蔵合金材料は著しい組成変化を受け
てないことがわかる。
From these results, it can be seen that the hydrogen storage alloy material for a battery electrode obtained by the method according to the present invention has not undergone a significant change in composition.

第3図は、水素吸蔵合金材料の粒径分布を示し、同図
Aはアーク溶解炉により得られたTiNiを粉砕して得られ
た粉末の粒径分布を、同図Bは炭素体を堆積させた水素
吸蔵合金材料について100回の水素吸収・放出の繰り返
しを行った後の粒径分布を、また同図Cは炭素体を堆積
させない水素吸蔵合金材料について100回の水素吸収・
放出の繰り返しを行った後の粒径分布を示す。
Fig. 3 shows the particle size distribution of the hydrogen storage alloy material, Fig. A shows the particle size distribution of the powder obtained by pulverizing TiNi obtained by an arc melting furnace, and Fig. B shows the deposition of carbon bodies. The particle size distribution of the hydrogen-absorbing alloy material subjected to 100 repetitions of hydrogen absorption and desorption is shown in FIG.
3 shows the particle size distribution after repeated release.

これらの結果から、炭素体を堆積させることにより水
素吸蔵合金材料は水素の吸収・放出を繰り返すことによ
る微粉化が起こり難くなることがわかる。
From these results, it can be seen that the deposition of the carbon body makes it difficult for the hydrogen storage alloy material to be pulverized due to repeated absorption and release of hydrogen.

また、水分を5%含んだ水素ガスを用い、炭素体を堆
積させた水素吸蔵合金材料Aおよび炭素体を堆積させな
い水素吸蔵合金材料Bにそれぞれ水素の吸収・放出の繰
り返しを行わせ、各材料A,Bの水素吸収・放出可能な量
について調べた。その結果を第4図に示す。
Further, using hydrogen gas containing 5% of moisture, the hydrogen storage alloy material A on which the carbon body is deposited and the hydrogen storage alloy material B on which the carbon body is not deposited are repeatedly subjected to absorption and release of hydrogen, respectively. The amount of A and B that can absorb and release hydrogen was investigated. The result is shown in FIG.

これらの結果から、炭素体を堆積させることにより雰
囲気による表面汚染が起こり難いことがわかる。
From these results, it can be understood that the surface contamination due to the atmosphere hardly occurs by depositing the carbon body.

以上の事柄より、本発明に係る製造方法により得られ
た電池電極用水素吸蔵合金材料は、微粉化が起こり難
く、雰囲気による特性劣化の起こり難い材料であり、長
時間の使用においても安定した特性を供給できるもので
あることがわかる。
From the above, the hydrogen-absorbing alloy material for a battery electrode obtained by the production method according to the present invention is a material that hardly causes pulverization and does not easily deteriorate in characteristics due to the atmosphere, and has stable characteristics even when used for a long time. Can be supplied.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る電池電極用水素蔵吸蔵合金材料の
製造に用いる炭素体堆積装置の一例を示す概略図、第2
図は水素吸蔵合金材料のCoKα線による粉末X線回折図
であり、同図Aは本発明方法によって得られた電池電極
用水素吸蔵合金材料についてのX線回折図、同図Bは炭
素体が被覆されていない水素吸蔵合金材料についてのX
線回折図、第3図は水素吸蔵合金材料の水素吸収・放出
の繰り返し過程を実施する前後の粒径分布の比較図であ
り、同図Aはアーク溶解炉により得られたTiNiを粉砕し
て得られた粉末の粒径分布を示す図、同図Bは炭素体を
堆積させた水素吸蔵合金材料について100回の水素吸収
・放出の繰り返しを行った後の粒径分布を示す図、同図
Cは炭素体を堆積させない水素吸蔵合金材料について10
0回の水素吸収・放出の繰り返しを行った後の粒径分布
を示す図、第4図は本発明に係る水素吸蔵合金材料と、
炭素体が被覆されていない水素吸蔵合金材料についての
水素吸収・放出可能な量の吸収・放出繰り返しによる変
化を示す特性図である。 1……容器 2……アルゴン供給器 3……パイレックス製ガラス管 4……石英製反応管 5,6……ニードル弁 7……試料ホルダー、8……加熱炉 9,10……排気設備
FIG. 1 is a schematic view showing an example of a carbon body deposition apparatus used for producing a hydrogen storage alloy material for a battery electrode according to the present invention.
The figure is a powder X-ray diffraction diagram of the hydrogen storage alloy material by CoKα radiation, FIG. A shows an X-ray diffraction diagram of the hydrogen storage alloy material for a battery electrode obtained by the method of the present invention, and FIG. X for uncoated hydrogen storage alloy material
X-ray diffraction diagram, FIG. 3 is a comparison diagram of the particle size distribution before and after the repetition process of hydrogen absorption / release of the hydrogen storage alloy material, and FIG. A shows the pulverized TiNi obtained by the arc melting furnace. FIG. B shows the particle size distribution of the obtained powder, and FIG. B shows the particle size distribution of the hydrogen-absorbing alloy material on which the carbon body is deposited after repeating 100 times of absorption and release of hydrogen. C is 10% for hydrogen storage alloy materials that do not deposit carbon bodies.
FIG. 4 is a diagram showing a particle size distribution after performing hydrogen absorption / release repeatedly 0 times, FIG. 4 shows a hydrogen storage alloy material according to the present invention,
FIG. 9 is a characteristic diagram showing a change in the amount of hydrogen that can be absorbed and released due to repeated absorption and release of a hydrogen storage alloy material that is not coated with a carbon body. DESCRIPTION OF SYMBOLS 1 ... Container 2 ... Argon supply device 3 ... Pyrex glass tube 4 ... Quartz reaction tube 5, 6 ... Needle valve 7 ... Sample holder, 8 ... Heating furnace 9, 10 ... Exhaust equipment

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金粉末の表面に、1500℃以下の
低温熱分解による気相堆積法により炭素堆積物として形
成される炭素体を堆積させることを特徴とする電池電極
用水素吸蔵合金材料の製造方法。
1. A hydrogen storage alloy material for a battery electrode, wherein a carbon body formed as a carbon deposit is deposited on a surface of a hydrogen storage alloy powder by a vapor phase deposition method at a low temperature of 1500 ° C. or lower by thermal decomposition. Manufacturing method.
JP62255480A 1987-10-08 1987-10-08 Method for producing hydrogen storage alloy material for battery electrode Expired - Fee Related JP2612006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62255480A JP2612006B2 (en) 1987-10-08 1987-10-08 Method for producing hydrogen storage alloy material for battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62255480A JP2612006B2 (en) 1987-10-08 1987-10-08 Method for producing hydrogen storage alloy material for battery electrode

Publications (2)

Publication Number Publication Date
JPH0196301A JPH0196301A (en) 1989-04-14
JP2612006B2 true JP2612006B2 (en) 1997-05-21

Family

ID=17279347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62255480A Expired - Fee Related JP2612006B2 (en) 1987-10-08 1987-10-08 Method for producing hydrogen storage alloy material for battery electrode

Country Status (1)

Country Link
JP (1) JP2612006B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514274B2 (en) * 1990-12-28 1996-07-10 シャープ株式会社 Method for manufacturing hydrogen storage alloy material
CN110482488B (en) * 2019-09-11 2021-12-14 广东省稀有金属研究所 Composite hydrogen storage material, preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material

Also Published As

Publication number Publication date
JPH0196301A (en) 1989-04-14

Similar Documents

Publication Publication Date Title
CA2363456C (en) Hydrogen storage using carbon-metal hybrid compositions
Scharff New carbon materials for research and technology
May ELECTRON DIFFRACTION IN SURFACE CHEMISTRY
Moussa et al. Hollow core@ mesoporous shell boron nitride nanopolyhedron-confined ammonia borane: A pure B–N–H composite for chemical hydrogen storage
KR20100093965A (en) Graphene sheet comprising intercalation compounds and process for preparing the same
SI25662A (en) Carbon nanostructured materials and methods for forming of these materials
JP2003002635A (en) Superconductive magnesium diboride thin film, and method and apparatus for manufacturing the same
JPH08232069A (en) Method and apparatus for sublimating solid substance
KR20190036271A (en) The preparation method of multi-layer core-shell nano particles comprising porous carbon shell and core-shell nano particles thereby
Rahimi et al. Pristine B3CN4 monolayer for hydrogen storage: A first-principles approach
JPH08225395A (en) Production of diamond doped with boron
JP2612006B2 (en) Method for producing hydrogen storage alloy material for battery electrode
Koprinarov et al. Preparation of carbon spheres by low-temperature pyrolysis of cyclic hydrocarbons
Mansurov Producing nanomaterials in combustion
KR102001454B1 (en) The preparation method of multi-layer core-shell nano particles comprising porous carbon shell and core-shell nano particles thereby
CN103241730A (en) Method for doping patterned atoms on surface of graphene by using molecular template
Wu et al. Synthesis and hydrogen storage property tuning of Zr (BH4) 4· 8NH3 via physical vapour deposition and composite formation
Loutfy et al. Feasibility of fullerene hydride as a high capacity hydrogen storage material
Imamura et al. Preparation and hydriding properties of magnesium-containing hydrogen storage materials chemically deposited from a homogeneous phase
KR101383821B1 (en) Direct synthesis method of carbon nanotube using intermetallic nano-catalysts formed on surface of various metal substrates and the structure thereof
JP2514274B2 (en) Method for manufacturing hydrogen storage alloy material
JPH0244763B2 (en)
US20050268779A1 (en) Electrostatic switch for hydrogen storage and release from hydrogen storage media
Ostenfeld et al. Growth and hydrogenation of ultra-thin Mg films on Mo (1 1 1)
CN111994900A (en) Method for growing large-area few-layer nitrogen-doped graphene by using small molecules

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees