JPH0812778B2 - Method for manufacturing hydrogen storage electrode - Google Patents

Method for manufacturing hydrogen storage electrode

Info

Publication number
JPH0812778B2
JPH0812778B2 JP1235144A JP23514489A JPH0812778B2 JP H0812778 B2 JPH0812778 B2 JP H0812778B2 JP 1235144 A JP1235144 A JP 1235144A JP 23514489 A JP23514489 A JP 23514489A JP H0812778 B2 JPH0812778 B2 JP H0812778B2
Authority
JP
Japan
Prior art keywords
silicone rubber
hydrogen storage
electrode
storage electrode
microcapsules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1235144A
Other languages
Japanese (ja)
Other versions
JPH0398260A (en
Inventor
哲男 境
博 石川
淳 高木
Original Assignee
工業技術院長
株式会社豊田自動織機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長, 株式会社豊田自動織機製作所 filed Critical 工業技術院長
Priority to JP1235144A priority Critical patent/JPH0812778B2/en
Priority to US07/576,701 priority patent/US5104753A/en
Priority to EP90117398A priority patent/EP0417697B1/en
Priority to DE69008977T priority patent/DE69008977T2/en
Publication of JPH0398260A publication Critical patent/JPH0398260A/en
Publication of JPH0812778B2 publication Critical patent/JPH0812778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水素を負極活物質とするアルカリ二次電池
の負極として用いられる水素吸蔵電極の製造方法に関
し、例えば、大型電極の製造を容易化しかつその放電特
性の改善を図った水素吸蔵電極の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a hydrogen storage electrode used as a negative electrode of an alkaline secondary battery using hydrogen as a negative electrode active material. For example, it is easy to produce a large electrode. The present invention relates to a method for manufacturing a hydrogen storage electrode, which has been made more stable and whose discharge characteristics have been improved.

[従来技術] 従来、アルカリ二次電池の一つとして金属酸化物を正
極活物質とし水素を負極活物質とする金属酸化物/水素
電池があるが、この金属酸化物/水素電池の一つとし
て、水素を可逆的に吸蔵・放出する水素吸蔵合金を含有
する水素吸蔵電極を負極としたものがある。この水素吸
蔵電極は水素の吸蔵放出が良好でかつ、低抵抗とする必
要があり、例えば、水素吸蔵合金粉末を結着材と混合し
て成型される。
[Prior Art] Conventionally, as one of the alkaline secondary batteries, there is a metal oxide / hydrogen battery using a metal oxide as a positive electrode active material and hydrogen as a negative electrode active material. , A negative electrode is a hydrogen storage electrode containing a hydrogen storage alloy that stores and releases hydrogen reversibly. This hydrogen storage electrode is required to have good hydrogen storage / release and low resistance. For example, it is formed by mixing hydrogen storage alloy powder with a binder.

既に知られる上記結着材の使用例として、特開昭61−
16470号公報は、ポリテトラフルオロエチレン(PTFE)
粉末を開示している。
As an example of the use of the already known binder, there is disclosed in Japanese Patent Laid-Open No. 61-
No. 16470 discloses polytetrafluoroethylene (PTFE)
A powder is disclosed.

特開昭61−101957号公報は、水素吸蔵合金粉末の表面
を銅で被覆してマイクロカプセル化し、このマイクロカ
プセルとフッ素樹脂粉末(結着材)とを混練し、集電体
に圧接して水素吸蔵電極とすることを開示している。
JP-A-61-101957 discloses that the surface of a hydrogen-absorbing alloy powder is coated with copper to form microcapsules, and the microcapsules and fluororesin powder (binder) are kneaded and pressed against a current collector. Disclosed is a hydrogen storage electrode.

[発明が解決しようとする課題] ところが、上記した各先行技術に開示された従来の水
素吸蔵電極は、水素吸蔵合金粉末が充放電により変形す
るので形状安定性に劣る点と、急速(高率)放電時の容
量低下が大きい点とに問題があった。これらの問題は特
に大型電極において顕著である。すなわち、体積変化率
や変形率が同じでも、大型電極は小型電極よりも絶対的
な体積変化量や変形量が大となり、その結果として、水
素吸蔵電極よりの合金粉末の脱落や破損が生じやすい。
結着材の増量により強度向上を図ることは可能である
が、そうすると、合金粉末の減量、水素流通の妨害、電
気抵抗の増加が生じ、高率放電時の容量低下が顕著とな
る。
[Problems to be Solved by the Invention] However, the conventional hydrogen storage electrodes disclosed in the above-mentioned respective prior arts are inferior in shape stability because the hydrogen storage alloy powder is deformed by charging and discharging, and rapid (high rate). ) There was a problem in that the capacity was greatly reduced during discharge. These problems are particularly noticeable in large electrodes. That is, even if the volume change rate and the deformation rate are the same, the large electrode has a larger absolute volume change amount and the larger deformation amount than the small electrode, and as a result, the alloy powder is likely to fall off or be damaged from the hydrogen storage electrode. .
Although it is possible to improve the strength by increasing the amount of the binder, if this is done, the amount of the alloy powder is reduced, the hydrogen flow is obstructed, the electric resistance is increased, and the capacity decrease during high-rate discharge becomes remarkable.

したがって、結着材量をいたずらに増加することな
く、形状保持性及び放電特性に優れる水素吸蔵電極が、
特に大型電極分野において求められていた。
Therefore, without unnecessarily increasing the amount of the binder, the hydrogen storage electrode excellent in shape retention and discharge characteristics,
It has been particularly demanded in the field of large electrodes.

本発明は、上記問題に鑑みなされたものであり、優れ
た放電特性及び形状保持性を有する水素吸蔵電極の製造
方法を提供することをその解決すべき課題としている。
The present invention has been made in view of the above problems, and an object thereof is to provide a method for manufacturing a hydrogen storage electrode having excellent discharge characteristics and shape retention.

[課題を解決するための手段] 本発明の水素吸蔵電極の製造方法は、水素吸蔵合金粉
末の表面を銅又はニッケルで水素流通可能に被覆してマ
イクロカプセル化し、該マイクロカプセルを未架橋のシ
リコーンゴムと混練した後、該混合物を集電体で支持し
て100〜250kg/cm2の圧力で加圧成型すると同時に前記シ
リコーンゴムを架橋させることを特徴としている。
[Means for Solving the Problems] The method for producing a hydrogen storage electrode of the present invention is a method for coating the surface of a hydrogen storage alloy powder with copper or nickel so as to allow hydrogen to flow therethrough to form microcapsules, and the microcapsules are uncrosslinked silicone After kneading with the rubber, the mixture is supported by a current collector, pressure-molded at a pressure of 100 to 250 kg / cm 2 , and simultaneously the silicone rubber is crosslinked.

水素吸蔵合金粉末としては、チタン−ニッケル合金、
ランタン−ニッケル合金、ジルコニウム−ニッケル合金
などを採用することができ、平均粒径は、10〜100μm
程度が好適である。銅又はニッケル被膜は、マイクロカ
プセル(銅又はニッケルにより被覆された水素吸蔵合金
粉末)重量の5〜30重量%程度とすることが好ましい。
As the hydrogen storage alloy powder, titanium-nickel alloy,
Lanthanum-nickel alloy, zirconium-nickel alloy, etc. can be adopted, and the average particle size is 10 to 100 μm.
The degree is suitable. The copper or nickel coating is preferably about 5 to 30% by weight of the weight of the microcapsule (hydrogen storage alloy powder coated with copper or nickel).

シリコーンゴムとしては、ジメチルシリコーンゴム、
メチルビニルシリコーンゴム、メチルフェニールシリコ
ーンゴム、フェニールビニルシリコーンゴム、フッ化シ
リコーンゴムなどを採用することができる。
As the silicone rubber, dimethyl silicone rubber,
Methyl vinyl silicone rubber, methyl phenyl silicone rubber, phenyl vinyl silicone rubber, fluorinated silicone rubber, etc. can be adopted.

未架橋のシリコーンゴムとしては、例えば一液型室温
硬化型、二液型加熱硬化型のものが挙げられる。一液型
室温硬化型のものとして、例えば東レKK製のSE9155な
ど、二液型加熱硬化型のものとして、例えば東レKK製の
CY52−237などがある。
Examples of the uncrosslinked silicone rubber include one-component type room temperature curing type and two-component type heat curing type. As a one-component room temperature curing type, for example SE9155 made by Toray KK, as a two-component heat curing type, for example made by Toray KK
CY52-237 etc.

シリコーンゴムの混合量は混合物の3〜20重量%特に
5〜15重量%とすることが重要である。3重量%を下回
ると充分な結合力が得られず、理由は不明であるが高率
放電時の容量が低下する。20重量%を超えると内部抵抗
が増加して高率放電時の容量が低下する。
It is important that the mixing amount of the silicone rubber is 3 to 20% by weight, especially 5 to 15% by weight of the mixture. If it is less than 3% by weight, a sufficient binding force cannot be obtained, and the reason is unknown, but the capacity at the time of high rate discharge is reduced. If it exceeds 20% by weight, the internal resistance increases and the capacity during high rate discharge decreases.

成型圧力は50〜300kg/cm2、特に、100〜250kg/cm2
範囲とすることが重要である。50kg/cm2を下回ると電極
の機械的強度が低下するため充分な結合力が得られず、
マイクロカプセルの脱落が生じやすくなる。また、理由
は不明であるが高率放電時の容量が低下する。300kg/cm
2を超えるとマイクロカプセル間が密になり過ぎて多孔
構造が失われ、電気化学的な水素の吸蔵放出が円滑に行
なわれなくなり、また、内部抵抗が増加して高率放電時
の容量が低下する。
It is important that the molding pressure is 50 to 300 kg / cm 2 , and particularly 100 to 250 kg / cm 2 . If it is less than 50 kg / cm 2 , the mechanical strength of the electrode will decrease and a sufficient bonding force cannot be obtained.
The microcapsules easily fall off. Further, although the reason is unknown, the capacity at the time of high rate discharge is reduced. 300kg / cm
When it exceeds 2 , the microcapsules become too close to each other and the porous structure is lost, and electrochemical hydrogen absorption and desorption is not performed smoothly.In addition, the internal resistance increases and the capacity at the time of high rate discharge decreases. To do.

[実施例] (第1実施例) 合金組成LaNi2.5CO2.4Al0.1を負極用の水素吸蔵合金
として用いた。この合金を機械的に100メッシュ以下の
粉末とし、市販のメッキ溶液を用いて無電解銅メッキを
行った。この時のメッキ量はメッキした合金に対して20
重量%になるようにした。
Was used as Example] (First Embodiment) hydrogen absorbing alloy for the alloy composition LaNi 2.5 CO 2.4 Al 0.1 negative electrode. This alloy was mechanically made into powder of 100 mesh or less, and electroless copper plating was performed using a commercially available plating solution. The plating amount at this time is 20 with respect to the plated alloy.
It was made to be the weight%.

この銅メッキした合金粉末4.5gに、合金粉末と結着剤
とを合わせた重量に対して約10重量%となるように未架
橋シリコーンゴムを結着材として加え、混練してシート
状に予備成型した後、その両側をニッケルメッシュ(す
なわち本発明でいう集電体)で挟んで室温で200kg/cm2
の圧力で加圧成型して水素吸蔵電極を製作した。未架橋
シリコーンゴムの架橋は電極成型後に完了させている。
未架橋シリコーンゴム液としては、一液型室温硬化型の
ものとして、東レKK製のSE9155、SE9158、SE737、SE73
8、信越化学KK製のKE45、KE42、KE3492、KE3493を用い
た。二液型加熱硬化型のものとして、東レKK製のCY52−
237、SE1700を用い、これらの硬化には、加圧成型状態
で150℃に30分保持した。電極の大きさは4×3cm2で厚
さは約1mmとした。この電極をニッケル極を対極として6
N水酸化カリウム水溶液中に浸漬して充放電を繰り返
し、完全に活性化処理したものを電池用の負極として供
した。この水素吸蔵電極の初期容量は約900mAhであっ
た。
To 4.5 g of this copper-plated alloy powder, uncrosslinked silicone rubber was added as a binder in an amount of about 10% by weight based on the total weight of the alloy powder and the binder, and the mixture was kneaded and preliminarily formed into a sheet. After molding, sandwich both sides with nickel mesh (that is, the current collector in the present invention), and 200 kg / cm 2 at room temperature.
A hydrogen storage electrode was manufactured by press molding at a pressure of. The crosslinking of the uncrosslinked silicone rubber is completed after molding the electrode.
As the uncrosslinked silicone rubber liquid, SE9155, SE9158, SE737, SE73 manufactured by Toray KK as a one-liquid type room temperature curing type
8. KE45, KE42, KE3492, KE3493 manufactured by Shin-Etsu Chemical KK were used. CY52- manufactured by Toray KK as a two-component heat curing type
237 and SE1700 were used, and for curing, they were held at 150 ° C. for 30 minutes in a pressure-molded state. The size of the electrode was 4 × 3 cm 2 and the thickness was about 1 mm. This electrode with the nickel electrode as the counter electrode 6
It was immersed in an aqueous solution of N-potassium hydroxide, repeated charging and discharging, and completely activated to serve as a negative electrode for a battery. The initial capacity of this hydrogen storage electrode was about 900 mAh.

一方、正極として容量350mAhの焼結式酸化ニッケル板
を用意し、これら正、負極をナイロン不織布製のセパレ
ータを介して対置し、5N水酸化カリウム水溶液に水酸化
リチウムを1mol/の割合で溶解した電解液中に浸漬し
て、公称容量が350mAhである正極規制の電池を構成し
た。
On the other hand, a sintered nickel oxide plate having a capacity of 350 mAh was prepared as a positive electrode, and these positive and negative electrodes were placed opposite to each other via a separator made of a nylon non-woven fabric, and lithium hydroxide was dissolved in a 5N potassium hydroxide aqueous solution at a ratio of 1 mol / mol. By immersing in the electrolytic solution, a positive electrode regulated battery having a nominal capacity of 350 mAh was constructed.

作成したこれらの電池を20℃、0.5Cの電流で3時間充
電し、0.5C、1C、2C、3C、4C、5Cの各放電電流で終止電
圧0.8Vまで放電し、電池容量の放電電流依存性を調べ
た。この結果を第1図に示す。比較例としてPTFE粉末を
結着材として用い300℃、300kg/cm2で加熱加圧成型した
ものも示した。PTFE粉末は、銅メッキした合金粉末とPT
FE粉末との和に対して5重量%とした。
These created batteries are charged at 20 ° C and 0.5C current for 3 hours, and discharged to 0.5V, 1C, 2C, 3C, 4C and 5C discharge current to the final voltage of 0.8V, and the battery capacity depends on the discharge current. I investigated the sex. The results are shown in FIG. As a comparative example, the one obtained by using PTFE powder as a binder and heating and pressing at 300 ° C. and 300 kg / cm 2 is also shown. PTFE powder is copper-plated alloy powder and PT
It was set to 5% by weight with respect to the sum with the FE powder.

シリコーンゴムを用いた水素吸蔵電極を具備する電池
の容量特性は第1図の斜線領域の範囲に含まれていた。
この結果から明らかなように、シリコーンゴムを用いる
ものは、PTFEを用いるものに比べて高率放電での容量低
下が格段に小さい。
The capacity characteristics of the battery equipped with the hydrogen storage electrode using silicone rubber were included in the shaded area in FIG.
As is clear from these results, the one using silicone rubber has a significantly smaller capacity decrease at high rate discharge than the one using PTFE.

(第2実施例) 次に、結着剤としてシリコーンゴムを用いた水素吸蔵
電極の充放電サイクル数と容量(負極容量)低下との関
連を第2図に示す。電極の成型条件は第1実施例と同じ
である。
Second Example Next, FIG. 2 shows the relationship between the number of charge / discharge cycles and reduction in capacity (negative electrode capacity) of a hydrogen storage electrode using silicone rubber as a binder. The molding conditions for the electrodes are the same as in the first embodiment.

充放電サイクルは、充電が400mA×3時間、放電が400
mAで放電終了電圧0.8Vとした。比較例として上記したPT
FE粉末を結着材として用いたものも用意した。この試験
結果から明らかなように、シリコーンゴムを用いた水素
吸蔵電極はPTFEを結着材とする従来のもの比較して更に
優れたサイクル寿命を有していることがわかった。
Charging / discharging cycle is 400mA for 3 hours, 400 for discharging
The discharge end voltage was 0.8 V with mA. PT described above as a comparative example
The one using FE powder as a binder was also prepared. As is clear from this test result, it was found that the hydrogen storage electrode using silicone rubber has a more excellent cycle life as compared with the conventional one using PTFE as the binder.

(第3実施例) 次に、結着剤としてシリコーンゴムを用いた水素吸蔵
電極におけるシリコーンゴムの混合量と高率放電時の容
量維持率との関係を第3図に示す。なお、上記容量維持
率は0.5C放電に対する5C放電時の放電容量の割合を示
す。混合量以外の条件は第1実施例と同じである。
Third Example Next, FIG. 3 shows the relationship between the mixing amount of silicone rubber and the capacity retention rate at high rate discharge in a hydrogen storage electrode using silicone rubber as a binder. The above capacity retention ratio shows the ratio of the discharge capacity at 5C discharge to 0.5C discharge. The conditions other than the mixing amount are the same as in the first embodiment.

この結果から、シリコーンゴムの混合量は3〜20重量
%さらに好ましくは5〜15重量%とするのがよいことが
わかった。
From this result, it was found that the mixing amount of the silicone rubber is preferably 3 to 20% by weight, more preferably 5 to 15% by weight.

(第4実施例) 次に、結着剤としてシリコーンゴムを用いた水素吸蔵
電極における成型圧力と高率放電時の容量維持率との関
係を第4図に示す。上記容量維持率も0.5C放電に対する
5C放電時の放電容量の割合を示す。成型圧力以外の条件
は第1実施例と同じである。
Fourth Example Next, FIG. 4 shows the relationship between the molding pressure and the capacity retention rate at high rate discharge in a hydrogen storage electrode using silicone rubber as a binder. The above capacity retention rate is also for 0.5C discharge
The ratio of discharge capacity at 5C discharge is shown. The conditions other than the molding pressure are the same as in the first embodiment.

この結果から、成型圧力は50〜300kg/cm2さらに好ま
しくは100〜250kg/cm2とするのがよいことがわかった。
From this result, it was found that the molding pressure should be 50 to 300 kg / cm 2, and more preferably 100 to 250 kg / cm 2 .

[発明の効果] 以上説明したように、本発明の水素吸蔵電極の製造方
法は、マイクロカプセル化された水素吸蔵合金粉末を未
架橋のシリコーンゴムと混練した後、この混合物を集電
体で支持して100〜250kg/cm2の圧力で加圧成型すると同
時にシリコーンゴムを架橋させて水素吸蔵電極を作製し
ているので、実験結果からわかるように、高率放電時の
容量維持率の向上及び充放電サイクル寿命の改善が可能
となる。
[Effects of the Invention] As described above, according to the method for producing a hydrogen storage electrode of the present invention, after the microencapsulated hydrogen storage alloy powder is kneaded with the uncrosslinked silicone rubber, the mixture is supported by the current collector. Since it is pressure-molded at a pressure of 100 to 250 kg / cm 2 and at the same time, a hydrogen storage electrode is produced by crosslinking silicone rubber, it can be seen from the experimental results that the capacity maintenance rate at high rate discharge is improved and It is possible to improve the charge / discharge cycle life.

なお、このような作用効果は、本発明が、混合物と集
電体とを強固に一体化させるために加圧成型する工程で
シリコーンゴムの架橋反応を進行させるので、マイクロ
カプセル同士及びその混合物と集電体とが相互に緊密か
つ良好に接触した状態下においてシリコーンゴムを架橋
することができ、その結果として、脱型後もマイクロカ
プセル同士及びその混合物と集電体とを緊密かつ良好な
接触状態に保つことができ、電極内部の電気抵抗も低減
することができるためではないかと考えられる。
It should be noted that such an effect is that the present invention causes the crosslinking reaction of the silicone rubber to proceed in the step of pressure molding in order to firmly integrate the mixture and the current collector, so that the microcapsules and the mixture thereof are Silicone rubber can be crosslinked in a state where the current collector and the current collector are in close and good contact with each other, and as a result, the microcapsules and their mixture and the current collector are in close and good contact even after the mold is removed. This is probably because the state can be maintained and the electric resistance inside the electrode can be reduced.

恐らくは、シリコーンゴムが隣接するマイクロカプセ
ル間を弾性的に結合するので、マイクロカプセルの変形
及びそれによる電気抵抗の増加や水素流通性の劣化が抑
止され、高率放電時の容量低下が抑制される。換言すれ
ば、シリコーンゴムはその大きなゴム弾性により、マイ
クロカプセルの変形を抑止し、かつマイクロカプセルと
結着材とが分離するのを防止するものと思われ、その結
果、電極の形状安定性、及び、マイクロカプセルとシリ
コーンゴムとの結合性が改善され、絶対変形量が大きな
大型電極の製造が容易となるものと思われる。
Probably, since the silicone rubber elastically bonds between the adjacent microcapsules, deformation of the microcapsules and increase in electric resistance and deterioration of hydrogen flowability due to the deformation are suppressed, and decrease in capacity during high rate discharge is suppressed. . In other words, the silicone rubber is considered to suppress the deformation of the microcapsules and prevent the microcapsules from separating from the binder due to its large rubber elasticity. As a result, the shape stability of the electrodes, In addition, the bondability between the microcapsules and the silicone rubber is improved, which facilitates the production of a large electrode having a large absolute deformation amount.

なお、従来のPTFEやフッ素樹脂製の結着材でも、マイ
クロカプセルの変形に追従して多少は弾性変形する。し
かし、このような結着材の弾性変形限界は低く、マイク
ロカプセルの変形量が大きくなると、結着材とマイクロ
カプセルとの結合が微視的には破れ(結着材のマイクロ
カプセル保持力が劣化し)、大型電極の形状安定性が損
われるとともにその内部電気抵抗が増加し、高率放電に
おける容量低下が著しくなるのではないかと考えられ
る。
Even with conventional binders made of PTFE or fluororesin, some elastic deformation follows the deformation of the microcapsules. However, the elastic deformation limit of such a binder is low, and when the deformation amount of the microcapsule increases, the bond between the binder and the microcapsule is microscopically broken (the microcapsule holding force of the binder is It is conceivable that the shape stability of the large electrode is impaired and the internal electrical resistance of the large electrode is increased, resulting in a significant decrease in capacity at high rate discharge.

また本発明によれば、水素吸蔵電極の製造において、
高温(例えば300℃程度)加熱を必要としないので電極
製造が容易であり、成型性及び経済性に優れる。
Further, according to the present invention, in the production of the hydrogen storage electrode,
Since heating at a high temperature (for example, about 300 ° C.) is not required, electrode production is easy, and moldability and economy are excellent.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の製造方法で製造された水素吸蔵電極
を用いた電池の高率放電時における容量低下特性を示す
特性図、第2図は、本発明の製造方法で製造された水素
吸蔵電極の充放電サイクル寿命を示す特性図、第3図は
シリコンゴム組成量と高率放電時の容量維持率との関係
を示す特性図、第4図は成型圧力と高率放電時の容量維
持率との関係を示す特性図である。
FIG. 1 is a characteristic diagram showing a capacity lowering characteristic at a high rate discharge of a battery using a hydrogen storage electrode manufactured by the manufacturing method of the present invention, and FIG. 2 is a hydrogen manufactured by the manufacturing method of the present invention. A characteristic diagram showing the charge / discharge cycle life of the occlusion electrode, FIG. 3 is a characteristic diagram showing the relationship between the silicone rubber composition amount and the capacity retention rate at high rate discharge, and FIG. 4 is the molding pressure and the capacity at high rate discharge. It is a characteristic view which shows the relationship with a maintenance rate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金粉末の表面を銅又はニッケル
で水素流通可能に被覆してマイクロカプセル化し、該マ
イクロカプセルを未架橋のシリコーンゴムと混練した
後、該混合物を集電体で支持して100〜250kg/cm2の圧力
で加圧成型すると同時に前記シリコーンゴムを架橋させ
ることを特徴とする水素吸蔵電極の製造方法。
1. A surface of a hydrogen-absorbing alloy powder is coated with copper or nickel so that hydrogen can flow, microcapsules are formed, the microcapsules are kneaded with an uncrosslinked silicone rubber, and then the mixture is supported by a current collector. A method for producing a hydrogen storage electrode, which comprises press-molding at a pressure of 100 to 250 kg / cm 2 and simultaneously crosslinking the silicone rubber.
【請求項2】未架橋のシリコーンゴムは、該シリコーン
ゴムと前記マイクロカプセルの合計に対して3〜20重量
%の添加比率で前記マイクロカプセルに混合される特許
請求の範囲第1項記載の水素吸蔵電極の製造方法。
2. The hydrogen according to claim 1, wherein the uncrosslinked silicone rubber is mixed in the microcapsules in an addition ratio of 3 to 20% by weight based on the total of the silicone rubber and the microcapsules. Method for manufacturing storage electrode.
JP1235144A 1989-09-11 1989-09-11 Method for manufacturing hydrogen storage electrode Expired - Lifetime JPH0812778B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1235144A JPH0812778B2 (en) 1989-09-11 1989-09-11 Method for manufacturing hydrogen storage electrode
US07/576,701 US5104753A (en) 1989-09-11 1990-08-31 Hydrogen storage electrode and process for producing the same
EP90117398A EP0417697B1 (en) 1989-09-11 1990-09-10 Hydrogen storage electrode and process for producing the same
DE69008977T DE69008977T2 (en) 1989-09-11 1990-09-10 Hydrogen storage electrode and process for its manufacture.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235144A JPH0812778B2 (en) 1989-09-11 1989-09-11 Method for manufacturing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH0398260A JPH0398260A (en) 1991-04-23
JPH0812778B2 true JPH0812778B2 (en) 1996-02-07

Family

ID=16981706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235144A Expired - Lifetime JPH0812778B2 (en) 1989-09-11 1989-09-11 Method for manufacturing hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0812778B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795444B2 (en) * 1990-04-03 1995-10-11 松下電器産業株式会社 Alkaline battery negative electrode manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS5814463A (en) * 1981-07-16 1983-01-27 Matsushita Electric Ind Co Ltd Manufacture of electrode for lead storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS5814463A (en) * 1981-07-16 1983-01-27 Matsushita Electric Ind Co Ltd Manufacture of electrode for lead storage battery

Also Published As

Publication number Publication date
JPH0398260A (en) 1991-04-23

Similar Documents

Publication Publication Date Title
JPS5937667A (en) Metal oxide-hydrogen battery
JPS61163569A (en) Metal oxide-hydrogen secondary cell
JPH0812778B2 (en) Method for manufacturing hydrogen storage electrode
JPS6166366A (en) Hydrogen-occlusion electrode
JP3567021B2 (en) Alkaline secondary battery
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3748122B2 (en) Method for producing alkaline storage battery
JPH06302319A (en) Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode
JPH0750608B2 (en) Method for manufacturing hydrogen storage electrode
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JPH07107848B2 (en) Non-sintered positive electrode for alkaline storage battery
JP3306058B2 (en) Hydrogen storage alloy electrode and nickel metal hydride secondary battery
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JPH0992271A (en) Hydrogen storage alloy electrode
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JP3387763B2 (en) Manufacturing method of alkaline storage battery
JP2003297350A (en) Nickel - hydrogen storage battery and its manufacturing method
JP3377576B2 (en) Manufacturing method of alkaline secondary battery
JPH0475256A (en) Non-sintered type hydrogen storage electrode and nickel-hydrogen storage battery using the same
JP2000268825A (en) Alkaline secondary battery
JP4118991B2 (en) Manufacturing method of nickel metal hydride storage battery
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH088101B2 (en) Method for manufacturing hydrogen storage electrode
JPH11260358A (en) Hydrogen storing alloy electrode and manufacture thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term