JPS6227301A - Hydrogen occluding and releasing material having superior resistance to poisoning by impure gas - Google Patents

Hydrogen occluding and releasing material having superior resistance to poisoning by impure gas

Info

Publication number
JPS6227301A
JPS6227301A JP60163945A JP16394585A JPS6227301A JP S6227301 A JPS6227301 A JP S6227301A JP 60163945 A JP60163945 A JP 60163945A JP 16394585 A JP16394585 A JP 16394585A JP S6227301 A JPS6227301 A JP S6227301A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
formula
release
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60163945A
Other languages
Japanese (ja)
Other versions
JPH0224764B2 (en
Inventor
Yasuaki Osumi
大角 泰章
Kazuo Ebato
江波戸 和男
Keiji Tamura
田村 敬二
Hiroshi Yoshida
裕志 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP60163945A priority Critical patent/JPS6227301A/en
Publication of JPS6227301A publication Critical patent/JPS6227301A/en
Publication of JPH0224764B2 publication Critical patent/JPH0224764B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PURPOSE:To improve the resistance to poisoning by impure gas by coating the surfaces of particles of a hydrogen occluding alloy with thin films of Pd, Cu or Ni permeable selectively to only hydrogen. CONSTITUTION:The surfaces of particles of a hydrogen occluding alloy represented by formula I (where A is Nb, a rare earth element or the like, k<=0.3, l<=0.3, m>=0.1 and k>m), formula II (where l<1 and k>m in case of l=0.5-0.99), formula III (where D is Zr or V, 0<n<=0.1 and k>n), formula IV, V or VI (where A is Ti, Nb or Mo, 0.4<=x<=1.0, 0<=y<=0.6, k=l+m and 0.2<=k<=0.3), formula VII (where A is Co, Cu or the like, 0.8<=k<=1.4, 0<l<2, 0<m<2, 0<n<=0.2 and 2<=2-l+m+n<=2.2), formula VIII (where 0.5<x<1.5 and 0<y<1) or formula IX (where 0<z<1 and y+z<=1) are coated with thin films of Pd, Cu or Ni to obtain the titled bydrogen occluding and releasing material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は水素吸蔵および放出用材料に関し、特に本発明
は耐不純ガス被毒性に優れる水素吸蔵および放出用材料
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a hydrogen storage and release material, and particularly the present invention relates to a hydrogen storage and release material that has excellent resistance to impurity gas poisoning.

(従来の技術) 水素は原料が水で資源的な制約がないこと、クリーンで
あること、輸送・貯蔵が可能であること、自然の循環を
乱さないことから化石燃料に代る新しいエネルギー源と
して注目されている。
(Conventional technology) Hydrogen is a new energy source that can replace fossil fuels because it uses water as a raw material and has no resource constraints, is clean, can be transported and stored, and does not disturb natural cycles. Attention has been paid.

しかし、水素は常温圧おいて気体であり、かつ液化温度
が極めて低いので、これを貯蔵する技術の開発が従来大
きな課題になっている。上記課題を解決する一つの方法
として水素を金属水素化物の形で貯蔵する方法が注目さ
れる。この方法は、150気圧の市販水素ボンベの2割
以下の容積、あるいは液体水素の8割以下の容積で同t
i′の水素を貯蔵することができるため、容器がコンパ
クトとなり、安全性や取扱い易さの点で極めて優れてい
る。
However, since hydrogen is a gas at room temperature and pressure, and its liquefaction temperature is extremely low, the development of technology to store it has been a major challenge. As one method for solving the above problems, a method of storing hydrogen in the form of a metal hydride is attracting attention. This method uses less than 20% of the volume of a commercially available hydrogen cylinder at 150 atm, or 80% or less of liquid hydrogen.
Since hydrogen of i' can be stored, the container can be made compact and is extremely superior in terms of safety and ease of handling.

さて、金属または合金と水素の吸蔵・放出反応は可逆的
であり、水素の貯蔵に利用されるだけでなく、反応に伴
って相当量の反応熱が発生あるいは吸収され、水素の吸
蔵・放出圧力は温度に依存することを利用して水素貯蔵
装置、水素輸送装置。
Now, the hydrogen absorption/desorption reaction between metals or alloys is reversible, and not only is it used to store hydrogen, but a considerable amount of reaction heat is generated or absorbed during the reaction, and the hydrogen storage/desorption pressure is Hydrogen storage devices and hydrogen transport devices utilize temperature dependence.

水素精製装置、蓄熱装置、ヒートポンプ、熱−機械エネ
ルギー変換装置などの広範な応用システムの開発が期待
されている。
The development of a wide range of applied systems such as hydrogen purification equipment, heat storage equipment, heat pumps, and thermo-mechanical energy conversion equipment is expected.

かかる水素吸蔵および放出材料として要求されろ性質と
しては、安価でかつその資源が豊富であること、活性化
が容易で水素吸蔵量が大きいこと、使用温度において好
適な水素吸蔵・放出平衡圧を有し、吸蔵圧と放出圧との
差であるヒステリシスが小さいこと、水素吸蔵・放出反
応の速度が太きいこと、水分、酸素など不純物に対する
安定性が大きいこと、合金の微粉化が少なく耐久性にす
ぐれていること、有効熱伝導度が大きいことなどがあげ
られろ。
The properties required for such a hydrogen storage and release material are that it is inexpensive and has abundant resources, that it is easy to activate and has a large hydrogen storage capacity, and that it has a suitable hydrogen storage and release equilibrium pressure at the operating temperature. However, the hysteresis, which is the difference between storage pressure and release pressure, is small, the speed of the hydrogen storage and release reaction is high, the stability against impurities such as moisture and oxygen is high, and the alloy is less pulverized and has increased durability. Examples include superior properties and high effective thermal conductivity.

代表的な公知の水素吸蔵・放出用材料としてはMg2N
i、 LaNi5. TiFe すどが知うレテイル。
Mg2N is a typical known hydrogen storage/release material.
i, LaNi5. TiFe Retail that everyone knows.

シカしMg2Ni if単位重量当りの水素吸蔵量は大
きいが、水素吸蔵・放出温度が高く、この合金を多成分
化しても水素貯蔵材料として十分な性能を有するものは
いまだ得られていない。LaNi 5は優れた水素吸蔵
・放出特性を有しているが、ランタンが高価なことが最
大の欠点である。また、TiFeは初期の本漬化が困難
であり、活性化処理には高温・高圧(450G、水素圧
力50気圧)′5c必要とし、ヒステリシスも大きく、
水素吸蔵・放出を繰り返しているうちに水素吸蔵2が減
少するという欠点を有している。TiFeにマンガン、
ニオブ、酸素、イオウなどを微量添加することによって
初期活性を改善し元合金が見い出されたが、寸だ水素吸
蔵・放出材料としての十分な性能を有していない。しか
も、TiFe H水分、  02・Go、 CO2’l
 トが水素中に混入すると合金表面がこれらの不純ガス
によって被毒され、水素吸蔵量が大幅に減少するという
欠点があり実用上大きな問題が残っていた。
Although Mg2Ni has a large hydrogen storage capacity per unit weight, its hydrogen storage and release temperatures are high, and even if this alloy is made into a multi-component alloy, no material with sufficient performance as a hydrogen storage material has yet been obtained. Although LaNi 5 has excellent hydrogen storage and desorption properties, its biggest drawback is that lanthanum is expensive. In addition, initial dipping of TiFe is difficult, and activation treatment requires high temperature and pressure (450G, hydrogen pressure 50 atm)'5c, and has large hysteresis.
It has the disadvantage that hydrogen storage 2 decreases while hydrogen storage and release are repeated. Manganese in TiFe,
The initial activity was improved by adding small amounts of niobium, oxygen, sulfur, etc., and a base alloy was found, but it does not have sufficient performance as a hydrogen storage/release material. Moreover, TiFe H moisture, 02・Go, CO2'l
When these impurity gases are mixed into hydrogen, the surface of the alloy is poisoned by these impure gases, resulting in a significant reduction in the amount of hydrogen storage, which remains a major practical problem.

上記の問題点を解決するため、特開昭58−1032号
により水素吸蔵金属材料の製造方法が提案されている。
In order to solve the above-mentioned problems, a method for manufacturing a hydrogen storage metal material has been proposed in Japanese Patent Application Laid-Open No. 58-1032.

この方法は、水素を吸蔵する金槌表面にメッキにより異
種金!Aをコーティングすることを特徴とする水素吸蔵
金属材料のli!i造方法である。
This method uses dissimilar gold plating on the surface of the hammer that absorbs hydrogen! li!, a hydrogen-absorbing metal material characterized by being coated with A! This is an i-building method.

すなわち、活性化の困難なTiFe @全表面にNi。That is, TiFe, which is difficult to activate, @Ni on the entire surface.

Cu、Goなどの水素雰囲気でその酸化物が比較的容易
に還元され易い元素をメッキによりコーティングするも
のである。この方法によれば、従来活性化に450〜5
00Cの高温で、水素圧30〜60KP/α2で加圧、
あるいは真空排気の繰り返しの操作f、1週間程度行な
う必要があったものが、200C以下。
Elements such as Cu and Go whose oxides are relatively easily reduced in a hydrogen atmosphere are coated by plating. According to this method, conventional activation requires 450 to 5
At a high temperature of 00C, pressurize with hydrogen pressure of 30 to 60KP/α2,
Or, the repeated evacuation operation f, which had to be carried out for about a week, was below 200C.

水素圧20〜30Kg/cIL2で1 日以内ト、処f
JJAmFl。
Within 1 day at hydrogen pressure of 20-30Kg/cIL2.
JJAmFl.

水素圧力、所要時間等の面で性能が向上した水素吸蔵金
回材料の製造方法が提案されている。
A method for producing a hydrogen storage material with improved performance in terms of hydrogen pressure, required time, etc. has been proposed.

(発明が解決しようとする問題点) 前記の製造方法で得られ念水素吸蔵金属材料は活性化が
容易で、水f@蔵・放出用材料として好適な平衡水素圧
を有しているが、水素吸蔵・放出用材料として要求され
る性質の中で、比較的重要な水分、酸素などにより合金
が被毒されて水素吸蔵量が減少することおよびヒステリ
シスが大キい点で、実用上問題が残されている。
(Problems to be Solved by the Invention) The hydrogen storage metal material obtained by the above production method is easy to activate and has an equilibrium hydrogen pressure suitable as a material for storing and releasing water. Among the properties required for hydrogen storage/release materials, there are practical problems in that the alloy is poisoned by moisture, oxygen, etc., which is relatively important, and the hydrogen storage capacity decreases, and hysteresis is large. left behind.

c問題点を解決する九めの手段) 本発明は、従来の水素吸蔵・放出用材料が有する前記諸
欠点ならびに問題点を除去、解決した材料を提供するこ
とを目的とし、特許請求の範囲記載の材料を提供するこ
と罠よって前記目的を達成することができる。
c) Ninth Means for Solving Problems) The present invention aims to provide a material that eliminates and solves the above-mentioned drawbacks and problems that conventional hydrogen storage/release materials have, and the scope of the present invention is as follows: The above objective can be achieved by providing a material for the trap.

すなわち本発明は、下記ば)〜(17)の示性式にょっ
て示す水素吸蔵用合金のいずれか1種の合金の粒子の表
面がPd、 Cu、 Niのうちから選ばれるいずれか
1種の薄膜によV被覆されてなる耐不純ガス被毒性に優
れる水素吸蔵および放出用材料:(イ)原子数組成で示
性式がTil+kFe1−2Nj4Am  で示される
こと’に特徴とするチタン系水翼吸蔵用合金〔但し、式
中A Iri Zr、 Nb、 V、希土類元素のなか
から選ばれるいずれか少なくとも1種の元素を示し、k
≦0.3.t≦0.3+  m≦0.1でk)mである
〕。
That is, in the present invention, the surface of the particles of any one of the hydrogen storage alloys represented by the following formulas (1) to (17) is one selected from Pd, Cu, and Ni. Hydrogen storage and release material with excellent impurity gas poisoning resistance coated with a thin film of: (a) A titanium-based water blade characterized in that its atomic composition has the characteristic formula Til+kFe1-2Nj4Am. Storage alloy [However, in the formula, A represents at least one element selected from among Zr, Nb, V, and rare earth elements, and k
≦0.3. t≦0.3+ m≦0.1 and k)m].

仲)原子数mcで示性式がTit+k Fe1−7cO
7Amで示されることを特徴とするチタン系水素吸蔵用
合金〔但し、式cpAVizr、 Nb、 V、希土類
元素のなかから選ばれるいずれか少なくとも1種の元素
を示し、k≦0.3. t<1.0. m≦o、lであ
り、t=0.5〜0.99なるときk>mで6る)。
Middle) The specific formula is Tit+k Fe1-7cO with the number of atoms mc
A titanium-based hydrogen storage alloy characterized by having the formula cpAVizr, containing at least one element selected from Nb, V, and rare earth elements, and k≦0.3. t<1.0. When m≦o, l, and t=0.5 to 0.99, k>m (6).

HDK子数子機iiテ示性式がTix+kF81−7M
nz Dn で示されるチタン系水素1汲蔵用合合〔但
し、DはZr、  vの少なくとも1種からなる元素を
示し、0<k≦0.3  、  O<l≦0.3. 0
<n≦0.1k>nである〕。
HDK child number machine II Te indication formula is Tix+kF81-7M
A combination of titanium-based hydrogen 1 and storage represented by nzDn, where D represents an element consisting of at least one of Zr and v, and 0<k≦0.3, O<l≦0.3. 0
<n≦0.1k>n].

に)原子数組成で示性式がTi 1 +kFe 1−1
 Mnz A@で示されるチタン系水素吸蔵用合金〔但
し、AはNb、希土類元素の少なくとも1種からなる元
素ヲ示シ、O:!; k ≦0.3 、  O< t 
≦0.3 、  O< m≦0.1である。〕。
) The specific formula in terms of atomic composition is Ti 1 +kFe 1-1
Mnz A titanium-based hydrogen storage alloy represented by A@ [However, A represents an element consisting of at least one of Nb and rare earth elements, O:! ; k≦0.3, O<t
≦0.3, O<m≦0.1. ].

(ホ)原子数組成で示性式がTi1+kFe1 −1M
nzABDlで示されるチタン系水!8吸蔵用合金〔但
し、AはNb、希土類元素の少なくとも1種からなる元
素であり、DはZr、Vの少なくとも1種からなる元素
を示し、0≦k≦0.3.0<l≦0.3、0<m≦0
.1である〕。
(e) The specific formula in terms of atomic composition is Ti1+kFe1 -1M
Titanium water indicated by nzABDl! 8 Storage alloy [However, A is an element consisting of at least one of Nb and rare earth elements, D is an element consisting of at least one of Zr and V, and 0≦k≦0.3.0<l≦ 0.3, 0<m≦0
.. 1].

(へ)原子数組成で示性式がZryAy (Fat−k
Vz crm)2で示されること?、特徴とするジルコ
ニウム系水素吸蔵用合金〔但し、式中人はTit Nb
e Mo のなかから遷ばれるいずれか少なくとも1種
の元素を示し、0.4≦x≦1.0、0.6.に=L十
m r  0.2 ≦k ≦0.3 テあり、且つy=
00ときはm>oである〕。
(f) The specific formula is ZryAy (Fat-k
What is indicated by Vz crm)2? , a zirconium-based hydrogen storage alloy characterized by TitNb
e represents at least one element selected from Mo, 0.4≦x≦1.0, 0.6. = L0m r 0.2 ≦k ≦0.3 Te exists, and y=
00, m>o].

(ト)原子数組成で示性式力”y TikCr2−7V
mAnで示される水素吸蔵用合金〔但し、式中人はco
、 Cu・Nb、希土類元素、Zrのなかから選ばれる
いずれか少なくとも1種の元素を示し、0.8≦k≦1
.4゜0<l<2.0<m<2.0<n≦0.2゜2.
0≦2−t+m+n ≦2.2である〕。
(G) Expressive force "y TikCr2-7V with atomic number composition"
Hydrogen storage alloy shown in mAn [however, the formula middle person is co
, indicates at least one element selected from Cu/Nb, rare earth elements, and Zr, and 0.8≦k≦1
.. 4゜0<l<2.0<m<2.0<n≦0.2゜2.
0≦2−t+m+n≦2.2].

(1)原子数組成で示性式がZr)((Mnl −y 
”y )2で示されるジルコニウム系水素吸蔵用合金〔
但し1式%式% (男 原子数組成で示性式がZr)(()an t −
y−z VyFez ) 2で示されるジルコニウム系
水素吸蔵用合金〔但し、式中x、 y、 zはそれぞれ
0.5<x<1.5IO<Y<1.0<Z<l、y+z
≦1である〕。
(1) The specific formula in terms of atomic composition is Zr)((Mnl -y
Zirconium-based hydrogen storage alloy represented by ``y)2 [
However, 1 formula % formula % (male atomic number composition, the characteristic formula is Zr) (() an t −
Zirconium-based hydrogen storage alloy represented by y-z VyFez ) 2 [where x, y, and z are each 0.5<x<1.5IO<Y<1.0<Z<l, y+z
≦1].

本発明者らは、前記特開昭58−1032号記載の製造
方法てよって得られた水素吸蔵・放出用材料の問題点を
解消すべく研究し念結果、本発明の水素吸蔵・放出用材
料は、全く予期に反して水分。
The present inventors conducted research to solve the problems of the hydrogen storage/release material obtained by the manufacturing method described in JP-A-58-1032, and as a result, the hydrogen storage/release material of the present invention was found. It's completely unexpectedly moist.

酸素などによる合金被毒によって水素1汲蔵黛が減少す
ることなく、シかもヒステリシスが小さくなるとともに
、上記の水素吸蔵・放出用材料とじて要求さノtろ性′
j/をすべて具備しており、水素吸蔵・放出用材r)と
して新規にして極めて有用なものであることを見出し、
ここに本発明を完成するに至り几。
The hydrogen storage capacity is not reduced due to alloy poisoning by oxygen, etc., the hysteresis is reduced, and the above-mentioned hydrogen storage/release material has the required low-temperature properties.
We discovered that it is a new and extremely useful material for hydrogen storage and release, as it has all of the following:
We have now completed the present invention.

本発明の水素吸蔵・放出用材料は、上記(イ)〜(1ハ
の示性式によって示す水素吸1@用合金のいずれか1種
の合金粒子の表面に、水素のみを選択的に透過しゃすい
Pd、 Cu、 N工などのうちから選ばれたいずれか
1種の薄膜によりV1覆するものである。
The hydrogen absorbing/desorbing material of the present invention selectively permeates only hydrogen onto the surface of the alloy particles of any one of the hydrogen absorbing 1@ alloys shown by the equations (a) to (1c) above. The V1 is covered with a thin film of any one selected from transparent Pd, Cu, N, etc.

水分、l!2素などによる合金被毒を少なくし、ヒステ
リシスが小さくなる理由は、薄膜を形成する金@ Pd
、 011. Niなどが水素分子のみを原子状態に解
離して全日内部に侵入させ、水素のみを内部の(イ)〜
Qハの示性式に示す水素吸蔵用合金に吸蔵されることに
よるものと考えられろ。従来の水素吸蔵用合金2例えば
TiFe表面がNiによりメッキされた材料では、水分
tooo p>m =2含有する水素を用いると0.7
重量%の水素を吸蔵し、40Cにおいて水素吸蔵量が約
15気圧、水素放出圧は約7気圧であり、ヒステリシス
は約8気圧と極めて大きく、このTiFe材料の本来の
水素吸蔵量1.0 ff1f! %より大幅に減少する
ばかりでなく、ヒステリシスも大きくなる。ヒステリシ
スが大きいと、水素吸蔵。
Moisture, l! The reason why the alloy is poisoned by elements such as 2 and the hysteresis is reduced is because gold@Pd forms a thin film.
, 011. Ni etc. dissociate only hydrogen molecules into atomic state and allow them to enter the interior all day long, leaving only hydrogen inside (a) ~
This is thought to be due to the fact that hydrogen is stored in the hydrogen storage alloy shown in the characteristic equation of Qc. Conventional hydrogen storage alloy 2 For example, in a TiFe material whose surface is plated with Ni, when hydrogen containing water too p>m = 2 is used, 0.7
% by weight of hydrogen, and at 40C, the hydrogen storage capacity is about 15 atm, the hydrogen release pressure is about 7 atm, and the hysteresis is extremely large at about 8 atm, and the original hydrogen storage capacity of this TiFe material is 1.0 ff1f. ! %, and the hysteresis also increases. If the hysteresis is large, hydrogen will be absorbed.

放出の操作をする九めに、水素吸蔵用合金もしくはその
金属水酸化物をより大きな温度差で加熱・冷却しなけれ
ばならず、あるいはより大きな圧力差で水欝加圧・減圧
しなければならないため、水素貯蔵能力、水素化反応熱
を有効に利用することができなくなる。
To carry out the release operation, the hydrogen storage alloy or its metal hydroxide must be heated and cooled with a larger temperature difference, or the water must be pressurized and depressurized with a larger pressure difference. Therefore, hydrogen storage capacity and hydrogenation reaction heat cannot be used effectively.

本発明の材料において、原子数組成で(イ)〜(’J)
の示性式を特許請求の範囲のように定め之理由は下記の
通りである。
In the material of the present invention, the atomic composition is (a) to ('J)
The reason for defining the demonstrative formula as in the claims is as follows.

(イ) TLt+kFex−zNizAmにおいて、k
が0.3より大きいと熱力学的に不均化を生起し易く、
高温にならないと解離しないTiH2が生成する之め水
素吸蔵・放出だが少なくなり、プラトーの傾斜が大きく
なるので、kは0.3以下にする必要がある。まfct
が0.3より大きいと吸蔵された水素の放出が困難とな
り、高温にするか、もしくは減圧あるいは真空下での加
yAXK、よらなけれは円滑な水素放出を達成できなく
なるので、tは0.3以下にする必要がある。mが0.
1より大きいと水素吸蔵量が減少し、さらに水素吸蔵・
放出曲線におけるプラトー域が2段状になり、ヒステリ
シスも大きくなる傾向が現われるので、mは0.1以下
にする必要がある。
(b) In TLt+kFex-zNizAm, k
is larger than 0.3, thermodynamic disproportionation tends to occur,
Since TiH2, which does not dissociate unless the temperature is high, is produced, hydrogen absorption and release are reduced, and the slope of the plateau becomes large, so k needs to be set to 0.3 or less. fct
If t is larger than 0.3, it becomes difficult to release the occluded hydrogen, and smooth hydrogen release cannot be achieved unless the temperature is raised or pressure is reduced or vacuum is applied. Therefore, t is 0.3. It is necessary to do the following. m is 0.
If it is larger than 1, the amount of hydrogen storage decreases, and even more
Since the plateau region in the release curve becomes two-stepped and the hysteresis tends to increase, m needs to be 0.1 or less.

(ロ)Tit+kF61−zcOzAmにおいて、kが
0.3より大きいと熱力学的に不均化を生起し易く、高
温にならないと解離しないTiH2が生成するため水素
吸蔵・放出量が少なくなり、プラトーの傾斜が大きくな
るのでkは0.3以下にする必要がある。また、mは0
.1エリ大きいと水素吸椴凰が減少し、プラトー域が2
段状になり、ヒステリシスも大きくなる傾向が現われる
のでmは0.1以下にする必要がある。
(b) In Tit+kF61-zcOzAm, if k is larger than 0.3, disproportionation tends to occur thermodynamically, and TiH2, which does not dissociate unless it becomes high temperature, is generated, so the amount of hydrogen absorption and release decreases, and the plateau occurs. Since the slope becomes large, k needs to be 0.3 or less. Also, m is 0
.. If the area is larger by 1 area, the hydrogen absorption capacity will decrease and the plateau area will increase by 2.
There is a tendency for the layer to become step-like and the hysteresis to increase, so m needs to be set to 0.1 or less.

(ハ) T11+kFe’!−4MntDn + に)
T11+kFet 、zjJnzAB +(f9 T1
1+kFet−lMnlAmDn  において、kが0
.3より大きいと熱力学的に不均化が生起し易く、高温
圧ならないと解離しないTiH2が生起する之め水素吸
蔵・放出量が少なくなる。またtが0.3より大きいと
水′9吸蔵潰が低下し、しか本吸蔵され念水素の放出が
困難となり、高調にするか、もしくは減圧あるいは真空
下での加熱によらなければ円滑な水素の放出が達成でき
なくなる。n、mがそれぞれ0.1より大きいと水素吸
蔵量が減少し之り、吸蔵水素の放出が困難になったりす
る。kが0.3以下のT1とn、 mがそれぞれ0.1
以下のり、Aは水素吸蔵用として適した特性を株持しつ
つ水素吸蔵量を増大する念めに不可欠の成分である。
(c) T11+kFe'! −4MntDn + )
T11+kFet, zzJnzAB+(f9 T1
1+kFet-lMnlAmDn, k is 0
.. When it is larger than 3, disproportionation tends to occur thermodynamically, and TiH2, which does not dissociate unless it is at high temperature and pressure, is generated, resulting in a decrease in the amount of hydrogen storage and release. Furthermore, if t is larger than 0.3, the absorption and depletion of water will be reduced, and it will be difficult to release hydrogen due to the main occlusion, and it will be difficult to release hydrogen smoothly unless the temperature is increased or by heating under reduced pressure or vacuum. release becomes impossible to achieve. If n and m are each larger than 0.1, the amount of hydrogen storage decreases, making it difficult to release the stored hydrogen. T1 where k is 0.3 or less, n and m are each 0.1
In the following, A is an essential component for increasing the amount of hydrogen storage while maintaining properties suitable for hydrogen storage.

(へ) ZrxAy(Fe、−kVzCrm)2におい
て、Xが0.4より小さいか、yが0.6より大きいと
、水濡吸蔵量が低下し、プラトー域が消失し又ヒステリ
シスが大きくなるので、又は0.4以上、yは0.6以
下とする必要がある。kが0.2より小さくな、5に従
い水蕾吸蔵量が極度に減少してゆき、kが0.3より大
きくなるに従いプラトー域が消失し、平衡水素解離圧が
極度に低下するので、0.2≦k≦0.3とする必要が
ある。
(f) In ZrxAy(Fe, -kVzCrm)2, if X is smaller than 0.4 or y is larger than 0.6, the water absorption capacity decreases, the plateau region disappears, and hysteresis increases. , or 0.4 or more, and y needs to be 0.6 or less. As k is smaller than 0.2, the amount of water bud storage decreases extremely, and as k becomes larger than 0.3, the plateau region disappears and the equilibrium hydrogen dissociation pressure drops extremely, so 0. It is necessary to satisfy .2≦k≦0.3.

(ト)  TikCr2−2VmAnにおいて、kが1
.4より太きいと熱力学的に不均化が生起し易く、高温
にならないと解離しないTiH2が生成する念め吸セ水
素の放出が困難となり、高温にするか、もしくは減圧あ
るいは真空下での加熱によらなければ円滑な水素放出が
達成できなくなり、kが0.8より小さいと活性化が極
めて困難となるので、0.8≦k≦1.4の範囲内にす
る必要がある。
(G) In TikCr2-2VmAn, k is 1
.. If it is thicker than 4, disproportionation tends to occur thermodynamically, and it becomes difficult to release the absorbed hydrogen produced by TiH2, which does not dissociate unless the temperature is high. Smooth hydrogen release cannot be achieved without heating, and if k is less than 0.8, activation becomes extremely difficult, so it is necessary to keep it within the range of 0.8≦k≦1.4.

!念、mが2以上のときは吸蔵した水素が殆んど放出さ
れなくなるので、0<m<2にする必要がある。nが0
.2より大きいと、水素吸稙丞が減少し、さらにプラト
ー域が2段状になつ之り、ヒステリシスが大きくなる傾
向が現われるので、0くn≦0.2にする必要がある。
! Note that when m is 2 or more, almost no occluded hydrogen is released, so it is necessary to set 0<m<2. n is 0
.. If it is larger than 2, the hydrogen absorption rate will decrease, and the plateau region will become two-staged, and the hysteresis will tend to increase. Therefore, it is necessary to set n≦0.2.

υう   Zr)((Mnl−yVy)2  、  (
’J)   Zr)(+1.(nl−y−zVyF8z
)2において、Xが1.5より大きいと熱力学的に不均
化が生起し易く、高温にならないと解離しないZrH2
が生成するため水素吸蔵・放出量が少なくなる。ま几、
xが0.5より小さいと初期活性が困難となり、水素吸
蔵量が低下し、しかも吸蔵された水素の放出が困難とな
り、高温にするか、もしくは減圧あるいは真空下での加
熱によらなければ円滑な水素の放出が達成できなくなる
。y=1のときは、水素放出条件が室温付近で約10−
8気圧となり、水素吸蔵用材料として取り扱1ハが困難
となる。y=OのときはそれぞれZrMn2 、 Zr
)((Mnl−2Fez )z 、!:すり 、イスレ
41. ヒステリシスが大きくなる。Z=1のときは、
水素吸蔵量が低下し、しかも水素放出条件が室温付近で
10−8気圧に近づくため水素吸蔵材料として取り扱い
が困難となる。2=0のときはZrX(Mnl−yVy
)2 トナ’)、水ff1a?用材料として利用可能な
特性を有するものとなる。
υU Zr) ((Mnl-yVy)2, (
'J) Zr) (+1. (nl-y-zVyF8z
)2, if X is larger than 1.5, disproportionation tends to occur thermodynamically, and ZrH2 does not dissociate unless it becomes high temperature.
is generated, reducing the amount of hydrogen absorbed and released. Well,
If x is smaller than 0.5, initial activation becomes difficult, the amount of hydrogen storage decreases, and it becomes difficult to release the stored hydrogen. hydrogen release cannot be achieved. When y=1, the hydrogen release conditions are approximately 10-
The pressure is 8 atm, making it difficult to handle as a hydrogen storage material. When y=O, ZrMn2 and Zr respectively
)((Mnl-2Fez)z,!: Slip, Issle 41. Hysteresis increases. When Z=1,
The hydrogen storage capacity decreases, and the hydrogen release conditions approach 10 −8 atm near room temperature, making it difficult to handle as a hydrogen storage material. When 2=0, ZrX(Mnl-yVy
)2 Tona'), water ff1a? It has properties that can be used as a material for industrial use.

上記の(イ)〜(す)に示性式によって示される本発明
の特許請求の範囲にある合金、かjえばZr (Mn□
 、 BVolFe□、 t )2合金の粒子表面にp
dの’+5.Y !% (約100X)により皺覆した
材料では、水分1ooo p>m含有する水素を用・ハ
ろと1.4重力を俤の水素を吸蔵し、水素友、改圧が1
00 Cで約0.07気圧、水素放出圧が約0.05気
圧であり、ヒステリシスは極めて小さい。
Alloys within the scope of claims of the present invention represented by the formulas (a) to (s) above, such as Zr (Mn□
, BVolFe□, t) on the particle surface of the 2 alloy.
d'+5. Y! % (approximately 100X), the material absorbs hydrogen containing 100 p>m of moisture and absorbs 1.4 gravity of hydrogen, and the hydrogen concentration and pressure change are 1.
At 0.00 C, the pressure is about 0.07 atm, and the hydrogen release pressure is about 0.05 atm, so the hysteresis is extremely small.

このように本発明の水素吸蔵および放出用材料は、初め
て開発された新規な材料にして、水素吸蔵および放出用
材料として要求される緒特性をすべて具備するものであ
り、とくに水素吸蔵量は従来の水素吸蔵・放出用材料よ
り大きく、しかも水素吸蔵・放出圧のヒステリシスは従
来の水素吸蔵・放出用材料に比べて大幅に改善され、水
素吸蔵・放出用材料としての水素貯蔵能力、水素吸蔵・
放出に伴う反応熱を有効に利用することができる。
As described above, the hydrogen storage and desorption material of the present invention is a new material developed for the first time and has all the characteristics required as a hydrogen storage and desorption material, especially in terms of hydrogen storage capacity compared to conventional materials. Moreover, the hysteresis of hydrogen storage and release pressure is significantly improved compared to conventional hydrogen storage and release materials, and the hydrogen storage capacity and hydrogen storage and release pressure as hydrogen storage and release materials are significantly improved.
The reaction heat accompanying the release can be effectively utilized.

しかも、水素吸蔵・放出反応の活性化が容易であり、反
応速度も極めて速く、水分、酸素などの不純ガスを含有
する水素の吸蔵・放出を繰り返しても材料の劣化はなく
、熱伝導性も向上するなど、実用上玉めで有用な水素吸
蔵・放出用材料である。
Furthermore, activation of the hydrogen absorption/desorption reaction is easy, the reaction rate is extremely fast, the material does not deteriorate even after repeated absorption/desorption of hydrogen containing impure gases such as moisture and oxygen, and its thermal conductivity is low. It is a material for hydrogen storage and release that is useful in practical terms.

次に本発明材料の製造方法を説明する。Next, a method for producing the material of the present invention will be explained.

本発明材料のけ)〜(す)の示性式によって示てれろ水
素吸蔵用合金を製造するには、従来知られている水素吸
蔵用合金の製造方法によることができるが、アーク溶融
法VCよることが最も好適である。
In order to produce the hydrogen storage alloy shown by the equations (1) to (3) of the material of the present invention, conventionally known methods for producing hydrogen storage alloys can be used, but the arc melting method VC It is most preferable to

次にアーク溶融法による本発明材料に用・ハろ合金の製
造方法について述べろ。(イ)〜(リフの示性式に示さ
れる成分金属をそれぞれ秤取して混合した後、任意の形
状にプレス成形し、この成形体をアーク俗融炉に装入し
て不活性雰囲気下で加熱fB融し、炉内で凝固筋せて室
温1で冷却し丸後炉外に取出す。この合金を均’F(K
するため、K空容器内に装入し1O−2Torr以下の
高真空雰囲気中で1000〜]100C,8時間以上炉
中に保持した後、真空容器を炉外に取り出し放冷するか
、またけ真空容器を水中に投入して冷却する。その後、
合金の表面種を拡大して水2ry!!、蔵能力を高める
ため、粒径100μm前後に破砕する。
Next, the method for producing the halo alloy used as the material of the present invention using the arc melting method will be described. (b) ~ (After weighing and mixing the component metals shown in Riff's formula, press-form them into an arbitrary shape, and charge this molded body into an arc melting furnace under an inert atmosphere. The alloy is melted by heating at fB, solidified in the furnace, cooled to room temperature 1, and then taken out of the furnace.
In order to Place the vacuum container into water and cool. after that,
Enlarge the surface species of the alloy and use water 2ry! ! In order to increase the storage capacity, the grains are crushed to a particle size of around 100 μm.

合金の表面をPd、 Gu、 Niのうち1種の金属の
薄膜により被覆するには、従来知られている無電解メッ
キ法、X空蒸N法、電解メッキ法のいずれかによること
が好適である。あらかじめ粒径100μm前後のAiJ
記(イ)〜(す)の示性式によって示てれる水素吸蔵用
合金粒子の表面に無電解メッキ、真空蒸着あるいは電解
メッキにより厚さ100〜1000 A前後のPd、 
CuあるいはN1のうち一種の金属の薄膜全形成させた
ものである・こ0薄膜0形成12つて合金自体の水素吸
蔵能が損われ6 コトt−x 、t <ゝ最初に水素を
吸蔵させるための活性能処理も金属の薄膜により被覆さ
れていないものと同程度あるいはより緩やかな条件で行
うことができろoまたN形成1れたPd、 Cu、 N
iのうち一種の金属のね重膜は水素ガスの透過に十分な
大きさの原子間間隙を有しておシ、水素吸蔵速度の低下
はほとんど認められない。
In order to coat the surface of the alloy with a thin film of one of the metals selected from Pd, Gu, and Ni, it is preferable to use any of the conventionally known electroless plating method, X-evaporation N method, or electrolytic plating method. be. AiJ with a particle size of around 100 μm in advance
Pd with a thickness of about 100 to 1000 A is applied to the surface of the hydrogen storage alloy particles shown by the formulas (a) to (s) by electroless plating, vacuum evaporation, or electrolytic plating.
A thin film of one type of metal, Cu or N1, is formed entirely.The formation of this thin film damages the hydrogen storage capacity of the alloy itself. The activity treatment for Pd, Cu, N with N formation can also be carried out under the same or milder conditions than those not covered with a metal thin film.
The layered film made of one of the metals (i) has interatomic gaps large enough for permeation of hydrogen gas, and there is hardly any decrease in the hydrogen absorption rate.

次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

実施例1 市販の各成分金属を適量秤取し、これを真空アーク溶解
炉の銅製ルツボ内に装入し、炉内を99.99%アルゴ
ン雰囲気とした後、約2000 CK加熱溶融して約4
0)の次のような原子数組成のボタン状合金塊10種類
をそれぞれ製造した。即ち、TiLI Fe□、a N
1a2 Zr(105Ti LIFeO,5Go(、,
5Zr□、05TILIFe0.8MnQ、2vQ、0
5Tit、t Fea、sMnhzLaa、osTi 
1.1FeO,s MnO,2Vo、 025 Lao
、 025Zr O,8Tio、 z (F’e0.7
5v0.15crG、 t ) 2T’1L2cr1.
2vQ、8L+a0.05Zr(Mn0.7VQ、3)
2 Zr (Mncs VO,l F2O,1)2iFe 各ボタン状試料をそれぞれ石英管に挿入し、ロータリー
ポンプを用いて10  Torrの真空下の加熱炉内で
l100r、 8時間保持した後、試料を石英管に入れ
たまま水中に取出して急冷する均質化熱処理を施した。
Example 1 Appropriate amounts of commercially available component metals were weighed out, charged into a copper crucible of a vacuum arc melting furnace, the furnace was made into a 99.99% argon atmosphere, and then heated and melted to approximately 2000 CK. 4
Ten types of button-shaped alloy ingots having the following atomic compositions of 0) were manufactured. That is, TiLI Fe□, a N
1a2 Zr(105Ti LIFeO,5Go(,,
5Zr□, 05TILIFe0.8MnQ, 2vQ, 0
5Tit, t Fea, sMnhzLaa, osTi
1.1FeO,s MnO,2Vo, 025 Lao
, 025Zr O,8Tio, z (F'e0.7
5v0.15crG, t) 2T'1L2cr1.
2vQ, 8L+a0.05Zr (Mn0.7VQ, 3)
2 Zr (Mncs VO,l F2O,1)2iFe Each button-shaped sample was inserted into a quartz tube and held in a heating furnace under a vacuum of 10 Torr for 8 hours using a rotary pump. Homogenization heat treatment was carried out by taking out the tube and quenching it in water.

その後、合金を100μm@後に粉破した。このように
して製造したそれぞれの合金の表面を塩酸で活性化した
後、Pd塩による無電解メッキを施し、100〜100
0 A程度のPd薄膜により被覆させ、これを水洗、ア
ルコール洗浄を行なった後、乾燥した。
Thereafter, the alloy was pulverized after 100 μm. After activating the surface of each alloy produced in this way with hydrochloric acid, electroless plating with Pd salt was applied to
It was coated with a Pd thin film of about 0 A, washed with water and alcohol, and then dried.

この材料159を秤取してステンレス辺水素吸だ・放出
反応器に封入した。密閉反応器を室温〜170Cの温度
で真空吸引して脱ガスを行なった後、密閉反応容器に純
度99.999%の水素な2導入して30kv/crn
2に加圧したところ、室温で直ちに水素吸蔵反応を開始
した。充分に水素を吸蔵した後、再び真空吸引した。材
料の活性化は1回の水素吸蔵・放出処理によりほぼ完全
に行なうことができた。
This material 159 was weighed and sealed in a stainless steel-lined hydrogen absorption/release reactor. After degassing the sealed reactor by vacuum suction at a temperature of room temperature to 170C, hydrogen 2 with a purity of 99.999% was introduced into the sealed reaction vessel at 30 kv/crn.
When the pressure was increased to 2, the hydrogen storage reaction immediately started at room temperature. After sufficiently absorbing hydrogen, vacuum suction was performed again. The material could be almost completely activated by one hydrogen storage/release treatment.

この密閉反応容器を一定温度に維持した恒温槽に浸漬し
、水分1000 Minを含有する水素を導入して1〜
30kIV/Crn2に加圧し、導入水素量と圧力変化
を測定し、この測定により作成した王カー組成等温線図
から水素吸M貸および吸蔵圧と放出圧との差すなわちヒ
ステリシスを求めた。その結果を第1表に示す。
This sealed reaction container was immersed in a constant temperature bath maintained at a constant temperature, hydrogen containing 1000 min of water was introduced, and
The pressure was increased to 30 kIV/Crn2, the amount of hydrogen introduced and the change in pressure were measured, and the difference between hydrogen adsorption and storage pressure and release pressure, that is, hysteresis, was determined from the Kerr composition isotherm diagram created by these measurements. The results are shown in Table 1.

第1表から明らかなように、本発明材料は、従来の材料
(試料&10)に比べて水素吸蔵量は大きく、シかもヒ
ステリシスは大幅に改善されている。
As is clear from Table 1, the material of the present invention has a larger hydrogen storage capacity and significantly improved hysteresis than the conventional material (Sample & 10).

実施例2 次のような原子数組成のボタン状水素吸蔵用合金塊10
種頌をそれぞれ実施9IIlと同様に製造し、均質化熱
処理を砲した。ν1ノち、 Ti1.I Fe0.8 Ni0.2 Zr(、、05
Titt Feo、s COo、5 Zr0.05Th
 14 F’e0.8 Mn□、2 V005Ti1.
I Feo、BkAn′0,2 LaO,05Ti 1
.I F”30.8 Mn□、2 VQ、02S L+
a0.025zrQ、8 Ti0.2 (F’e0.7
S ■0.t5 Cro、t )2Ti1.2 Cr1
.z Vo、g Lao、osZr (Mn0.7’V
0.3 ) 2zr(MTlo、s VO,l FfB
o、1.) 2i Fe その後、合金を100μm前後に粉砕した。このように
して製造した合金粒子表面をA2下(IF’Torr 
)でPd蒸着を施し、Pd?it膜により被覆させた。
Example 2 Button-shaped hydrogen storage alloy ingot 10 having the following atomic composition
Seeds were each prepared as in Run 9III and subjected to a homogenization heat treatment. ν1 nochi, Ti1. I Fe0.8 Ni0.2 Zr(,,05
Titt Feo, s COo, 5 Zr0.05Th
14 F'e0.8 Mn□, 2 V005Ti1.
I Feo, BkAn'0,2 LaO,05Ti 1
.. I F”30.8 Mn□, 2 VQ, 02S L+
a0.025zrQ, 8 Ti0.2 (F'e0.7
S ■0. t5 Cro, t )2Ti1.2 Cr1
.. z Vo, g Lao, osZr (Mn0.7'V
0.3) 2zr(MTlo, s VO, l FfB
o, 1. ) 2i Fe Thereafter, the alloy was ground to around 100 μm. The surface of the alloy particles produced in this way was placed under A2 (IF' Torr
) to perform Pd evaporation and Pd? It was covered with an IT film.

この合金粉末をその都度攪拌を行なって蒸清を約10回
程度繰り返して100〜1000 X程度のPd薄膜に
より被覆させた。
This alloy powder was stirred each time and distilled about 10 times to coat it with a Pd thin film of about 100 to 1000×.

この材料15?を秤取してステンレス製水素吸鷺・放出
反応器に封入した。密閉反応器を実施例1と同様に操作
して材料の活性化を行なった。材料の活性化は1回の水
素吸蔵・放出処理によりほぼ完全に行なうことができた
。この密閉反応器を一定温度に維持した恒温槽に浸漬し
、水分1000 pI)11111゜0211000p
p、 GO21% k含有Tル水索t4人(、テ1〜3
0kp/稀2に加圧し、導入水素賃と圧力変化を測定し
、この世゛j定により作成した王カー組成等色線図から
水素吸Rfおよび吸蔵圧と放出圧との差すなわちヒステ
リシスを求めた。その結果を第2表に示す。
This material is 15? was weighed and sealed in a stainless steel hydrogen absorption/release reactor. A closed reactor was operated in the same manner as in Example 1 to effect activation of the material. The material could be almost completely activated by one hydrogen storage/release treatment. This sealed reactor was immersed in a constant temperature bath maintained at a constant temperature, and the moisture content was 1000 pI) 11111°0211000p.
p, GO 21%
Pressurized to 0 kp/2, measured the introduced hydrogen rate and pressure change, and determined the hydrogen adsorption Rf and the difference between the storage pressure and the release pressure, that is, hysteresis, from the Kerr composition isochromic diagram created based on this specification. . The results are shown in Table 2.

第2表から明らかなように、本発明材料は従来の材料(
試料7ぢ20)VC比べて水素吸w、量は大きく、しか
もヒステリシスは大幅に改善てれている。
As is clear from Table 2, the material of the present invention is similar to the conventional material (
Sample 7-20) Compared to VC, the amount of hydrogen absorbed is large, and the hysteresis is greatly improved.

実施例3 次のような原子数組成のボタン状水素吸蔵用合金塊10
種類をそれぞれ実施例1と同様に製造し、均質化熱処理
を施した。即ち、 Tit、t Fe0.8 Ni0.2 zro、05T
h1.l F’30.5 C00,5zro、osTi
 1.1 Feo、g MnO4vo、05Ti 14
 Fe30.B Mno、2 LaO,05Ti 1.
I Feo、s MnO2Vo、025 La0.02
5Zr06 TiO,2(Fe0.75 Vo、150
rO,1)2Ti 1.2 cr 1.2 Vo、s 
Lao、osZr (MnO,7Vo、3 )2 Zr (Mno、s Vo、r Feo、t )2i 
Fe その後、合金を100師前後に粉砕した。このようにし
て製造した合金粒子表面を塩酸で活性化した後、塩化鋼
による無電解メッキ5!:施し、100〜1000 A
程度のCu薄膜により被覆させ、これを水洗、アルコー
ル洗浄を行なった後、乾燥した。
Example 3 Button-shaped hydrogen storage alloy ingot 10 having the following atomic composition
Each type was manufactured in the same manner as in Example 1 and subjected to homogenization heat treatment. That is, Tit, t Fe0.8 Ni0.2 zro, 05T
h1. l F'30.5 C00,5zro,osTi
1.1 Feo, g MnO4vo, 05Ti 14
Fe30. B Mno, 2 LaO, 05Ti 1.
I Feo, s MnO2Vo, 025 La0.02
5Zr06 TiO,2(Fe0.75 Vo, 150
rO, 1) 2Ti 1.2 cr 1.2 Vo, s
Lao, osZr (MnO,7Vo, 3 )2 Zr (Mno, s Vo, r Feo, t ) 2i
Fe The alloy was then ground to about 100 grains. After activating the surface of the alloy particles thus produced with hydrochloric acid, electroless plating with chloride steel 5! : Alms, 100-1000 A
After washing with water and alcohol, it was dried.

この材料155’を秤取してステンレス製水素吸蔵・放
出反応器に封入した。密閉反応器を実施例1と同様に操
作して材料の活性化を行なった。材料の活性化は1回の
水素吸蔵・放出処理によりほぼ完全に行なうことができ
た。この密閉反応器を重宝温度VC維持した恒温槽に浸
漬し、水分iooop>mを含有する水素を導入して1
〜30 ky/CrIr2に加圧し、導入水素量と圧力
変化を測定し、この測定により作成した圧力−組成等温
線図から水素吸蔵量および吸蔵圧と放出圧との差、すな
わちヒステリ7スを求めた。その結果を第3表に示す。
This material 155' was weighed and sealed in a stainless steel hydrogen storage/release reactor. A closed reactor was operated in the same manner as in Example 1 to effect activation of the material. The material could be almost completely activated by one hydrogen storage/release treatment. This sealed reactor was immersed in a constant temperature bath maintained at a useful temperature VC, and hydrogen containing water iooop>m was introduced.
Pressurize to ~30 ky/CrIr2, measure the amount of hydrogen introduced and the change in pressure, and determine the hydrogen storage amount and the difference between the storage pressure and the release pressure, that is, the hysteresis, from the pressure-composition isotherm diagram created by this measurement. Ta. The results are shown in Table 3.

第3表から明らかなように、本発明材料は、従来の材料
(試料ム30)に比べて水素吸蔵量は大きく、シかもヒ
ステリシスは大幅に改善されている。
As is clear from Table 3, the material of the present invention has a larger hydrogen storage capacity and significantly improved hysteresis than the conventional material (sample 30).

実施例4 次のような原子数組成のボタン状水素吸蔵用合金塊10
種類をそれぞれ実施例1と同様に製造し、均質化熱処理
を施した。即ち、 Til、l F’e0.8 NiQ、2 ZrO,65
Ti 1.I Fe□、5 Go、)、5 zro、0
5Titt Feo、s MnO,2vo、05Tiu
 Fe04 Mno、2 Lao、osTil、l F
eo、a Mn(1,2Vo、025 Lao、osZ
rO,8Ti0.2 (Fe1O,75Vo、15 C
rra、1)2Titz Crx、2Vo、s L+a
0.05Zr (Mn017 V□、3 ) 2Zr 
(Mn0.8 VO,l Fe0.1 )2i Fe その後、合金を100μm前後に粉砕した。このように
して製造した合金粒子表面を塩酸で活性化した後、塩化
ニッケルによる無電解メッキを施し、100〜1000
 A程度のN上薄嗅により被覆させ、これを水洗、アル
コール洗浄を行なった後、乾燥した。
Example 4 Button-shaped hydrogen storage alloy ingot 10 having the following atomic composition
Each type was manufactured in the same manner as in Example 1 and subjected to homogenization heat treatment. That is, Til,l F'e0.8 NiQ,2 ZrO,65
Ti 1. I Fe□, 5 Go, ), 5 zro, 0
5Titt Feo,s MnO,2vo,05Tiu
Fe04 Mno, 2 Lao, osTil, l F
eo, a Mn(1,2Vo, 025 Lao, osZ
rO,8Ti0.2 (Fe1O,75Vo,15C
rra, 1) 2Titz Crx, 2Vo, s L+a
0.05Zr (Mn017 V□, 3) 2Zr
(Mn0.8 VO,l Fe0.1 )2i Fe Thereafter, the alloy was ground to about 100 μm. After activating the surface of the alloy particles produced in this way with hydrochloric acid, electroless plating with nickel chloride was applied to
It was coated with a light coat of N of grade A, washed with water and alcohol, and then dried.

この材料15?を秤取してステンレス製水素吸蔵・放出
反応器に封入した。密閉反応器を実施例1と同様に操作
して材料の活性化を行なった。材料の活性化は1回の水
素吸蔵・放出処理によりほぼ完全に行なうことができた
。この密閉反応器を重宝已度VC,維持した恒温槽に浸
漬し、水分1ooop>mを含有する水素を導入して1
〜3Q kp/cm2に加圧し、導入水素Vと圧力賓化
を測定し、この測定により作成した圧力−組成等の線図
から水素吸蔵量および吸蔵圧と放出圧との差、すなわち
ヒステリシスを求めた。その結果を第4表に示す。
This material is 15? was weighed and sealed in a stainless steel hydrogen storage/release reactor. A closed reactor was operated in the same manner as in Example 1 to effect activation of the material. The material could be almost completely activated by one hydrogen storage/release treatment. This sealed reactor was immersed in a constant temperature bath maintained at a temperature of VC, and hydrogen containing 1 ooop>m of moisture was introduced.
Pressurize to ~3Q kp/cm2, measure the introduced hydrogen V and pressure concentration, and calculate the hydrogen storage amount and the difference between the storage pressure and release pressure, that is, hysteresis, from the pressure-composition diagram created by this measurement. Ta. The results are shown in Table 4.

第4表から明らかなように、本発明材料は、従来の材料
(試料)に=10)VC,比べて水素吸蔵能力は大きく
、シかもヒステリシスは大幅に改善されている。
As is clear from Table 4, the material of the present invention has a greater hydrogen storage capacity and significantly improved hysteresis than the conventional material (sample) (=10) VC.

(発明の効果) 本発明材料は上記の緒特性を有することがら、下記の効
果をあげることができる。
(Effects of the Invention) Since the material of the present invention has the above characteristics, it can bring about the following effects.

■ 水分t  021 co2などの不純ガスを含有す
る水素の吸蔵・放出を繰り返しても材料の劣化は実質的
に少なく、耐不純ガス被毒性に優れている。
(2) Even if hydrogen containing impurity gases such as water t 021 co2 is repeatedly absorbed and released, there is virtually no deterioration of the material, and the material has excellent resistance to impurity gas poisoning.

■ 水素吸蔵量は従来の合金より大きい。■Hydrogen storage capacity is greater than conventional alloys.

■ 水素の吸蔵量と放出圧の差、即ちヒステリシスが従
来の合金に比べて極めて小さいので、水素吸蔵能力や反
応熱を有効に利用することができる。
- Since the difference between the amount of hydrogen storage and the release pressure, that is, hysteresis, is extremely small compared to conventional alloys, the hydrogen storage capacity and reaction heat can be used effectively.

■ 活性化は容易で、水素吸蔵・放出速度本大きく、従
来の材料とほぼ同等あるいはそれ以上である。
■ Activation is easy, and the hydrogen storage and release rates are high, almost equal to or higher than conventional materials.

Claims (1)

【特許請求の範囲】 1、下記(イ)〜(リ)の示性式によって示す水素吸蔵
用合金のいずれか1種の合金の粒子の表面がPd、Cu
、Niのうちから選ばれるいずれか1種の薄膜により被
覆されてなる耐不純ガス被毒性に優れる水素吸蔵および
放出用材料; (イ)原子数組成で示性式がTi_1_+_kFe_1
_−_lNi_lA_mで示されることを特徴とするチ
タン系水吸吸蔵用合金〔但し、式中AはZr、Nb、V
、希土類元素のなかから選ばれるいずれか少なくとも1
種の元素を示し、k≦0.3、l≦0.3、m≦0.1
でk>mである〕。 (ロ)原子数組成で示性式がTi_1_+_kFe_1
_−_lCo_lA_mで示されることを特徴とするチ
タン系水素吸蔵用合金〔但し、式中AはZr、Nb、V
、希土類元素のなかから選ばれるいずれか少なくとも1
種の元素を示し、k≦0.3、l<1.0、m≦0.1
であり、l=0.5〜0.99なるときk>mである〕
。 (ハ)原子数組成で示性式がTi_1_+_kFe_1
_−_lMn_lD_nで示されるチタン系水素吸蔵用
合金〔但し、DはZr、Vの少なくとも1種からなる元
素を示し、0<k≦0.3、0<l≦0.3、0<n≦
0.1、k>nである〕。 (ニ)原子数組成で示性式がTi_1_+_kFe_1
_−_lMn_lA_mで示されるチタン系水素吸蔵用
合金〔但し、AはNb、希土類元素の少なくとも1種か
らなる元素を示し、0≦k≦0.3、0<l≦0.3、
0<m≦0.1である〕。 (ホ)原子数組成で示性式がTi_1_+_kFe_1
_−_lMn_lA_mD_nで示されるチタン系水素
吸蔵用合金〔但し、AはNb、希土類元素の少なくとも
1種からなる元素であり、DはZr、Vの少なくとも1
種からなる元素を示し、0≦k≦0.3、0<l≦0.
3、0<m≦0.1、0<n≦0.1である〕。 (ヘ)原子数組成で示性式がZr_xA_y(Fe_1
_−_kV_lCr_m)_2で示されることを特徴と
するジルコニウム系水素吸蔵用合金〔但し、式中AはT
i、Nb、Moのなかから選ばれるいずれか少なくとも
1種の元素を示し、0.4≦x≦1.0、0≦y≦0.
6、k=l+m、0.2≦k≦0.3であり、且つy=
0のときはm>0である〕。 (ト)原子数組成で示性式がTi_kCr_2_−_l
V_mA_nで示される水素吸蔵用合金〔但し、式中A
はCo、Cu、Nb、希土類元素、Zrのなかから選ば
れるいずれか少なくとも1種の元素を示し、0.8≦k
≦1.4、0<l<2、0<m<2、0<n≦0.2、
2.0≦2−l+m+n≦2.2である〕。 (チ)原子数組成で示性式がZr_x(Mn_1_−_
yV_y)2で示されるジルコニウム系水素吸蔵用合金
〔但し、式中x、yはそれぞれ0.5<x<1.5、0
<y<1である〕。 (リ)原子数組成で示性式がZr_x(Mn_1_−_
y_−_zV_yFe_z)_2で示されるジルコニウ
ム系水素吸蔵用合金〔但し、式中x、y、zはそれぞれ
0.5<x<1.5、0<y<1、0<z<1、y+z
≦1である〕。 2、前記薄膜は無電解メッキ、蒸着、電解メッキのいず
れか1つの方法により形成されてなる薄膜であることを
特徴とする特許請求の範囲第1項記載の材料。 3、前記薄膜の厚さは100〜1000Åである特許請
求の範囲第1あるいは2項記載の材料。
[Claims] 1. The surface of the particles of any one of the hydrogen storage alloys represented by the following formulas (a) to (li) is Pd, Cu.
, Ni, and is coated with a thin film of any one kind selected from Ni, and has excellent resistance to impurity gas poisoning.
A titanium-based water storage alloy characterized by being represented by ___lNi_lA_m [However, in the formula, A is Zr, Nb, V
, at least one selected from rare earth elements
Indicates the seed element, k≦0.3, l≦0.3, m≦0.1
and k>m]. (b) The specific formula in terms of atomic composition is Ti_1_+_kFe_1
A titanium-based hydrogen storage alloy characterized by being represented by ___lCo_lA_m [However, in the formula, A is Zr, Nb, V
, at least one selected from rare earth elements
Indicates the seed element, k≦0.3, l<1.0, m≦0.1
and when l=0.5 to 0.99, k>m]
. (c) The specific formula in terms of atomic composition is Ti_1_+_kFe_1
Titanium-based hydrogen storage alloy represented by _-_lMn_lD_n [However, D represents an element consisting of at least one of Zr and V, and 0<k≦0.3, 0<l≦0.3, 0<n≦
0.1, k>n]. (d) The specific formula in terms of atomic composition is Ti_1_+_kFe_1
Titanium-based hydrogen storage alloy represented by ___lMn_lA_m [However, A represents an element consisting of at least one of Nb and rare earth elements, 0≦k≦0.3, 0<l≦0.3,
0<m≦0.1]. (e) The specific formula in terms of atomic composition is Ti_1_+_kFe_1
Titanium-based hydrogen storage alloy represented by ___lMn_lA_mD_n [However, A is an element consisting of at least one of Nb and a rare earth element, and D is an element consisting of at least one of Zr and V.
Indicates an element consisting of seeds, 0≦k≦0.3, 0<l≦0.
3, 0<m≦0.1, 0<n≦0.1]. (F) In terms of atomic composition, the specific formula is Zr_xA_y(Fe_1
_−_kV_lCr_m)_2 [However, in the formula, A is T
It represents at least one element selected from i, Nb, and Mo, and 0.4≦x≦1.0, 0≦y≦0.
6, k=l+m, 0.2≦k≦0.3, and y=
0, m>0]. (g) The specific formula in terms of atomic composition is Ti_kCr_2_-_l
Hydrogen storage alloy represented by V_mA_n [However, in the formula, A
represents at least one element selected from Co, Cu, Nb, rare earth elements, and Zr, and 0.8≦k
≦1.4, 0<l<2, 0<m<2, 0<n≦0.2,
2.0≦2-l+m+n≦2.2]. (H) The specific formula is Zr_x(Mn_1_-_
Zirconium-based hydrogen storage alloy represented by yV_y)2 [where x and y are respectively 0.5<x<1.5, 0
<y<1]. (li) The specific formula for the atomic composition is Zr_x(Mn_1_-_
Zirconium-based hydrogen storage alloy represented by y_-_zV_yFe_z)_2 [wherein x, y, and z are respectively 0.5<x<1.5, 0<y<1, 0<z<1, y+z
≦1]. 2. The material according to claim 1, wherein the thin film is a thin film formed by any one of electroless plating, vapor deposition, and electrolytic plating. 3. The material according to claim 1 or 2, wherein the thin film has a thickness of 100 to 1000 Å.
JP60163945A 1985-07-26 1985-07-26 Hydrogen occluding and releasing material having superior resistance to poisoning by impure gas Granted JPS6227301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60163945A JPS6227301A (en) 1985-07-26 1985-07-26 Hydrogen occluding and releasing material having superior resistance to poisoning by impure gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60163945A JPS6227301A (en) 1985-07-26 1985-07-26 Hydrogen occluding and releasing material having superior resistance to poisoning by impure gas

Publications (2)

Publication Number Publication Date
JPS6227301A true JPS6227301A (en) 1987-02-05
JPH0224764B2 JPH0224764B2 (en) 1990-05-30

Family

ID=15783805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60163945A Granted JPS6227301A (en) 1985-07-26 1985-07-26 Hydrogen occluding and releasing material having superior resistance to poisoning by impure gas

Country Status (1)

Country Link
JP (1) JPS6227301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501556A (en) * 1999-06-02 2003-01-14 サエス ゲッターズ ソチエタ ペル アツィオニ Composite material capable of adsorbing hydrogen without depending on activation treatment and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585401A (en) * 1978-12-21 1980-06-27 Siemens Ag Method and material for storing hydrogen
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS5836661A (en) * 1981-08-31 1983-03-03 Fuji Xerox Co Ltd Four phase electric field curtain device
JPS58135101A (en) * 1982-01-29 1983-08-11 Meidensha Electric Mfg Co Ltd Hydrogen-storage substance and its production
JPS58217654A (en) * 1982-06-09 1983-12-17 Agency Of Ind Science & Technol Titanium-chromium-vanadium alloy for occluding hydrogen
JPS60100664A (en) * 1983-11-07 1985-06-04 Matsushita Electric Ind Co Ltd Material for storing hydrogen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585401A (en) * 1978-12-21 1980-06-27 Siemens Ag Method and material for storing hydrogen
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS5836661A (en) * 1981-08-31 1983-03-03 Fuji Xerox Co Ltd Four phase electric field curtain device
JPS58135101A (en) * 1982-01-29 1983-08-11 Meidensha Electric Mfg Co Ltd Hydrogen-storage substance and its production
JPS58217654A (en) * 1982-06-09 1983-12-17 Agency Of Ind Science & Technol Titanium-chromium-vanadium alloy for occluding hydrogen
JPS60100664A (en) * 1983-11-07 1985-06-04 Matsushita Electric Ind Co Ltd Material for storing hydrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501556A (en) * 1999-06-02 2003-01-14 サエス ゲッターズ ソチエタ ペル アツィオニ Composite material capable of adsorbing hydrogen without depending on activation treatment and method for producing the same
JP4662666B2 (en) * 1999-06-02 2011-03-30 サエス ゲッターズ ソチエタ ペル アツィオニ Composite material and preparation method thereof

Also Published As

Publication number Publication date
JPH0224764B2 (en) 1990-05-30

Similar Documents

Publication Publication Date Title
Kagawa et al. Absorption of hydrogen by vanadium-rich V Ti-based alloys
US4556551A (en) Hydrogen storage materials of zirconium-chromium-iron and titanium alloys characterized by ZrCr2 stoichiometry
JPH0382734A (en) Rare earth metal-series hydrogen storage alloy
Denys et al. Phase equilibria in the Mg–Ti–Ni system at 500° C and hydrogenation properties of selected alloys
JPS633019B2 (en)
Zhong et al. Tuning the de/hydriding thermodynamics and kinetics of Mg by mechanical alloying with Sn and Zn
US4412982A (en) Zirconium-titanium-manganese-iron alloy characterized by ZrMn2 stoichiometry
Drašner et al. On the structural and hydrogen desorption properties of the Zr (Cr1− xNix) 2 alloys
US5888317A (en) Hydrogen-storage material employing ti-mn alloy system
JPS6227301A (en) Hydrogen occluding and releasing material having superior resistance to poisoning by impure gas
US4512965A (en) Hydrogen storage materials of hyperstoichiometric alloys
JPS58217654A (en) Titanium-chromium-vanadium alloy for occluding hydrogen
US4421718A (en) Alloy for occlusion of hydrogen
US5100615A (en) Alloys of Ti-Cr-Cu for occluding hydrogen
JPS5848481B2 (en) Hydrogen storage materials
US4406874A (en) ZrMn2 -Type alloy partially substituted with cerium/praseodymium/neodymium and characterized by AB2 stoichiometry
Suzuki et al. Hydrogen absorption-desorption characteristics of Ti-Co-Fe alloys
US5028389A (en) Hydrogen storage materials of Zr-Ti-Cr-Fe
JPS619544A (en) Titanium alloy for occluding hydrogen
JPH0557345B2 (en)
JP3451320B2 (en) Hydrogen storage alloy
JPS61250136A (en) Titanium-type hydrogen occluding alloy
Sinha et al. Hydrides of ZrMn2-based alloys substoichiometric in zirconium for engineering applications
JP4417805B2 (en) Hydrogen storage alloy and hydrogen storage container
Wang Rare Earth Hydrides and Hydrogen Storage Alloys