JPS6369701A - Metallic material for occluding hydrogen - Google Patents

Metallic material for occluding hydrogen

Info

Publication number
JPS6369701A
JPS6369701A JP61211452A JP21145286A JPS6369701A JP S6369701 A JPS6369701 A JP S6369701A JP 61211452 A JP61211452 A JP 61211452A JP 21145286 A JP21145286 A JP 21145286A JP S6369701 A JPS6369701 A JP S6369701A
Authority
JP
Japan
Prior art keywords
alloy
activation
hydrogen
activated
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61211452A
Other languages
Japanese (ja)
Inventor
Ryoichi Suzuki
良一 鈴木
Taichi Saito
斉藤 太一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61211452A priority Critical patent/JPS6369701A/en
Publication of JPS6369701A publication Critical patent/JPS6369701A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PURPOSE:To produce a hydrogen occluding metallic material which is easily activated at low temp., by mixing a specified amt. of powder of Fe-Ti-Mm(Mischmetal) alloy, etc., which is activated at low temp., with Fe-Ti alloy powder which requires activating treatment at high temp. CONSTITUTION:5-30wt% at least one kind of alloy powder selected from Fe-Ti-Mm alloy, Fe-Ti-Nb alloy, Ti-Mn alloy, Ca-Ni alloy, and Mn-Ni alloy, which is activated at below ca. 50 deg.C, with Fe-Ti alloy powder which requires to be activated at ca. 100 deg.C. By this method, a hydrogen occluding metallic material which occludes or liberates hydrogen stably and with high density is obtd. at low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は水素を高密度かつ安定に吸蔵しまた放出しうる
水素吸蔵用金属材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hydrogen storage metal material that can store and release hydrogen at high density and stably.

(従来の技術) 近年、水累葡ある種の金属あるいは合金に吸蔵させて、
金属水素化物という形で貯蔵・輸送したり、水素の分離
・鮪製に使用したり、ヒートボン−]− プ、熱の貯蔵などに利用する方法が提案されている。こ
の金属水素化物をつくる合金としてはLaNi3 、 
Co、Ni、5 + Mh” + FeTiなどが代表
的である。
(Prior art) In recent years, water storage has been absorbed into certain metals or alloys.
Proposed methods include storing and transporting it in the form of metal hydrides, using it for hydrogen separation and tuna production, and using it for heat bombs and heat storage. The alloys that make this metal hydride include LaNi3,
Typical examples include Co, Ni, and 5+Mh''+FeTi.

通常これらの合金を単独で用いるが、使用目的に合わせ
て、任意の水素平衡圧力を得ることを目的に、2種類以
上の合金全混合する方法が提案されている(特開昭55
−1491−01号、同55−149102号公報)。
Normally, these alloys are used alone, but a method has been proposed in which two or more alloys are mixed together in order to obtain an arbitrary hydrogen equilibrium pressure depending on the purpose of use (Japanese Patent Application Laid-Open No. 1983-1992).
-1491-01, 55-149102).

また、反1心速度の低い合金MmNi、系合金に、反応
速度の高いり、Ni、、および/まだは反応速度の高い
MmNi、系合金を混合して、混合比を越える高い反応
速度を得る特開昭59−2 ]、 1.543号公報に
記載された発明がある。
In addition, by mixing MmNi, an alloy with a low anti-uniform speed, with Ni, an alloy with a high reaction rate, and/or an MmNi, alloy with a high reaction rate, a high reaction rate exceeding the mixing ratio can be obtained. There is an invention described in Japanese Unexamined Patent Publication No. 59-2], No. 1.543.

一方、価格、性能の而で将来最も有望と考えられるもの
はFeTi  合金である。このFeTj合金は、合金
と水素が反応できる状態にする宿性化処理後においての
反応速度は、L、、Ni5やMmN 〕45A尼0.5
と同様に速い。
On the other hand, FeTi alloy is considered to be the most promising in the future in terms of price and performance. This FeTj alloy has a reaction rate of L, Ni5, MmN]45Ani0.5 after hostification treatment to enable the alloy to react with hydrogen.
Just as fast.

しかしながら、活性化処理として、400−C以上の高
温で真空、次いで室温で30 Kg/ca以上の高圧水
素処理の操作を、約1時間サイクルで約1週間という長
期間多数回くり返す必要があり、実用的に非常に不都合
であった。
However, as an activation treatment, it is necessary to repeat the operation of vacuum treatment at a high temperature of 400-C or higher, followed by high-pressure hydrogen treatment of 30 Kg/ca or higher at room temperature, many times over a long period of about 1 week in a cycle of about 1 hour. , which was extremely inconvenient from a practical standpoint.

この活性化性能を改善する目的で、Feの一部をNb、
MnあるいはT1で置換する方法、あるいは酸化物を合
金中に分散させる方法が見い出された。
In order to improve this activation performance, some of the Fe was replaced with Nb,
A method of substituting with Mn or T1, or a method of dispersing an oxide in the alloy was found.

これらの元素の添加により、活性化性能の面では向上す
るが、Nbで置換する方法では高価になったり、Mnや
T1で置換する場合や酸化物を分散させる場合では水素
解離平衡圧のプラトー性が悪くなったり、水素放出量が
減少するなどの欠点ヶ生ずる。
Addition of these elements improves activation performance, but the method of replacing with Nb is expensive, and when replacing with Mn or T1, or when dispersing oxides, the hydrogen dissociation equilibrium pressure may plateau. This results in disadvantages such as deterioration of hydrogen performance and a decrease in the amount of hydrogen released.

このように、合金の特性を改善するために第3゜第4の
元素を添加する方法が見い出されているが、合金製造コ
スト、プラトー性、水素吸蔵量々どの面で問題が残され
、水素吸蔵用金属材料の実用化が遅れていた。
As described above, a method of adding third and fourth elements has been found to improve the properties of alloys, but problems remain in terms of alloy production cost, plateau property, hydrogen storage capacity, etc. The practical application of storage metal materials was delayed.

そこで、本発明者らは、先にFe−TiにS(イオウ)
、あるいはMm (ミツシュメタル)を添加して80〜
100°C1あるいは室温で活性化でき、またプラトー
性も良い合金を開発した。
Therefore, the present inventors first added S (sulfur) to Fe-Ti.
, or by adding Mm (Mitushmetal) to 80~
We have developed an alloy that can be activated at 100°C or room temperature and has good plateau properties.

しかしながら、s2添加する場合には80〜100℃の
温度全必要とし、またMmを添加する場合においては、
これまで開発された合金に比べて低コストであるものの
、やはりFeTi  に比べて幾分高価なMmを添加す
るために、Fe Ti に比べて多少コスト高になる傾
向があった。
However, when adding s2, a temperature of 80 to 100°C is required, and when adding Mm,
Although it is lower in cost than the alloys developed so far, it tends to be somewhat more expensive than FeTi due to the addition of Mm, which is also somewhat more expensive than FeTi.

(発明が解決しようとする問題点) 本発明は、水素吸蔵のだめの活性化が容易であることが
実用上極めて重要であることから、活性化に8女な温度
条件が低く、かつ低コストの水素吸蔵用金属材料を提供
することにある。
(Problems to be Solved by the Invention) Since it is extremely important in practice for the hydrogen storage reservoir to be easily activated, the present invention requires low temperature conditions for activation and is low-cost. The object of the present invention is to provide a metal material for hydrogen storage.

(問題を解決するだめの手段) 本発明は、最も低コストであるFe TiあるいはFe
 −Ti  系合金の活性化性能向上について種々実験
検討を行ない、Fe TiあるいはFe −Ti系合金
粉末に活性化性能の優れた合金粉末を少量混合すること
によって、活性化性能を飛躍的に向上できることを認め
た。
(Means for solving the problem) The present invention uses Fe Ti or Fe which is the lowest cost.
We conducted various experiments to improve the activation performance of -Ti alloys, and found that the activation performance could be dramatically improved by mixing a small amount of alloy powder with excellent activation performance with Fe Ti or Fe -Ti alloy powder. acknowledged.

1 すなわち、活性の非常に困難なFe−Ti系合金、
例えばFeTi  合金、あるいは80〜100”Cの
温度を必要とするFe −Ti −S合金、Fe−Ti
−Mn 合金、Fe−Ti−Zr合金に、活性化性能の
優れたFe −Ti −Mm系合金、Fe−Ti−Nb
系合金、Ti−Mn系合金、Cc−Ni系合金、あるい
はMm−隅系合金の中から選ばれた少なくとも1種以上
を、5〜30重量係混合することによって、50℃ある
いはそれ以下の25℃で活性化でき、飛躍的に性能同上
が計れることがわかった。
1 In other words, Fe-Ti alloys that are extremely difficult to activate,
For example, FeTi alloy, or Fe-Ti-S alloy that requires a temperature of 80 to 100"C, Fe-Ti alloy
-Mn alloy, Fe-Ti-Zr alloy, Fe-Ti-Mm alloy with excellent activation performance, Fe-Ti-Nb
By mixing at least one selected from the group consisting of Ti-Mn-based alloys, Cc-Ni-based alloys, and Mm-based alloys in a weight ratio of 5 to 30, the It was found that it can be activated at ℃ and that the performance can be dramatically improved.

第1表にFeTi  合金及び代表的な水素吸蔵合金の
活性化条件および反応速度を発明者らが調べた結果を示
した。
Table 1 shows the results of the inventors' investigation of the activation conditions and reaction rates of FeTi alloys and typical hydrogen storage alloys.

活性化条件は所定温度まで昇温させだ状態で真空。The activation conditions are a vacuum with the temperature raised to a specified temperature.

室温(25°C)で30 Kg/Cd の高圧水素の導
入、これを1時間サイクルで行ない、]日で水素吸蔵量
が原子比でH/M((水素原子数)/(金属の原子数)
)で0.5以上になるために必要な温度とした。
High-pressure hydrogen of 30 Kg/Cd was introduced at room temperature (25°C), and this was carried out in a 1-hour cycle, so that the hydrogen storage capacity was expressed as H/M ((number of hydrogen atoms)/(number of metal atoms) in an atomic ratio of H/M ((number of hydrogen atoms)/(number of metal atoms) )
) was set as the temperature required to reach 0.5 or higher.

ただし、Fe Ti 合金については]日でH/M が
0.5以上になるための条件は見い出せず、450℃、
6o Kg/caの条件でも3日以上を必要とした。
However, for Fe Ti alloys, no conditions were found for H/M to be 0.5 or more at 450°C,
Even under the condition of 6o Kg/ca, more than 3 days were required.

−力、反応速度については、活性化操作後さらに吸蔵・
放出操作を繰返し行ない、水素吸蔵量に変化が認められ
ない状態にした後調べた。反応速度は試料重量、容器形
状などによって異なるが、各合金の相対的な値を得るこ
とを目的に、]、 09の同一重量の合金粉末で同一試
料容器を用いて行なった。寸だ、反応速度は各合金の最
大水素吸蔵量のSO%、90%まで水素を吸蔵するのに
要する時間(分)で表示した。
-For force and reaction rate, further occlusion and
The release operation was repeated until no change in the amount of hydrogen storage was observed, and then the hydrogen storage was examined. The reaction rate varies depending on the sample weight, container shape, etc., but in order to obtain relative values for each alloy, the reaction was carried out using the same sample container with the same weight of alloy powder of ], 09. The reaction rate was expressed as SO% of the maximum hydrogen storage capacity of each alloy, and the time (minutes) required to store hydrogen up to 90%.

この結果から、FeTi、 、 Fe−Ti−8合金は
活性化速度は他の合金とほぼ同等であり、水素吸蔵材料
として非常に優れた合金であることが認められる。
From this result, it is recognized that the activation rate of FeTi, , and Fe-Ti-8 alloys is almost the same as that of other alloys, and that they are extremely excellent alloys as hydrogen storage materials.

本発明者らは上記に鑑み、活性化性能の同士を目的に詳
細な実験・検討を行ない、本発明を完成するに到った。
In view of the above, the present inventors conducted detailed experiments and studies aimed at improving activation performance, and completed the present invention.

活性化処理に400°Cの高温を必要とするFe Ti
合金、あるいは80〜100℃の温度を必要とするFe
−Ti−8系合金、あるいはFe−TiにMn 、 T
i。
Fe Ti requires a high temperature of 400°C for activation treatment
alloy or Fe that requires a temperature of 80-100℃
-Ti-8 alloy or Fe-Ti with Mn and T
i.

Zr  等を添加して、]000°C前の温度で活性化
するFe −Ti系合金粉末に対して、50”C以下望
ましくは25℃で活性化できる活性化の容易なFe−T
i−Mm系合金、Fe−Tj、−Nb系合金、Ti−M
m系合金、C,−Ni系合金の各粉末の少なくとも1種
を、5〜30重量係、より好ましくは5〜20重量係混
合することによって、25〜50°Cの低温で活性化で
きることを認めた。
Easily activated Fe-Ti alloy powder that can be activated at temperatures below 50"C, preferably at 25°C, by adding Zr etc.
i-Mm alloy, Fe-Tj, -Nb alloy, Ti-M
By mixing at least one of m-based alloy powder, C, -Ni-based alloy powder, 5 to 30 weight ratio, more preferably 5 to 20 weight ratio, activation can be performed at a low temperature of 25 to 50 ° C. Admitted.

活性化の容易な合金の混合割合は、多い方が活性化に必
要な時間は短かくなるが、30重量%を超えても大差は
認められず、実用土上限は30重重量子十分であった。
The larger the mixing ratio of alloys that are easy to activate, the shorter the time required for activation, but no significant difference was observed even when the ratio exceeded 30% by weight, and the upper limit for practical use was 30 deuterons. .

経済的な観点からは20重量 B− 係以下でもよい。また下限については、5重量係までは
十分な効果が認められたが、それ未満では効果が少々か
った。
From an economical point of view, the weight may be less than 20% by weight. As for the lower limit, a sufficient effect was observed up to the weight limit of 5, but the effect was little below that.

(作用) 水素吸蔵合金が活性化されるメカニズムは必ずしも定説
にはなっていないが、合金粉末表面の酸化物や水酸化物
の被膜が、水素と合金の反応を阻害しており、活性化繰
作はこれら表面被膜の一部を除去して、水素と反応でき
る金属表面を生成させることと考えられる。
(Function) Although the mechanism by which hydrogen storage alloys are activated is not necessarily well-established, the oxide and hydroxide coatings on the surface of the alloy powder inhibit the reaction between hydrogen and the alloy, resulting in repeated activation. The idea is to remove some of these surface coatings to create a metal surface that can react with hydrogen.

本発明者らが先に開発しだFe−Ti−Mm  系合金
は、非常に酸化物を形成し易すいMmが、活性化処理に
よって合金表面の酸化被膜の酸素と反応してMmの酸化
物を形成し、その結果部分的に水素と反応できるFeT
1あるいはFeの金属表面が形成されるためと考えられ
る。
In the Fe-Ti-Mm alloy developed by the present inventors, Mm, which is very easy to form oxides, reacts with oxygen in the oxide film on the alloy surface through activation treatment to form oxides of Mm. FeT can form and thus partially react with hydrogen.
This is considered to be because a metal surface of 1 or Fe is formed.

また、L 4 N 15合金の場合には、活性化処理に
よって合金表面にL4203 ) L4 (OH)3、
そしてN〕金金属濃縮した層が形成され、とのN〕が水
素の解離反応を促進すると考えられている。
In addition, in the case of L4N15 alloy, L4203)L4(OH)3,
It is believed that a layer of concentrated gold metal is formed, and that N] promotes the dissociation reaction of hydrogen.

−9= 本発明が特定する活性化の容易な合金粉末を混合するこ
とにより、活性化が困難であった合金の活性化が容易に
なる理由は、活性化が容易な合金中に含まれる酸化物を
形成し易すい元素と、活性化が困難な合金表面が接触す
ることにより、活性化困難な合金表面の酸化被膜の一部
が反応して除去され、金属表面が形成されるためと考え
られる。
-9= The reason why alloys that were previously difficult to activate can be easily activated by mixing the easily activated alloy powder specified by the present invention is that the oxidation contained in the easily activated alloy It is thought that this is because when an element that is easy to form objects comes into contact with an alloy surface that is difficult to activate, part of the oxide film on the alloy surface that is difficult to activate reacts and is removed, forming a metal surface. It will be done.

(実施例) 実施例]、 (Nα1〜3) 活性化に450’C以十の高温ケ必要とするFeTi合
金粉末(60メツシユ以下)に、20重量受のFIBT
I o、g5 MmOoB  の合金粉末(60メツシ
ュ以−十)を混合し、前記活性化方法にて活性化を行な
った。
(Example) Example], (Nα1 to 3) 20 weight bearing FIBT was added to the FeTi alloy powder (60 mesh or less), which requires a high temperature of 450'C or more for activation.
Alloy powder (60 mesh or more) of Io, g5 MmOoB was mixed and activated by the activation method described above.

その結果、第2表に示しだように50゛Cで活性化でき
た。
As a result, as shown in Table 2, activation was possible at 50°C.

才た、FeTi合金粉末に10重量係、30重重量子F
 eTio、 g5 Mm 0.08 合金粉末を混合
した場合についても同様の結果が得られた。
10 weight factor, 30 weight factor F for FeTi alloy powder
Similar results were obtained when eTio, g5 Mm 0.08 alloy powder was mixed.

実施例2 (N[14〜6) 実施例1と同じFeTi  合金粉末に、10,20゜
−コO− 30重量%の04N 15合金粉末(60メツシユ以下
)を混合し、活性化性能を調べたCその結果、第2表に
示したように、50℃で活性化できた。
Example 2 (N[14-6) The same FeTi alloy powder as in Example 1 was mixed with 04N15 alloy powder (60 meshes or less) containing 30% by weight of 10,20°-CoO-, and the activation performance was investigated. As a result, as shown in Table 2, activation was possible at 50°C.

実施例3(随7〜10) 活性化に80〜100℃の温度を必要とするF6Ti 
Ij15S0.02合金粉末(60メツシユ以下)ニ、
10.20.30重量%のFeTi O,G15 Mm
o、oe  の合金粉末(60メツシユ以下)を混合し
、活性化性能を調べた。その結果、第2表に示したよう
に25℃で活性化できた。
Example 3 (Parts 7 to 10) F6Ti requiring a temperature of 80 to 100°C for activation
Ij15S0.02 alloy powder (60 mesh or less)
10.20.30% by weight FeTiO,G15 Mm
The activation performance was examined by mixing o and oe alloy powders (60 mesh or less). As a result, as shown in Table 2, activation was possible at 25°C.

また、5重量多混合した場合には、50℃で活性化でき
た。
Furthermore, when 5 weights of the mixture were mixed, activation was possible at 50°C.

実施例4(階11〜17) Fe Ti合金粉末及びFe’l’i 1.05 So
、02合金粉末に、25℃で活性化できるTi−Mn合
金粉末、Fe −Ti −Nb 合金粉末、Mm−Ni
−u合金粉末の単独または2種類を5〜30重量係混合
した場合、第2表に示したような良好な活性化性能を示
した。
Example 4 (floors 11-17) Fe Ti alloy powder and Fe'l'i 1.05 So
, 02 alloy powder, Ti-Mn alloy powder that can be activated at 25°C, Fe-Ti-Nb alloy powder, Mm-Ni
-U alloy powder alone or in a mixture of 5 to 30 weight ratios showed good activation performance as shown in Table 2.

実施例5(階1B〜19) 活性化に100℃の温度を必要とするFe −Ti −
Mn 合金粉末(60メツシユ以下)に、25°Cで活
性化できるFe−Ti−Mm合金粉末(60メツシユ以
下)を10重量多混合した結果25℃で活性化でき、ま
た、5重量多混合した場合には50°Cで活性化できた
Example 5 (Floors 1B to 19) Fe −Ti − which requires a temperature of 100°C for activation
As a result of mixing 10 weights of Fe-Ti-Mm alloy powder (60 meshes or less) that can be activated at 25°C with Mn alloy powder (60 meshes or less), it can be activated at 25°C, and 5 weights of Fe-Ti-Mm alloy powder (60 meshes or less) can be activated at 25°C. In some cases, activation was possible at 50°C.

実施例6(縄20) 活性化に約100°Cの温度を必要とするFe−Ti−
Zr合金粉末(60メツシユ以下)に、25℃で活性化
できるFe−Ti−Mm合金粉末(60メツシユ以下)
をlO重量%混合した結果、25°Cで活性化できた。
Example 6 (Rope 20) Fe-Ti- which requires a temperature of about 100°C for activation
Zr alloy powder (60 mesh or less), Fe-Ti-Mm alloy powder (60 mesh or less) that can be activated at 25°C
As a result of mixing 10% by weight, activation was possible at 25°C.

(発明の効果) 本発明による合金の混合粉末は、FeTi  あるいは
Fe −Ti  系合金の優れた特性を保持しながら、
欠点である活性化性能を低コストで飛躍的に向上させる
ことができ、実用的な水素貯蔵、精製などのシステムへ
の多大な貢献が期待できる。
(Effects of the Invention) The mixed powder of the alloy according to the present invention maintains the excellent properties of FeTi or Fe-Ti alloys, while
The activation performance, which is a drawback, can be dramatically improved at low cost, and it is expected to make a significant contribution to practical hydrogen storage and purification systems.

Claims (1)

【特許請求の範囲】 1(A)Fe−Ti系合金粉末に、(B)Fe−Ti−
Mm系合金、Fe−Ti−Nb系合金、Ti−Mn系合
金、Ca−Ni系合金、Mm−Ni系合金の中から選ば
れた少なくとも1種以上の合金粉末を5〜30重量%混
合した水素吸蔵用金属材料。 2、(A)の合金粉末に(B)の合金粉末を5〜20重
量%混合した特許請求の範囲第1項記載の水素吸蔵用金
属材料。
[Claims] 1 (A) Fe-Ti alloy powder, (B) Fe-Ti-
5 to 30% by weight of at least one alloy powder selected from Mm alloy, Fe-Ti-Nb alloy, Ti-Mn alloy, Ca-Ni alloy, and Mm-Ni alloy was mixed. Metal material for hydrogen storage. 2. The metal material for hydrogen storage according to claim 1, wherein 5 to 20% by weight of the alloy powder (B) is mixed with the alloy powder (A).
JP61211452A 1986-09-10 1986-09-10 Metallic material for occluding hydrogen Pending JPS6369701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61211452A JPS6369701A (en) 1986-09-10 1986-09-10 Metallic material for occluding hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61211452A JPS6369701A (en) 1986-09-10 1986-09-10 Metallic material for occluding hydrogen

Publications (1)

Publication Number Publication Date
JPS6369701A true JPS6369701A (en) 1988-03-29

Family

ID=16606180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61211452A Pending JPS6369701A (en) 1986-09-10 1986-09-10 Metallic material for occluding hydrogen

Country Status (1)

Country Link
JP (1) JPS6369701A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129936A (en) * 1987-11-13 1989-05-23 Sanyo Electric Co Ltd Manufacture of hydrogen occlusion alloy
JPH02240225A (en) * 1989-03-13 1990-09-25 Sanyo Electric Co Ltd Hydrogen storage alloy and its manufacture
JPH04246138A (en) * 1991-01-29 1992-09-02 Sharp Corp Hydrogen storage alloy material and its production
JP2009035772A (en) * 2007-08-01 2009-02-19 Honda Motor Co Ltd Hydrogen storage material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129936A (en) * 1987-11-13 1989-05-23 Sanyo Electric Co Ltd Manufacture of hydrogen occlusion alloy
JPH02240225A (en) * 1989-03-13 1990-09-25 Sanyo Electric Co Ltd Hydrogen storage alloy and its manufacture
JPH04246138A (en) * 1991-01-29 1992-09-02 Sharp Corp Hydrogen storage alloy material and its production
JP2009035772A (en) * 2007-08-01 2009-02-19 Honda Motor Co Ltd Hydrogen storage material

Similar Documents

Publication Publication Date Title
JPS5839217B2 (en) Mitsushi Metal for hydrogen storage - Nickel alloy
EP0079487B1 (en) Hydriding body-centered cubic phase alloys at room temperature
JPH0382734A (en) Rare earth metal-series hydrogen storage alloy
US4347082A (en) Mischmetal alloy for storage of hydrogen
JPS6369701A (en) Metallic material for occluding hydrogen
JPS5938293B2 (en) Titanium-chromium-vanadium hydrogen storage alloy
JPS5837374B2 (en) Mitsushi Metal for Hydrogen Storage - Calcium Alloy
JPS59143036A (en) Ternary alloy of rare earth element for occluding hydrogen
JPS61199045A (en) Hydrogen occluding alloy
Hsu et al. Hydrogenation of multicomponent Zr-base C15 type alloys
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy
WO2022030603A1 (en) Ammonia synthesis composite catalyst, and method for manufacturing ammonia
JPS581040A (en) Quaternary alloy of rare earth metals for occlusion of hydrogen
JPS5947022B2 (en) Alloy for hydrogen storage
JPS6141975B2 (en)
JP3451320B2 (en) Hydrogen storage alloy
JPS5877544A (en) Hydrogen occluding alloy
JPS61250136A (en) Titanium-type hydrogen occluding alloy
Balasubramaniam et al. Solution thermodynamics of hydrogen in the mischmetal-Niδ system with aluminium, manganese and tin substitutions
EP0127161A1 (en) Hydrogen storage metal material
JP2003193166A (en) Mg HYDROGEN-STORAGE ALLOY AND ITS MANUFACTURING METHOD
JPS619544A (en) Titanium alloy for occluding hydrogen
JPS6048580B2 (en) Alloy for hydrogen storage
JPS58217655A (en) Hydrogen occluding multi-component alloy
JPS6017011B2 (en) Hydrogen storage metal material