JPS61132630A - Carbonaceous fiber - Google Patents

Carbonaceous fiber

Info

Publication number
JPS61132630A
JPS61132630A JP25355084A JP25355084A JPS61132630A JP S61132630 A JPS61132630 A JP S61132630A JP 25355084 A JP25355084 A JP 25355084A JP 25355084 A JP25355084 A JP 25355084A JP S61132630 A JPS61132630 A JP S61132630A
Authority
JP
Japan
Prior art keywords
fiber
fibers
fiber diameter
diameter
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25355084A
Other languages
Japanese (ja)
Inventor
Yukinari Komatsu
小松 行成
Katsuyuki Nakamura
克之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP25355084A priority Critical patent/JPS61132630A/en
Priority to US06/807,355 priority patent/US4816289A/en
Publication of JPS61132630A publication Critical patent/JPS61132630A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:The title fiber that has a very fine fiber diameter of high uniformity, an aspect ratio larger than a specific value (fiber length/fiber diameter), substantially no branching and crimpling, thus being suitable for use as a rubber filler or in prevention of troubles in electromagnetic waves, because it has good crystallinity, orientation, strength and graphitization properties. CONSTITUTION:The objective fiber has a fiber diameter of 0.05-4 microns, preferably 0.2-2 microns, more than 100 of aspect ratio, uniform and substantial ly branching-free thickness and a crimped structure, preferably having graphite layers or carbon layers to be readily converted into graphite layers arranged annularly in the lengthwise direction. The resultant fibers are placed in a fur nace tube 2 which is heated up to 100-500 deg.C at its inlet and up to 900-1,300 deg.C at its center and replaced with a hydrogen gas inside, then filled with an organometallic compound, preferably iron dicyclopentadienyl from inlet 3 and with a hydrocarbon such as benzene from the inlet 4 to effect the reaction at the center. The feed of the organometallic compound is preferably more than 1wt%/min based on the mixture of hydrocarbons.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素質繊維に関し、さらに詳しくは気相法によ
る細径の炭素質繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to carbonaceous fibers, and more particularly to small-diameter carbonaceous fibers produced by a vapor phase process.

炭素質繊維は、その優れた機械的物性から各種複合材料
として近年急速に伸びつつある材料である。従来の炭素
繊維は有機繊維を炭化する等の方法により製造されてい
たが、最近、本発明のごとき炭化水素の熱分解および触
媒反応によって炭素質繊維を生成させる気相法による炭
素繊維の製造も試みられている。気相法で得られた炭素
繊維は従来のものに比較して優れた結晶性、配向性およ
び高強度を有し、また該繊維から得られた不織布は電気
伝導性を有しているので、電池の電極材、面状発熱体等
に使用され、またその耐熱、耐薬品性を利用してフィル
ターや触媒担持体等、各種の複合材料、その他の用途へ
の展開が期待されている。
Carbonaceous fiber is a material that has been rapidly growing in recent years as a variety of composite materials due to its excellent mechanical properties. Conventionally, carbon fibers have been produced by carbonizing organic fibers, but recently, carbon fibers have also been produced by a gas phase method, in which carbon fibers are produced by thermal decomposition of hydrocarbons and a catalytic reaction, as in the present invention. is being attempted. Carbon fibers obtained by the vapor phase method have excellent crystallinity, orientation, and high strength compared to conventional ones, and nonwoven fabrics obtained from these fibers have electrical conductivity. It is used in battery electrode materials, planar heating elements, etc., and its heat and chemical resistance are expected to be used in filters, catalyst supports, various composite materials, and other applications.

(従来の技術) 従来の繊維強化複合材料において、強化繊維としては一
般に径が細い方が同量の強化繊維を入れた場合に母材樹
脂との接触面積が太き(なるために補強効果が優れるこ
とが知られている。特に炭素繊維は母材樹脂とのぬれ性
が良くないために、できるだけ径の細いものが望まれて
いる。
(Prior art) In conventional fiber-reinforced composite materials, the smaller the diameter of the reinforcing fibers, the larger the contact area with the base resin when the same amount of reinforcing fibers are added (thus, the reinforcing effect is It is known that carbon fibers have excellent properties.In particular, carbon fibers have poor wettability with base resins, so carbon fibers are desired to have a diameter as small as possible.

しかしながら、従来のアクリル繊維を焼成したり、また
はピッチを不融化して得た炭素繊維は、前駆体繊維等の
紡糸が難しいために、せいぜい6〜10μ径程度の直径
のものしか得られていない。
However, conventional carbon fibers obtained by firing acrylic fibers or by infusible pitch can only be obtained with a diameter of about 6 to 10 μm at most due to the difficulty of spinning precursor fibers. .

一方、炭化水素を金属または金属化合物の存在下で熱分
解することにより炭素繊維が得られることが知られてい
るが(例えば工業材料 昭和57年7月号 109頁、
遠藤、小山)、この方法は、遷移金属からなる微粒子を
予め基板に散布し、その基板を電気炉の反応管内に設置
し、炉温を所定温度にしたのち、炭化水素を水素ガスの
混合ガスの気流下で反応させて基材上に繊維を生成せし
めるものである。この方法によって得られた繊維は、基
板上の金属微粒子が成長核になることから、該金属微粒
子の大きさがまちまちであったり、またはその均一な分
散が難しいために、得られる繊維径も4〜15μと大き
く、バラツキの大きいものであった・。−また細い繊維
が得られたとしても、繊維長が短か(、また攪縮はなく
、捕集しに(いものであった。
On the other hand, it is known that carbon fibers can be obtained by thermally decomposing hydrocarbons in the presence of metals or metal compounds (for example, Industrial Materials, July 1983, p. 109,
(Endo, Koyama), this method involves scattering fine particles made of transition metals onto a substrate in advance, placing the substrate in the reaction tube of an electric furnace, bringing the furnace temperature to a specified temperature, and then injecting hydrocarbons into a hydrogen gas mixture. The reaction is carried out under an air flow to form fibers on the base material. Since the fibers obtained by this method use the metal fine particles on the substrate as growth nuclei, the size of the metal fine particles varies or it is difficult to uniformly disperse them, so the fiber diameter obtained is 4. It was as large as ~15 μ and had a large variation. -Also, even if thin fibers were obtained, the fiber length was short (and there was no agitation, making it difficult to collect).

さらに、特開昭58−180615号公報には、高融点
金属、例えば950〜1300’Cにおいて気化しない
金属またはその酸化物、窒素物、塩類等の超微粉末を炭
化水素の熱分解帯域に浮遊するように存在させることに
より、炭素繊維を成長廿し−めることが示されているが
、この方法では、前記超微粉末が付着すればそこから枝
状に炭素繊維が成長するので、枝分かれ部分の多い炭素
繊維しか得られなかった。
Furthermore, JP-A No. 58-180615 discloses that ultrafine powders of high-melting point metals, such as metals that do not vaporize at 950 to 1300'C, their oxides, nitrogen compounds, salts, etc., are suspended in a thermal decomposition zone of hydrocarbons. It has been shown that the growth of carbon fibers can be accelerated by allowing the ultrafine powder to adhere to the carbon fibers. Only carbon fibers with many parts were obtained.

このようなことから補強効果を十分に発揮するように″
、繊維径が細く、均一で、かつ分枝の少ない炭素質繊維
は今までに得られなかった。さらに、導電材として黒鉛
化性の良い補強用短繊維であって、補強するに十分な繊
維長/繊維径を有するものはなく、当該短繊維はこのよ
うな用途分野で強く望まれていた。
For this reason, in order to fully demonstrate the reinforcing effect,
Until now, carbonaceous fibers with a small fiber diameter, uniformity, and little branching have not been obtained. Furthermore, there are no reinforcing short fibers that have good graphitizability as a conductive material and have sufficient fiber length/fiber diameter for reinforcement, and such short fibers have been strongly desired in such fields of use.

(発明が解決しようとする問題点) 本発明の目的は、繊維の直径が極めて細く、均一で、枝
分かれが少なく、かつ補強するに十分な繊維長/繊維径
を有する炭素質繊維を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide carbonaceous fibers that have extremely thin and uniform fiber diameters, have little branching, and have sufficient fiber length/fiber diameter for reinforcement. It is in.

(問題点を解決するための手段) 本発明の炭素質繊維は、繊維の直径が0.05〜4μ、
好ましくは0.1〜3μ、最も好ましくは0゜2〜2μ
、繊維の長さ/繊維径が100以上で、枝分かれのほと
んどない均一な太さを有する擾縮した炭素質繊維である
(Means for solving the problem) The carbonaceous fiber of the present invention has a fiber diameter of 0.05 to 4μ,
Preferably 0.1-3μ, most preferably 0°2-2μ
It is a crimped carbonaceous fiber having a fiber length/fiber diameter of 100 or more and a uniform thickness with almost no branching.

本発明の炭素質繊維は、上述のように非常に細く、太さ
が均一で、実質的に枝分かれがなく1、典型的にはその
岡崎が半球状を呈し、かつ繊維内部の軸方向に伸びる少
なくとも1つの痕跡程度の中空条を有するが、はとんど
中実の断面を有する。
As mentioned above, the carbonaceous fiber of the present invention is very thin, uniform in thickness, substantially unbranched1, typically has a hemispherical shape, and extends in the axial direction inside the fiber. It has at least one vestigial hollow striation, but a mostly solid cross-section.

不発明の炭素質繊維は、枝分かれがほとんどなく、太さ
は例えば±10%以内で均一であった。
The uninvented carbonaceous fiber had almost no branching and had a uniform thickness within ±10%, for example.

また炭素質繊維の捲縮は、例えば長さ20μ以内に少な
くとも1個の屈曲部を有するものであった。
Further, the crimp of the carbonaceous fiber had, for example, at least one bent portion within a length of 20 μm.

本発明の炭素質繊維は、均一な細径を有し、かつ繊維長
がi<、t′4縮を有するので、後述するように気相下
で交絡した、柔軟性のある繊維集合体として得られ、そ
のまま、または適当な形状および密度に成型加工して用
いることができる。また本発明の炭素質繊維は、分枝が
ほとんどないので、乾式または湿式でほぐして再集成す
ることができ、混合性も良好である。さらに2000℃
以上の熱処理により容易に黒鉛化することができるので
、補強材等の他に導電性材料としても適している。
Since the carbonaceous fibers of the present invention have a uniform small diameter and a fiber length of i<, t'4, the carbonaceous fibers of the present invention can be used as a flexible fiber aggregate entangled in a gas phase as described below. It can be used as it is or after being molded into an appropriate shape and density. Furthermore, since the carbonaceous fiber of the present invention has almost no branching, it can be loosened and reassembled in a dry or wet manner, and has good mixability. Further 2000℃
Since it can be easily graphitized by the above heat treatment, it is suitable as a conductive material in addition to a reinforcing material.

さらに繊維内の中空部がほとんどな(、実質上中実の断
面を有するので、例えばメタル等の補強用として用いる
場合、中空部に吸収されたガスが放出され、欠陥を生じ
る等の弊害がな(なる。
Furthermore, since the fibers have almost no hollow parts (and have a substantially solid cross section, for example, when used for reinforcing metal etc., the gases absorbed in the hollow parts are released and there is no problem such as defects). (Become.

本発明の炭素質繊維は、炭化水素および特定の有機金属
化合物またはこれらとキャリヤガスを反応域に導入し、
炭化水素を熱分解、触媒反応せしめることによって製造
される。
The carbonaceous fiber of the present invention can be prepared by introducing a hydrocarbon and a specific organometallic compound or a carrier gas together with the hydrocarbon into a reaction zone;
Manufactured by thermal decomposition of hydrocarbons and catalytic reaction.

本発明に用いる炭化水素は、特に制限されるものではな
く、セ9ラセン、ナフタレン等を含む室温で固体状の炭
化水素、ベンゼン、トルエン、ヘキサン、イソオクタン
等を含む室温で液体状の炭化水素、またはメタン、プロ
パン、エチレン、アセチレン等を含む気体状の炭化水素
のいずれでもよい。
The hydrocarbons used in the present invention are not particularly limited, and include hydrocarbons that are solid at room temperature, including se9racene and naphthalene, hydrocarbons that are liquid at room temperature, including benzene, toluene, hexane, isooctane, etc. Alternatively, any gaseous hydrocarbon including methane, propane, ethylene, acetylene, etc. may be used.

本発明に用いる有機金属化合物としては、周期律表の第
1Va族、第Va族、第VIa族、第1族に属する金運
、の化合物、特にシクロペンタジェニル系金属化合物、
カルボニル系金属化合物、ペンゼンー金属化合物、アル
キル、アリルまたはアルキニル金属化合物、β−ジケト
ン金属錯体、ケト酸エステル金属錯体、これらの置換体
、誘導体等が好ましく用いられる。これらのうち、特に
ビス(シクロペンタジェニル)鉄、ニッケルマタハコバ
ルト等のシクロペンタジェニル化合物、鉄カルボニル、
ニッケルカルボニル、コバルトカルボニル、ビス(シク
ロペンタジェニルカルボニル)鉄、ニッケルまたはコバ
ルト等のカルボニル化合物、ジまたはトリアセチルアセ
トンの鉄、ニッケルまたはコバルト錯体等のβ−ジケト
ン金属錯体、ジまたはトリアセト酢酸エステルの鉄、ニ
ッケルまたはコバルト錯体、もしくはこれらの誘導体等
が好結果を与える。
Examples of the organometallic compound used in the present invention include compounds belonging to Group 1 Va, Group Va, Group VIa, and Group 1 of the periodic table, particularly cyclopentagenyl metal compounds,
Carbonyl metal compounds, penzene metal compounds, alkyl, allyl or alkynyl metal compounds, β-diketone metal complexes, keto acid ester metal complexes, substituted products and derivatives thereof, etc. are preferably used. Among these, cyclopentadienyl compounds such as bis(cyclopentadienyl)iron, nickel matah cobalt, iron carbonyl,
Carbonyl compounds such as nickel carbonyl, cobalt carbonyl, bis(cyclopentadienylcarbonyl) iron, nickel or cobalt, iron in di- or triacetylacetone, β-diketone metal complexes such as nickel or cobalt complexes, iron in di- or triacetoacetic acid esters , nickel or cobalt complexes, or their derivatives give good results.

前記有機金属化合物の供給方法としては、これらを直接
加熱して気体状態で供給するか、または該有機金属化合
物を炭化水素の液体中に溶解させ、それを加熱して供給
したり、噴出させたりする等の方法が用いられる。
The method for supplying the organometallic compound includes directly heating them and supplying them in a gaseous state, or dissolving the organometallic compound in a hydrocarbon liquid and heating it and supplying it or ejecting it. Methods such as doing this are used.

上記有機金属化合物の供給量(毎分当たりの供給重量%
)は炭化水素との混合物に対して0.01重量%以上、
好ましくは1重量%以上である。有機金属化合物の量が
少なすぎると、繊維状物ができに<<、粒状物が増加す
る傾向にある。
Supply amount of the above organometallic compound (supply weight % per minute)
) is 0.01% by weight or more based on the mixture with hydrocarbon,
Preferably it is 1% by weight or more. If the amount of the organometallic compound is too small, fibrous materials tend to form and granular materials tend to increase.

炭化水素および有機金属化合物の導入温度帯域は50−
0℃以下、好ましくは100〜500℃の位置が適当で
ある。該導入位置の温度が100℃に達しないと、原料
が気相状態を維持しにくく、また500℃を超えると炭
化して粒状物の生成が多くなり、詰まりを起こして繊維
の収率が低下する(頃向にある。
The temperature range for introducing hydrocarbons and organometallic compounds is 50-
A temperature of 0°C or lower, preferably 100 to 500°C, is suitable. If the temperature at the introduction point does not reach 100°C, it will be difficult for the raw material to maintain a gaseous state, and if it exceeds 500°C, it will carbonize and produce more particulate matter, causing clogging and reducing the fiber yield. (It's in the corner.)

また反応加熱温度帯域は900〜1300℃が適当であ
る。反応部の温度が上記範囲外ではいずれも粒状物が生
成し易くなる。
Further, the appropriate reaction heating temperature range is 900 to 1300°C. If the temperature of the reaction part is outside the above range, particulate matter is likely to be generated.

以下、本発明の炭素質繊維の製法および特徴を図面およ
び図面代用写真により詳細に説明する。
Hereinafter, the manufacturing method and characteristics of the carbonaceous fiber of the present invention will be explained in detail with reference to drawings and photographs substituted for drawings.

第1図は、本発明の炭素質繊維を製造するための実験装
置である。この装置は、電気炉1内に挿入された炉管2
と、該炉管2の入口側に設けられたシール栓7を貫通し
て設けられた不活性ガス等の導管3および炭化水素の導
管4と、該導管3および4を加熱または保温するための
ヒーター6および6Aと、該炉管2の出口側に設けられ
たシール栓8に挿入されたガス排出管5とから主として
構成される。このような装置において、炉管2の入口温
度が100〜500℃程度、および炉管2の中心温度が
900〜1300℃程度になるように電気炉2の温度が
設定される。炉管2内を水素ガスまたは不活性ガス(例
えば窒素ガス、アルゴンガス等)で置換した後、有機金
属化合物が導管3から、水素ガスまたは不活性ガス、も
しくはそれらの混合ガスとともに炉管2内の100〜5
00℃の位置に導入される。さらに別の導管4から炭化
水素が水素ガスまたは不活性ガス、もく(はそれらの混
合ガスとともに炉管内の100〜500°Cの位置に導
入される。この場合、炭化水素ガスが液状である時には
ヒーター6Aを用いて保温することが好ましい。炭化水
素と有機金属化合物は前述のように900〜1300“
Cの温度域で反応し、炭素繊維が気流中で生成するが、
これらは下方に落下、堆積するので、炉の冷却後、炉外
に取り出される。
FIG. 1 shows an experimental apparatus for producing carbonaceous fibers of the present invention. This device consists of a furnace tube 2 inserted into an electric furnace 1.
, an inert gas conduit 3 and a hydrocarbon conduit 4 provided through a seal plug 7 provided on the inlet side of the furnace tube 2, and a conduit 4 for heating or keeping the conduits 3 and 4 warm. It mainly consists of heaters 6 and 6A, and a gas exhaust pipe 5 inserted into a seal plug 8 provided on the outlet side of the furnace tube 2. In such an apparatus, the temperature of the electric furnace 2 is set so that the inlet temperature of the furnace tube 2 is about 100 to 500C and the center temperature of the furnace tube 2 is about 900 to 1300C. After replacing the inside of the furnace tube 2 with hydrogen gas or an inert gas (e.g. nitrogen gas, argon gas, etc.), the organometallic compound is introduced into the furnace tube 2 from the conduit 3 together with hydrogen gas, an inert gas, or a mixture thereof. 100-5
It is introduced at a position of 00°C. Furthermore, hydrocarbons are introduced into the furnace tube at a temperature of 100 to 500°C from another conduit 4 together with hydrogen gas, an inert gas, or a mixture thereof. In this case, the hydrocarbon gas is in a liquid state. Sometimes it is preferable to keep warm using the heater 6A.As mentioned above, hydrocarbons and organometallic compounds
It reacts in the temperature range of C, and carbon fibers are produced in the air flow,
Since these fall and accumulate downward, they are taken out of the furnace after the furnace has cooled down.

本発明における繊維の直径および繊維の長さ/繊維径を
調整するには、炭化水素と有機金属化合物を含む混合ガ
スの設定温度域、例えば900〜1300℃における該
ガスの滞留時間を変化させたり、炭化水素の濃度を変化
させて行なうことができる。
In order to adjust the fiber diameter and fiber length/fiber diameter in the present invention, the residence time of the mixed gas containing a hydrocarbon and an organometallic compound in a set temperature range, for example, 900 to 1300°C, may be changed. , can be carried out by varying the concentration of hydrocarbons.

なお、炭化水素と有機金属化合物は、予め炉外で混合後
、供給してもよい。
Note that the hydrocarbon and the organometallic compound may be mixed in advance outside the furnace and then supplied.

このようにして得られた炭素繊維は、第2図に示すよう
に、あたかもカップラーメン状の不規則な捲縮を有する
、細長い繊維であり、その繊維の直径は0.05〜4μ
(好ましくは0.1〜3μ)と極めて細く、また均一で
あり、その繊維の長さ/繊維径は100以上であった。
As shown in Figure 2, the carbon fibers obtained in this way are elongated fibers with irregular crimps resembling cup noodles, and the diameter of the fibers is 0.05 to 4μ.
The fibers were extremely thin (preferably 0.1 to 3μ) and uniform, and the fiber length/fiber diameter was 100 or more.

また上述の炭素繊維は、粉末X線回折法(炭素材料実験
技術(1)、55頁、昭和53年6月1日、科学技術社
発行)によって測定したC軸方向の結晶サイズLc=5
0Å以下、かつ(002)平面間隔d。02=3.45
Å以上であり、さらにこの繊維を黒鉛化するために20
00 ’C以上で熱処理した場合に、C軸方向の結晶サ
イズLc−100Å以上で、かつ(OO2)平面間隔が
do02”3.40Å以下となるものであった。この熱
処理した場合の結晶サイズLcおよび平面間隔do02
の意味は、2000℃以上で熱処理した場合の黒鉛化性
が高いことを意味し、熱処理することによって通常の炭
素繊維から黒鉛繊維が容易に得られることを意味する。
In addition, the above-mentioned carbon fiber has a crystal size Lc in the C-axis direction measured by powder X-ray diffraction method (Carbon Materials Experimental Technology (1), p. 55, June 1, 1970, published by Kagaku Gijutsusha).
0 Å or less and (002) plane spacing d. 02=3.45
20 Å or more to further graphitize this fiber.
When heat treated at 00'C or more, the crystal size in the C-axis direction was Lc-100 Å or more, and the (OO2) plane spacing was do02''3.40 Å or less.When this heat treatment was performed, the crystal size Lc and plane spacing do02
This means that the graphitization property is high when heat treated at 2000° C. or higher, and it means that graphite fibers can be easily obtained from ordinary carbon fibers by heat treatment.

黒鉛化する場合の熱処理温度は、通當2000℃以上、
好ましくは2500℃以上である。
The heat treatment temperature for graphitization is generally 2000℃ or higher,
Preferably it is 2500°C or higher.

本発明の炭素質繊維は、透過型電子顕微鏡による観察の
結果、はとんど中実の繊維断面を示し、中空部を有する
場合は、その径は5〜150人の痕跡程度のものであっ
た。また繊維の両端は半球状を呈していることが多かっ
た。
As a result of observation using a transmission electron microscope, the carbonaceous fiber of the present invention shows a mostly solid fiber cross section, and if it has a hollow part, its diameter is about the size of the traces of 5 to 150 people. Ta. In addition, both ends of the fibers often had a hemispherical shape.

本発明の炭素質繊維は、また前述のようにカップラーメ
ン状の捲縮を有していることが認められた。この捲縮は
、ランダムなものであり、20μ以内の周期で少なくて
も1個の屈曲を有するものであった。このような捲縮を
有する炭素質繊維は従来まったく知られていなかったも
のである。
The carbonaceous fibers of the present invention were also found to have noodle-like crimps as described above. The crimp was random and had at least one bend with a period of less than 20μ. Carbonaceous fibers having such crimps have been completely unknown heretofore.

(発明の効果) 本発明の炭素質繊維は、繊維径が極めて細く、均一であ
ること、十分な繊維長さ/繊維径を有すること、1壱縮
を有すること、絡合した集合体として得られることから
各種の樹脂、ゴム等の有機材料、金属、セメント等の無
機材料等の充填材、補強材等として好適に使用すること
ができるのみならず、黒鉛化性のよいことを利用し、さ
らに熱処理を施して黒鉛繊維として各種の樹脂、ゴム等
に混合することにより電磁波障害等の防止にも有効に利
用することができる。また本発明の炭素質繊維をシート
状に加工してフィルター、または電池、電解装置等の電
極材料、その他種成部材として有効に用いることができ
る。
(Effects of the Invention) The carbonaceous fibers of the present invention have extremely thin and uniform fiber diameters, have sufficient fiber length/fiber diameter, have one-fold shrinkage, and can be obtained as an entangled aggregate. Not only can it be suitably used as a filler or reinforcing material for organic materials such as various resins and rubbers, but also inorganic materials such as metals and cement, etc., as well as its good graphitizability, Furthermore, by subjecting it to heat treatment and mixing it with various resins, rubbers, etc. as graphite fibers, it can be effectively used to prevent electromagnetic interference. Further, the carbonaceous fiber of the present invention can be processed into a sheet shape and effectively used as a filter, an electrode material for batteries, electrolyzers, etc., and other seeding members.

(実施例) 実施例1 第F図に示す電気炉1にアルミナ質の内径60鰭、長さ
1.5mの炉管2を横にして設置し、その両端にゴム栓
7.8を設け、入口側のゴム栓7には内径4龍の導管3
および4を2本挿入し、出口側のゴム栓8には内径4鶴
の排出管5を挿入した。
(Example) Example 1 An alumina furnace tube 2 with an inner diameter of 60 fins and a length of 1.5 m was placed horizontally in an electric furnace 1 shown in Fig. F, and rubber plugs 7.8 were provided at both ends. The rubber stopper 7 on the inlet side has a conduit 3 with an inner diameter of 4 dragons.
and 4 were inserted, and a discharge pipe 5 with an inner diameter of 4 was inserted into the rubber stopper 8 on the outlet side.

導管3から窒素ガスを流しながら炉の中心温度が116
0℃になるように昇温した。設定温度になってから、同
じ管よりジシクロペンタジェニル鉄60 mg/min
を窒素ガス150cc/lll1nに同伴させて炉内約
250°Cの位置に供給した。それとほぼ同時にもう1
本の導管4からベンゼン350■/minを水素ガス1
50cc/minに同伴させて、炉内約200℃の位置
に導入した。混合ガス導入開始10分間後に炉管内を不
活性ガスで置換し、炉を冷却してから炉管2内に堆積し
た炭素繊維をかき出した。得られた繊維の収量は約2.
1gであった。
While nitrogen gas is flowing from conduit 3, the temperature at the center of the furnace is 116.
The temperature was raised to 0°C. After reaching the set temperature, add 60 mg/min of dicyclopentadienyl iron from the same tube.
was supplied to the furnace at a temperature of about 250° C. along with 150 cc/lll1n of nitrogen gas. At about the same time, another
Benzene 350 μ/min from main pipe 4 to hydrogen gas 1
It was introduced into the furnace at a temperature of about 200° C. at a rate of 50 cc/min. After 10 minutes from the start of the introduction of the mixed gas, the inside of the furnace tube was replaced with an inert gas, the furnace was cooled, and the carbon fibers deposited inside the furnace tube 2 were scraped out. The yield of the obtained fibers was approximately 2.
It was 1g.

得られた炭素繊維を光学顕微鏡および走査型組子顕微鏡
で形態で調べた結果、繊維の直径は0.各μで、全体的
に均一な径を有しており、また繊維は枝分かれのほとん
どないものであった。また平均的な繊維の長さ/繊維径
は1000以上であった(茶zrxt*;幻。
The morphology of the obtained carbon fibers was examined using an optical microscope and a scanning muntin microscope. As a result, the diameter of the fibers was 0. Each μ had an overall uniform diameter, and the fibers had almost no branching. In addition, the average fiber length/fiber diameter was 1000 or more (brown zrxt*; illusion.

また粉末X線回折法で求めたLcは30人、d。o2は
3.46人になった。またこれを2700℃×30分間
アルゴンガス雰囲気で熱処理したところ、Lcは117
人、do02は3.40人であった。
In addition, Lc determined by powder X-ray diffraction method was 30 people, d. o2 was 3.46 people. When this was heat treated in an argon gas atmosphere at 2700°C for 30 minutes, Lc was 117
people, do02 was 3.40 people.

以上の結果をまとめて第1表に示す。The above results are summarized in Table 1.

さらにこの炭素繊維を透過型電子顕微鏡で観察したとこ
ろ、繊維の両端が半球状に閉じており、内部には繊維軸
方向に中空孔(径10〜20人)が観察された。該中空
孔の長さは繊維先端近くまでのものや、短いものがあり
、また中には中空孔が複数あるものも観察された。
Furthermore, when this carbon fiber was observed with a transmission electron microscope, both ends of the fiber were closed in a hemispherical shape, and hollow holes (10 to 20 holes in diameter) were observed inside in the fiber axis direction. The length of the hollow pores may be short or close to the tip of the fiber, and some were observed to have multiple hollow pores.

実施例2 ベンゼンの供給量を53 rIjg/+winとし、反
応時間を20分間とした以外は実施例1と同じ条件で炭
素繊維を製造した。収量は0.73 gであった。
Example 2 Carbon fibers were produced under the same conditions as in Example 1, except that the benzene supply amount was 53 rIjg/+win and the reaction time was 20 minutes. Yield was 0.73 g.

結果を第1表に示す。The results are shown in Table 1.

実施例3 有機金属化合物としてカルボニル鉄72mg/minを
水素ガス100cc/minでキャリヤしながら炉管の
100℃の位置に導入し、炉温を1060°Cした以外
は実施例2と同様の条件で炭素繊維を製造した。得られ
た炭素繊維の収量は約0.61gであった。結果を第1
表に示す。
Example 3 The conditions were the same as in Example 2, except that 72 mg/min of carbonyl iron as an organometallic compound was introduced into the furnace tube at a temperature of 100°C while being carried with hydrogen gas at 100 cc/min, and the furnace temperature was 1060°C. Carbon fiber was produced. The yield of the carbon fibers obtained was about 0.61 g. Results first
Shown in the table.

比較例1 ベンゼンの供給量を48■/rainとし、ジシクロペ
ンタジェニルニッケル53■/ m i n ’fi:
 窒素カス150cc/minにてキャリヤせしめ、3
00℃の炉内帯域に導入した。炉の中心の最高温度は7
00℃とし、その他の条件は実施例1と同様にして10
分間反応せしめた。その結果、粒状物が約0.3g得ら
れた。結果を第1表に示す。
Comparative Example 1 The supply amount of benzene was 48 μ/rain, and the dicyclopentadienyl nickel was 53 μ/min:
Carrier nitrogen gas at 150cc/min, 3
It was introduced into the furnace zone at 00°C. The maximum temperature at the center of the furnace is 7
00°C, and the other conditions were the same as in Example 1.
It was allowed to react for a minute. As a result, about 0.3 g of granules were obtained. The results are shown in Table 1.

比較例2 炉の中心の最高温度を1100℃とし、ベンゼンとジシ
クロペンタジェニルニッケルの導入位置を600℃とし
た以外は比較例3と同様の条件で行った。その結果、粒
状物が0.2g得られ、反応時間5分を過ぎたところで
導入管に炭素の詰まりを生じた。結果を第1表に示す。
Comparative Example 2 Comparative Example 3 was conducted under the same conditions as in Comparative Example 3, except that the maximum temperature at the center of the furnace was 1100°C and the introduction positions of benzene and dicyclopentadienyl nickel were 600°C. As a result, 0.2 g of granular material was obtained, and the inlet tube was clogged with carbon after 5 minutes of reaction time. The results are shown in Table 1.

実施例4 ベンゼン310 w/minを水素ガス150cc/m
inでキャリヤせしめて、炉内300℃の帯域に導入し
たニ一方、鉄アセチルアセトネート928■/minを
水素ガス150cc/I!Iinでキャリヤせしめて、
同じ温度域の炉内に導入した。炉の中心の最高温度は1
200℃に設定し、この反応を10分間行った。
Example 4 Benzene 310 w/min and hydrogen gas 150 cc/m
In the meantime, iron acetylacetonate was introduced into the 300°C zone in the furnace at a rate of 928 cm/min and hydrogen gas at 150 cc/I! Make a carrier with Iin,
It was introduced into a furnace in the same temperature range. The maximum temperature at the center of the furnace is 1
The temperature was set at 200°C and the reaction was run for 10 minutes.

その結果、炭素繊維は1.6g得られ、その径は約0.
8μであり、繊維長/繊維径が300以上であることが
実施例1と同じ観察で確認された。得られた繊維のLc
は35人、do02は3.48であった。また2700
℃X30n+inの熱処理でLcは121人、d Go
 2は3.40人となった。これらの結果を第1表に示
す。
As a result, 1.6g of carbon fiber was obtained, and its diameter was about 0.
It was confirmed by the same observation as in Example 1 that the fiber length/fiber diameter was 8μ and the fiber length/fiber diameter was 300 or more. Lc of the obtained fiber
There were 35 people, and do02 was 3.48. 2700 again
Heat treatment at ℃×30n+in, Lc is 121 people, d Go
2 had 3.40 people. These results are shown in Table 1.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の炭素質繊維を製造するための実験装
置の説明図、第2図は、本発明の炭素繊維(集合体)を
走査型電子顕微鏡で観察した写真(X8,500)を示
す図である。 1・・・電気炉、2・・・炉管、3・・・有機金属化合
物を含むガスを導入する管、4・・・炭化水素を含むガ
スを導入するための導管、5・・・排ガスを排出するた
めの導管、6.6A・・・ヒーター、7.8・・・シー
ル栓。 代理人 弁理士 川 北 武 長 2:f管 3.4.5 :導管 66A: ヒーター 7.8:ゴム茅宅 第2図 手続補正書く方式) %式% 1、事件の表示 − 昭和59年特 許 願 第253550号2、発明の名
称 炭素質繊維 3、補正をする者 事件との関係 特許出願人 住 所 大阪府大阪市北区堂島浜1丁目2番6号名 称
 (003)旭化成工業株式会社代表者 宮 崎  輝 4、代理人〒103 住 所 東京都中央区日本橋茅場町−丁目11番8号(
発送日 昭和60年3月26日) 6、補正の対象 明細書の図面の簡単な説明の欄。 7、補正の内容 (1)明細書第18頁4〜5行目の「(集合体)を走査
型電子顕微鏡で観察した写真(x8,500)を示す図
」を「(集合体)の繊維の形状を示す顕微鏡写真」に改
める。 以上
Fig. 1 is an explanatory diagram of an experimental apparatus for producing the carbonaceous fibers of the present invention, and Fig. 2 is a photograph (X8,500) of the carbon fibers (aggregate) of the present invention observed with a scanning electron microscope. FIG. 1... Electric furnace, 2... Furnace tube, 3... Pipe for introducing gas containing organometallic compound, 4... Conduit for introducing gas containing hydrocarbon, 5... Exhaust gas Conduit for discharging 6.6A...heater, 7.8...seal plug. Agent Patent Attorney Takeshi Kawakita 2: F pipe 3.4.5: Conduit 66A: Heater 7.8: Rubber thatched house Diagram 2 procedure amendment writing method) % formula % 1, Indication of the case - 1982 special Permission Application No. 253550 2, Title of the invention Carbonaceous fiber 3, Relationship to the case of the person making the amendment Patent applicant address 1-2-6 Dojimahama, Kita-ku, Osaka-shi, Osaka Name (003) Asahi Kasei Industries, Ltd. Representative Teru Miyazaki 4, Agent 103 Address 11-8 Nihonbashi Kayabacho, Chuo-ku, Tokyo (
(Shipping date: March 26, 1985) 6. Subject of amendment: Brief description of drawings in the specification. 7. Contents of the amendment (1) On page 18 of the specification, lines 4-5, the "diagram showing a photograph (x8,500) of (aggregate) observed with a scanning electron microscope" was changed to "fiber of (aggregate)". ``Microphotograph showing the shape of.''that's all

Claims (2)

【特許請求の範囲】[Claims] (1)繊維の直径が0.05〜4μ、繊維の長さ/繊維
径が100以上で、枝分かれのほとんどない均一な太さ
を有する捲縮した炭素質繊維。
(1) A crimped carbonaceous fiber having a fiber diameter of 0.05 to 4μ, a fiber length/fiber diameter of 100 or more, and a uniform thickness with almost no branching.
(2)黒鉛または黒鉛に容易に転化する炭素の層が長手
軸に平行に年輪状に配列して形成された特許請求の範囲
第1項記載の炭素質繊維。
(2) The carbonaceous fiber according to claim 1, in which layers of graphite or carbon that is easily converted to graphite are arranged in an annual ring shape parallel to the longitudinal axis.
JP25355084A 1984-04-25 1984-11-30 Carbonaceous fiber Pending JPS61132630A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25355084A JPS61132630A (en) 1984-11-30 1984-11-30 Carbonaceous fiber
US06/807,355 US4816289A (en) 1984-04-25 1985-12-10 Process for production of a carbon filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25355084A JPS61132630A (en) 1984-11-30 1984-11-30 Carbonaceous fiber

Publications (1)

Publication Number Publication Date
JPS61132630A true JPS61132630A (en) 1986-06-20

Family

ID=17252927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25355084A Pending JPS61132630A (en) 1984-04-25 1984-11-30 Carbonaceous fiber

Country Status (1)

Country Link
JP (1) JPS61132630A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278217A (en) * 1985-09-26 1987-04-10 Showa Denko Kk Vapor-phase production of carbon fiber
JPS6342920A (en) * 1986-08-01 1988-02-24 Nikkiso Co Ltd Hollow carbon fiber obtained by fluid vapor growth method
JPS6465144A (en) * 1987-06-24 1989-03-10 Yazaki Corp Vapor-growth carbonaceous fiber and its resin composition
JPH02127522A (en) * 1988-11-08 1990-05-16 Mitsui Eng & Shipbuild Co Ltd Carbon fiber of vapor growth
JPH06212517A (en) * 1991-07-05 1994-08-02 Nikkiso Co Ltd Graphite fiber and its production
US5409775A (en) * 1992-07-06 1995-04-25 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers, process for preparing same, molded members thereof, and composite members thereof
JPH0813254A (en) * 1995-03-20 1996-01-16 Nikkiso Co Ltd Hollow carbon yarn by fluidized vapor-phase growth method
US5512393A (en) * 1992-07-06 1996-04-30 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers process for preparing same molded members thereof and composite members thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278217A (en) * 1985-09-26 1987-04-10 Showa Denko Kk Vapor-phase production of carbon fiber
JPS6342920A (en) * 1986-08-01 1988-02-24 Nikkiso Co Ltd Hollow carbon fiber obtained by fluid vapor growth method
JPS6465144A (en) * 1987-06-24 1989-03-10 Yazaki Corp Vapor-growth carbonaceous fiber and its resin composition
JPH0238614B2 (en) * 1987-06-24 1990-08-31 Yazaki Corp
JPH02127522A (en) * 1988-11-08 1990-05-16 Mitsui Eng & Shipbuild Co Ltd Carbon fiber of vapor growth
JPH06212517A (en) * 1991-07-05 1994-08-02 Nikkiso Co Ltd Graphite fiber and its production
US5409775A (en) * 1992-07-06 1995-04-25 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers, process for preparing same, molded members thereof, and composite members thereof
US5512393A (en) * 1992-07-06 1996-04-30 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers process for preparing same molded members thereof and composite members thereof
JPH0813254A (en) * 1995-03-20 1996-01-16 Nikkiso Co Ltd Hollow carbon yarn by fluidized vapor-phase growth method

Similar Documents

Publication Publication Date Title
Aguilar-Elguézabal et al. Study of carbon nanotubes synthesis by spray pyrolysis and model of growth
JP3983292B2 (en) High surface area nanofiber
US20200010983A1 (en) Apparatuses and Methods for Large-Scale Production of Hybrid Fibers Containing Carbon Nanostructures and Related Materials
JP2788213B2 (en) Fluffy plate containing novel carbon fibrils
JPS62500943A (en) carbon fibril
JP4612287B2 (en) Silicon carbide fiber substantially free of whiskers and method for producing the same
KR20120014116A (en) Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
US20100247909A1 (en) Manufacturing process of porous carbon nanofiber using a volatile organic matter
WO2004078649A1 (en) Synthesis of carbon nanotubes and / or nanofibres on a porous fibrous matrix
JP3841684B2 (en) Fine carbon fiber, method for producing the same, and conductive material containing the fine carbon fiber
US9643847B2 (en) Method for growth of vertically aligned carbon nanotubes on diamond substrates
Fu et al. Large‐scale synthesis of hafnium carbide nanowires via a Ni‐assisted polymer infiltration and pyrolysis
JPS61132630A (en) Carbonaceous fiber
JPS61225319A (en) Carbonaceous fiber
RU2379387C1 (en) Method for obtaining carbon fibre modified with multi-layered carbon nanotubes
JPH04263616A (en) Carbon yarn and its production
JPS61225325A (en) Carbonaceous fiber
JPH0645724B2 (en) Carbon fiber composite resin composition
CN110306261B (en) Preparation method of spiral nano carbon fiber
JPS61132663A (en) Carbonaceous fiber aggregate
JP2003089930A (en) Fine carbon fiber mixture and composition containing the same
JP2890548B2 (en) Carbonaceous fiber and method for producing the same
JPS61225326A (en) Carbonaceous fiber having acidic group
JP2005015339A (en) Fine carbon fiber, method of manufacturing the same and conductive material containing fine carbon fiber
JPS61108723A (en) Production of carbon fiber