JPS61225326A - Carbonaceous fiber having acidic group - Google Patents

Carbonaceous fiber having acidic group

Info

Publication number
JPS61225326A
JPS61225326A JP5881885A JP5881885A JPS61225326A JP S61225326 A JPS61225326 A JP S61225326A JP 5881885 A JP5881885 A JP 5881885A JP 5881885 A JP5881885 A JP 5881885A JP S61225326 A JPS61225326 A JP S61225326A
Authority
JP
Japan
Prior art keywords
fiber
fibers
carbonaceous
gas
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5881885A
Other languages
Japanese (ja)
Other versions
JPH0663133B2 (en
Inventor
Katsuyuki Nakamura
克之 中村
Yukinari Komatsu
小松 行成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60058818A priority Critical patent/JPH0663133B2/en
Publication of JPS61225326A publication Critical patent/JPS61225326A/en
Publication of JPH0663133B2 publication Critical patent/JPH0663133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled fiber having a diameter and a length/diameter ratio of falling within specific respective ranges and containing an acidic group having specific shape, terminal carboxyl group concentration and oxygen concentration, and exhibiting excellent adhesivity to the matrix resin of a composite material. CONSTITUTION:The objective fiber has a diameter of 0.01-4mum, preferably 0.07-2.5mum and a length/diameter ratio of >=20, preferably >=100 and is composed of graphite layers or carbon layers convertible easily to graphite and arranged concentrically parallel to the fiber axis. The terminal carboxyl group concentration is 0.1-500mu.mol/g. preferably 1-50mu.mol/g by titration and the oxygen concentration O1S/C1S is >=0.05, preferably >=0.1 by X-ray spectrometry. The fiber can be produced by introducing an acidic functional group to a fiber obtained by a vapor-phase process, especially a fluidized catalyst process, if necessary, after heat-treatment.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸性基を有する炭素質繊維に関し、さらに詳
しくは酸性基を安定に保有した気相法、特に浮遊法によ
る炭素質繊維に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to carbonaceous fibers having acidic groups, and more particularly to carbonaceous fibers that stably retain acidic groups and are produced by a gas phase method, particularly by a floating method. It is.

(従来の技術) 炭素質繊維はその優れた機械的物性から各種複合材料と
して近年急速に伸びつつある原料材料である。従来の炭
素繊維は有機繊維を焼結して炭化させる等の方法により
製造されていたが、最近炭化水素類の熱分解および触媒
反応によって炭素質繊維を生成させる気相法による炭素
繊維の製造が試みられている(例えば工業材料、昭和5
7年7月号、109頁、連勝、小山および特開昭58−
180615号公報)。
(Prior Art) Carbon fiber is a raw material that has been rapidly growing in recent years as a variety of composite materials due to its excellent mechanical properties. Conventionally, carbon fibers were manufactured by methods such as sintering and carbonizing organic fibers, but recently carbon fibers have been manufactured using a gas phase method that generates carbon fibers through thermal decomposition of hydrocarbons and catalytic reactions. Attempts have been made (for example, industrial materials,
July issue, 109 pages, consecutive wins, Koyama and JP-A-1983-
180615).

気相法で得られた炭素繊維は、従来のものに比較して優
れた結晶性、配向性および高強度を有し、また該繊維か
ら得られた不織布、積層体等は、電気伝導性を有してい
るので、電池の電極材、発熱体等に、またその耐熱、耐
薬品性を利用してフィルターや触媒担持体等に用いられ
ようとしている。
Carbon fibers obtained by the vapor phase method have superior crystallinity, orientation, and high strength compared to conventional ones, and nonwoven fabrics, laminates, etc. obtained from these fibers have excellent electrical conductivity. Because of this, it is expected to be used in battery electrode materials, heating elements, etc., and it is also being used in filters, catalyst carriers, etc. by taking advantage of its heat resistance and chemical resistance.

(発明が解決しようとする問題点) しかしながら、従来の気相方による炭素質繊維は、基板
状で炭素繊維を成長させたり、または基板に散布した金
属の超微粉で炭素質繊維を成長させるために、得られる
繊維径が比較的大きく、かつ、樹脂との複合材に用いる
場合、樹脂との接着性がよくなく、実用上問題があった
(Problems to be Solved by the Invention) However, in the conventional gas-phase method, carbon fibers are grown on a substrate, or carbon fibers are grown using ultrafine metal powder sprinkled on a substrate. However, the obtained fiber diameter is relatively large, and when used in a composite material with a resin, the adhesiveness with the resin is poor, which poses a practical problem.

また一般に、従来の炭素質繊維は、ぬれ性が悪いために
樹脂との接着性が重要な問題となる。このため、既存の
種々の炭素繊維について表面改質の方法が研究されてお
り、例えば液相または気相下の化学反応、またはプラズ
マ処理などが検討されているが、いずれも反応性の高い
酸性基を安定に保有するものとはいえず、充分な接着性
を得ることができなかった。
Furthermore, since conventional carbonaceous fibers generally have poor wettability, adhesion to resins becomes an important problem. For this reason, methods for surface modification of various existing carbon fibers are being researched, such as chemical reactions in the liquid phase or gas phase, or plasma treatment, but all of them are highly reactive acidic. It could not be said that the group was stably retained, and sufficient adhesiveness could not be obtained.

本発明者らは、炭化水素類および特定の有機金属化合物
をキャリアガスと共に加熱帯域に導入し、該炭化水素類
を熱分解、触媒反応させることによって極めて細く、か
つ特異な構造を有する炭素質繊維が合成されることを見
出し、特許出願をした(特願昭59−83495号、特
願昭59−231967号、59−253550号など
)。
The present inventors introduced hydrocarbons and a specific organometallic compound into a heating zone together with a carrier gas, and thermally decomposed the hydrocarbons to cause a catalytic reaction. They discovered that the compound could be synthesized and filed a patent application (Japanese Patent Application No. 59-83495, Japanese Patent Application No. 59-231967, 59-253550, etc.).

(問題点を解決するための手段) 本発明者らは、上記炭素質繊維について種々の化学反応
性について検討したところ、この繊維が極めて反応性に
冨むことを見出し、特に酸性官能基を安定に保有し得る
ことを見出し、本発明に到達したものである。
(Means for Solving the Problems) The present inventors investigated various chemical reactivities of the above-mentioned carbonaceous fibers, and found that this fiber is extremely reactive, and in particular, stabilizes acidic functional groups. The present invention has been achieved based on the discovery that the above properties can be possessed.

本発明の炭素質繊維は、繊維の直径が0.01〜4μm
、繊維の長さ/繊維径が20以上、滴定法によるカルボ
キシル末端基量が0.1〜500μ・m o f / 
g % X線光分光法(ESCA)による酸素濃度01
 s / C1sが0.05以上で、黒鉛または黒鉛に
容易に転化する炭素の層が長手軸に平行に年輪状に配列
して形成された、酸性基を有することを特徴とする。
The carbonaceous fiber of the present invention has a fiber diameter of 0.01 to 4 μm.
, fiber length/fiber diameter is 20 or more, carboxyl terminal group amount by titration method is 0.1 to 500 μ m o f /
g % Oxygen concentration by X-ray spectroscopy (ESCA) 01
s/C1s is 0.05 or more, it is characterized by having acidic groups in which layers of graphite or carbon that can be easily converted to graphite are arranged in a tree ring shape parallel to the longitudinal axis.

本発明の炭素質繊維の直径は0.01〜4μm、好まし
くは0.05〜3μm(特に0.07〜2.5.crm
)である。繊維の直径がこれより大きいと、繊維の交絡
度が低下し、好ましい性質が得られなくなる。また繊維
の長さくL)/繊維径(D)は20以上、好ましくは5
0以上(特に100以上)である。L/Dが20未満で
は、繊維を集合させた時に充分な絡合が得られず好まし
い性質が低下する。
The diameter of the carbonaceous fiber of the present invention is 0.01 to 4 μm, preferably 0.05 to 3 μm (especially 0.07 to 2.5.crm).
). If the diameter of the fibers is larger than this, the degree of entanglement of the fibers will be reduced, making it impossible to obtain desirable properties. In addition, the fiber length L)/fiber diameter (D) is 20 or more, preferably 5
It is 0 or more (especially 100 or more). If L/D is less than 20, sufficient entanglement cannot be obtained when the fibers are aggregated, resulting in poor properties.

本発明の炭素質繊維は直線状、湾曲状、捲縮状など、い
ずれの形状でもよいが、好ましくは捲縮数1以上、捲縮
度0.5〜50%(好ましくは5〜50%)の捲縮を有
する。この場合の捲縮数とは、走査型電顕の観察写真を
用い、繊維長20μmの屈曲の山と谷の総数をいい、ま
た捲縮度とは、繊維の2点間a、bを直線距離で40μ
mとり、その間の実際の繊維長a、bをプラニメーター
で測定し、次式によって計算したものである(ランダム
に5回測定の平均値)。
The carbonaceous fiber of the present invention may have any shape, such as linear, curved, or crimped, but preferably has a crimp number of 1 or more and a crimp degree of 0.5 to 50% (preferably 5 to 50%). It has crimps. The number of crimps in this case refers to the total number of peaks and troughs of bending in a fiber length of 20 μm using a scanning electron microscope observation photograph, and the degree of crimps refers to the total number of bending peaks and troughs in a fiber length of 20 μm. 40μ in distance
m, the actual fiber lengths a and b between them were measured using a planimeter, and calculated using the following formula (average value of 5 random measurements).

ab X100=撞縮度(%) ab  −40 上記階縮数および捲縮度が小さすぎると集合体または堆
積物とした時に繊維間の交絡が少くなり、電導性その他
が低下する。
ab

本発明の炭素質繊維は、電子顕微鏡で観察すると、形態
的に黒鉛または黒鉛に容易に転化する炭素の層が長手軸
に平行に年輪状に配列して形成されたものであることが
分かった。本発明の炭素質繊維は炭素繊維と黒鉛化繊維
を総称する。
When the carbonaceous fiber of the present invention was observed with an electron microscope, it was found that the carbon fiber was formed by morphologically forming layers of graphite or carbon that could be easily converted into graphite, arranged in a growth ring shape parallel to the longitudinal axis. . The carbonaceous fibers of the present invention collectively refer to carbon fibers and graphitized fibers.

また本発明の炭素質繊維は、滴定法によるカルボキシル
末端基量が0.01〜500μ・m o It 7g1
好ましくは0.5〜200(特に1〜50)μ・m o
 l / gであった。この滴定法によるカルボキシル
末端基量は下記の方法で求められる。すなわち、試料的
5gを500mf共栓三角フラスコに秤量し、水10Q
mt!X115ONaOH40mlをホールピペットで
正確に加えさらに水60m1を加えて200 m It
とじ、時々振りまぜながら20分放置後超音波加振器に
15分間浸し、溶WE、 50 m Itをホールピペ
ットでダルマフラスコに採取し、115ONのHCff
iで滴定する。滴定はメトローム電位差滴定装置を用い
滴定曲線から官能基量を求める。
Further, the carbonaceous fiber of the present invention has a carboxyl terminal group content of 0.01 to 500μ·m o It 7g1 by titration method.
Preferably 0.5 to 200 (especially 1 to 50) μ・m o
l/g. The amount of carboxyl terminal groups determined by this titration method is determined by the following method. That is, 5g of the sample was weighed into a 500mf stoppered Erlenmeyer flask, and 10Q of water was added.
mt! Accurately add 40 ml of X115ONaOH using a whole pipette, add 60 ml of water, and turn it to 200 ml.
Close it, let it stand for 20 minutes with occasional shaking, then soak it in an ultrasonic vibrator for 15 minutes, collect the dissolved WE, 50 m It, into a Daruma flask with a whole pipette, and add it to a HCff of 115 ON.
Titrate with i. For titration, the amount of functional groups is determined from the titration curve using a Metrohm potentiometric titrator.

このカルボキシル末端基量が、0.1に達しないと、樹
脂、バインダー等と混合した時に充分な接着性が得られ
ず、また500μ・m o l / gを超えると前記
炭素質繊維の特異な性質が劣化するので好ましくない。
If the amount of carboxyl terminal groups does not reach 0.1, sufficient adhesion cannot be obtained when mixed with a resin, binder, etc., and if it exceeds 500μ・mol/g, the carbonaceous fiber has a unique property. It is not preferable because the properties deteriorate.

本発明の炭素質繊維のX線光電子分光法(ESCA)に
よる酸素濃度、すなわちC1sに対する01sの相対積
分強度(Of S/Cl5)は0.05以上、好ましく
は0.07以上、さらに好ましくは0.1以上である。
The oxygen concentration of the carbonaceous fiber of the present invention measured by X-ray photoelectron spectroscopy (ESCA), that is, the relative integrated intensity of 01s to C1s (Of S/Cl5) is 0.05 or more, preferably 0.07 or more, and more preferably 0. .1 or more.

この場合の相対積分強度(01s /C1s)は、X線
光電子分光装置を用い、励起X線としてAn!にα14
B6.6eVを用い、X線出力10kV、20mA、温
度40℃真空度IQ  torrで測定したものである
。得られたスペクトルからC1sに対する01sの相対
積分強度を計算し、炭素繊維表面の酸素含有官能基量の
指標とした。この値が0.05未満では、酸性基が充分
ではなく、樹脂等との接着性が低下する。
In this case, the relative integrated intensity (01s/C1s) is determined by using an X-ray photoelectron spectrometer and using an excitation X-ray as An! to α14
It was measured using B6.6 eV, X-ray output of 10 kV, 20 mA, temperature of 40° C., and vacuum degree of IQ torr. From the obtained spectrum, the relative integrated intensity of 01s to C1s was calculated and used as an index of the amount of oxygen-containing functional groups on the carbon fiber surface. If this value is less than 0.05, the acidic groups will not be sufficient and the adhesiveness with resin etc. will decrease.

また、本発明の繊維は、ESCAにおけるC1sバンド
の半値中が1.6以下、特に1.5以下のシャープなバ
ンドビークを示し、均質な構造を有するものである。
Further, the fiber of the present invention exhibits a sharp band peak with a half value of the C1s band in ESCA of 1.6 or less, particularly 1.5 or less, and has a homogeneous structure.

本発明の炭素質繊維は、炭化水素類と特定の有機金属化
合物の混合液を必要に応じてキャリアガスと共に加熱帯
域に導入し、炭化水素類を熱分解、触媒反応させ、得ら
れた繊維を必要に応じて熱処理した後、酸性官能基を導
入することにより製造される。
The carbonaceous fiber of the present invention can be produced by introducing a mixed solution of hydrocarbons and a specific organometallic compound into a heating zone together with a carrier gas as needed, causing the hydrocarbons to thermally decompose and undergo a catalytic reaction. It is produced by introducing an acidic functional group after heat treatment if necessary.

上記炭化水素類は、特に制限されるものではなく、アン
トラセン、ナフタレン等を含む室温で固体状の炭化水素
、ベンゼン、トルエン1、キシレン、スチレン、ヘキサ
ン、イソオクタンシクロヘキサン、シクロペンタジェン
、等を含む室温で液体状の炭化水素、またはメタン、エ
タン、プロパン、ブタン、エチレン、プロピレン、ブチ
レン、ブタジェン、アセチレン等を含む気体状の炭化水
素のいずれでもよい。
The above-mentioned hydrocarbons are not particularly limited, and include hydrocarbons that are solid at room temperature including anthracene, naphthalene, etc., and room temperature hydrocarbons including benzene, toluene 1, xylene, styrene, hexane, isooctanecyclohexane, cyclopentadiene, etc. It may be a liquid hydrocarbon or a gaseous hydrocarbon including methane, ethane, propane, butane, ethylene, propylene, butylene, butadiene, acetylene, and the like.

本発明に用いる有機金属化合物としては、周期律表の第
1Va族(特に7t、Zr)、第Va族(特にV)、第
Vla族(特に(:、r、Mo、W) 、第■b族(特
にMn)、第酉族(特にFe、Co、Ni5Ru、 R
h、 Pd、 Os、 I r、 Pt)に属する金属
の化合物、特にシクロペンタジェニル系金属化合物、カ
ルボニル系金属化合物、ベンゼン−金属化合物、アルキ
ル、アリルまたはアルキニル金属化合物、β−ジケトン
金属錯体、ケト酸エステル金属錯体、金属カルボン酸塩
、これらのうち、特にビス(シクロペンタジェニル)鉄
などの鉄、ニッケルまたはコバルト等のシクロペンタジ
ェニル化合物、鉄カルボニル、ニッケルカルボニル、コ
バルトカルボニル、シクロペンタジェニルカルボニル鉄
、などの鉄、ニッケルまたはコバルト等のカルボニル化
合物、ジまたはトリアセチルアセトンの鉄錯体などの鉄
、ニッケルまたはコバルト等のβ−ジケトン金属錯体、
ジまたはトリアセト酢酸エステルの鉄錯体などの鉄、ニ
ッケルまたはコバルト錯体、フマル酸鉄、ナフテン酸鉄
ナトの鉄、ニッケルまたはコバルト等のフマル酸塩、高
級炭化水素のカルボン酸塩、もしくはこれらの誘導体等
が好結果を与える。
Examples of organometallic compounds used in the present invention include Group 1 Va (especially 7t, Zr), Group Va (especially V), Group Vla (especially (:, r, Mo, W), and group (especially Mn), group (especially Fe, Co, Ni5Ru, R
h, Pd, Os, Ir, Pt), especially cyclopentadienyl metal compounds, carbonyl metal compounds, benzene-metal compounds, alkyl, allyl or alkynyl metal compounds, β-diketone metal complexes, Keto acid ester metal complexes, metal carboxylates, especially iron such as bis(cyclopentadienyl) iron, cyclopentadienyl compounds such as nickel or cobalt, iron carbonyl, nickel carbonyl, cobalt carbonyl, cyclopenta carbonyl compounds such as iron, nickel or cobalt, such as carbonyl carbonyl iron, β-diketone metal complexes such as iron, nickel or cobalt, such as iron complexes of di- or triacetylacetone;
Iron, nickel or cobalt complexes such as iron complexes of di- or triacetoacetic esters, fumarates of iron, nickel or cobalt such as iron fumarate, iron naphthenate, carboxylates of higher hydrocarbons, or derivatives thereof, etc. gives good results.

前記有機金属化合物の供給方法としては、これらを直接
加熱して反応系に気体状態で供給したり、または該有機
金属化合物を炭化水素の液体中に溶解または微分散させ
、それを加熱して反応系に供給または噴出させたりする
等の方法が用いられる。
The method for supplying the organometallic compound is to directly heat it and supply it in a gaseous state to the reaction system, or to dissolve or finely disperse the organometallic compound in a hydrocarbon liquid and then heat it to cause the reaction. Methods such as supplying it to the system or blowing it out are used.

上記有機金属化合物の供給量(毎分光たりの供給重量%
)は炭化水素との混合物に対して0.01重量%以上、
好ましくは0.05重量%以上、特に0.2%以上であ
る。有機金属化合物の量が少なすぎると繊維状物ができ
にくり、粒状物が増加する傾向にある。
Supply amount of the above organometallic compound (supply weight % per light per minute)
) is 0.01% by weight or more based on the mixture with hydrocarbon,
The content is preferably 0.05% by weight or more, particularly 0.2% or more. If the amount of the organometallic compound is too small, fibrous materials tend to be difficult to form and granular materials tend to increase.

炭化水素および有機金属化合物の導入温度帯域は150
0℃以下、好ましくは100〜1300℃、特に好まし
くは100〜500℃の位置が適当である。該導入位置
の温度が低すぎると、原料が気相状態を維持しにくく、
また有機金属化合物の活性化のためにも好ましくない。
The temperature range for introducing hydrocarbons and organometallic compounds is 150
A suitable temperature is 0°C or lower, preferably 100 to 1300°C, particularly preferably 100 to 500°C. If the temperature at the introduction position is too low, it will be difficult for the raw material to maintain a gaseous state;
It is also undesirable for activating organometallic compounds.

また1500℃を超えると炭化して粒状物の生成が多く
なり、詰まりを起こして繊維の収率が低下する傾向にあ
る。また反応加熱温度帯域は500〜1800℃、特に
800〜1500℃が好適である。反応部の温度が上記
範囲外ではいずれも粒状物が生成し易くなる。
Furthermore, if the temperature exceeds 1500°C, carbonization occurs, which increases the production of particulate matter, which tends to cause clogging and reduce the fiber yield. The reaction heating temperature range is preferably 500 to 1800°C, particularly 800 to 1500°C. If the temperature of the reaction part is outside the above range, particulate matter is likely to be generated.

本発明において、炭素質繊維に酸性官能基を導入するに
は、公知の方法、例えば気相酸化法、電解液相酸化法、
酸化剤液相酸化法、プラズマ処理法等を用いることがで
きる。例えば空気、酸素、オゾン等を用いる気相酸化法
において、オゾンを用いる場合は、オゾン濃度として0
.1〜5重量%、処理温度は30〜300℃が好ましい
。また空気を用いる場合は、通常350〜800℃の加
熱空気中で行なうことが望ましい。また必要に応じて空
気に不活性ガスで希釈した酸素を混入し、酸素濃度を調
整することができる。電解液相酸化法を用いる場合は、
炭素質繊維を陽極とし、電解液中で陰極板との間に電圧
を印加させることにより行われる。また酸化剤液相酸化
法による場合は、例えば硝酸、次亜塩素酸、クロム酸塩
、重クロム酸塩、無水クロム酸、過マンガン酸塩等の酸
化剤を水または有機溶剤で熔解し、必要に応じて加温し
たもので炭素質繊維を処理すればよい。またプラズマ処
理法は、例えば対放電電極を有する内部電極型低温プラ
ズマ発生装置に減圧下に酸素を含むガス、酸素と一酸化
炭素、二酸化炭素、必要に応じて有機物を含むガスを流
通させながらグロー放電を行えばよい。この場合のガス
中の酸素濃度は10重量%以上であることが好ましい。
In the present invention, in order to introduce acidic functional groups into carbonaceous fibers, known methods such as gas phase oxidation method, electrolyte solution phase oxidation method,
An oxidizing agent liquid phase oxidation method, a plasma treatment method, etc. can be used. For example, in a gas phase oxidation method using air, oxygen, ozone, etc., when ozone is used, the ozone concentration is 0.
.. 1 to 5% by weight, and the treatment temperature is preferably 30 to 300°C. Moreover, when air is used, it is desirable to carry out in heated air usually at 350 to 800°C. Further, if necessary, oxygen diluted with an inert gas may be mixed into the air to adjust the oxygen concentration. When using the electrolyte phase oxidation method,
This is carried out by using a carbonaceous fiber as an anode and applying a voltage between it and a cathode plate in an electrolytic solution. In addition, when using an oxidizing agent liquid phase oxidation method, for example, an oxidizing agent such as nitric acid, hypochlorous acid, chromate, dichromate, chromic anhydride, permanganate, etc. is dissolved in water or an organic solvent, and the necessary The carbonaceous fibers may be treated with a material heated accordingly. In addition, the plasma treatment method uses, for example, an internal electrode-type low-temperature plasma generator having a counter-discharge electrode to generate a glow while flowing a gas containing oxygen, oxygen and carbon monoxide, carbon dioxide, and, if necessary, a gas containing organic matter under reduced pressure. All you have to do is discharge. In this case, the oxygen concentration in the gas is preferably 10% by weight or more.

またヘリウム、ネオン、アルゴン、窒素等の不活性ガス
でプラズマ処理した後、不飽和カルボン酸と接触させる
ことによっても酸性官能基を導入することができる。プ
ラズマ装置内の雰囲気圧の圧力は、例えば0.001〜
10 t o r rの範囲が好ましく、このようなガ
ス圧力下で対放電電極間に例えば周波数10KHz〜1
0MHzの高周波で10W〜100KWの電力を与える
ことにより、安定なグロー放電を行わせることができる
。なお、放電周波数帯としては、上記高周波の他に低周
波、マイクロ波、直流等を用いることができる。このよ
うな酸性官能基の導入は、原料として用いる炭素質繊維
の反応性が高いので、温和な条件下で、重量ロスなく、
多量の酸性官能基(例えばカルボキシル基、フェノール
性水酸基等)を導入することができる。
Further, acidic functional groups can also be introduced by plasma treatment with an inert gas such as helium, neon, argon, or nitrogen, followed by contact with an unsaturated carboxylic acid. The atmospheric pressure inside the plasma device is, for example, 0.001~
The range of 10 t o r r is preferable, and under such gas pressure, the frequency of 10 KHz to 1
By applying power of 10 W to 100 KW at a high frequency of 0 MHz, stable glow discharge can be performed. Note that as the discharge frequency band, in addition to the above-mentioned high frequency, low frequency, microwave, direct current, etc. can be used. Since the carbonaceous fiber used as a raw material has high reactivity, introduction of such acidic functional groups can be carried out under mild conditions without weight loss.
A large amount of acidic functional groups (eg, carboxyl groups, phenolic hydroxyl groups, etc.) can be introduced.

(発明の効果) 本発明の酸性基を有する炭素質繊維は、炭素質繊維自体
の特性を低下させることなく、多量の酸性官能基を有し
ているので、複合材料用とした場合に母材樹脂との接着
性(特にエポキシ樹脂等との反応性)に優れ、例えばO
A機器などの制電性部品、電極材等の電気伝導性を要求
される分野、高熱を発生する分野(自動車エンジン関連
)の部品、熱伝導性を要する分野の部分等の複合材料用
の繊維として有効に利用される。
(Effects of the Invention) The carbonaceous fibers having acidic groups of the present invention have a large amount of acidic functional groups without deteriorating the properties of the carbonaceous fibers themselves, so they can be used as base materials when used in composite materials. It has excellent adhesion with resins (especially reactivity with epoxy resins, etc.), such as O
Fibers for composite materials such as antistatic parts such as A equipment, fields that require electrical conductivity such as electrode materials, parts that generate high heat (automobile engine related), parts that require thermal conductivity, etc. It is effectively used as a.

以下、本発明を実施例により具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

(実施例1) 第1図に示す装置を用い、本発明の酸性基を有する炭素
質繊維を製造した。この装置は、触媒を混合した原料液
11をキャリアガス(水素およびアルゴン)9により噴
出させるノズル(例えば2流体ノズル)3、ヒーター5
および冷却用ノズル15を順次設けた反応塔(反応部)
7と、該反応塔7の下部に連通部21を介して連通ずる
回収部(バ・λ゛フイルター17とから構成される。な
お図中、13は冷却用ガス(例えば窒素ガス)、19は
排ガスを示す。反応塔7の体積が4011である上記装
置を用い、原料としてスチレンにペンタカルボニル鉄0
.5重量%、ビスアセチルアセトナト鉄0.1重量%を
添加した混合液を水素50容量%、アルゴン50容量%
の混合ガスをキャリアガスとしてノズル3から反応塔7
内に噴出させた。
(Example 1) Using the apparatus shown in FIG. 1, carbonaceous fibers having acidic groups of the present invention were manufactured. This device includes a nozzle (for example, a two-fluid nozzle) 3 that spouts out a raw material liquid 11 mixed with a catalyst using a carrier gas (hydrogen and argon) 9, and a heater 5.
and a reaction tower (reaction section) provided with cooling nozzles 15 in sequence.
7, and a recovery section (bar filter 17) that communicates with the lower part of the reaction tower 7 via a communication section 21. In the figure, 13 is a cooling gas (for example, nitrogen gas), and 19 is a cooling gas (for example, nitrogen gas). Exhaust gas is shown. Using the above-mentioned apparatus in which the volume of the reaction tower 7 is 4011, styrene and pentacarbonyl iron are added as raw materials.
.. A mixed solution containing 5% by weight of iron and 0.1% by weight of iron bisacetylacetonate was mixed with 50% by volume of hydrogen and 50% by volume of argon.
from the nozzle 3 to the reaction tower 7 using a mixed gas of
I squirted inside.

塔内の加熱部付近の温度は1050℃とし、噴霧された
原料が直接ヒーター5に衝突しないように噴霧状態が調
節された。反応塔7の下部のノズル15から冷却用ガス
として窒素ガスを噴出させ、生成した炭素繊維を冷却す
るとともに、連通部21を通してバッグフィルター17
の方に同伴させ、生成した炭素繊維を捕集するようにし
た。原料スチレンを4g/min、水素とアルゴンの混
合ガス0.511/m i n、冷却用ガスl l /
 m i nで反応時間30分間反応させたところ、直
径が0.23μm、L/D200以上、捲縮度12%、
X線回折による(002)平面間隔002が3.52人
、C軸方向の結晶サイズLC(002)が35人、およ
びX線光電子分光法(E S CA)におけるC1sの
半値巾1.44の炭素質繊維が得られた。
The temperature near the heating section in the tower was set at 1050° C., and the spray condition was adjusted so that the sprayed raw material did not collide directly with the heater 5. Nitrogen gas is ejected as a cooling gas from the nozzle 15 at the bottom of the reaction tower 7 to cool the produced carbon fibers and pass through the communication section 21 to the bag filter 17.
The generated carbon fibers were collected. Raw material styrene: 4 g/min, mixed gas of hydrogen and argon: 0.511/min, cooling gas l/min
When reacted for 30 minutes at Min.
The (002) plane spacing 002 by X-ray diffraction is 3.52 people, the crystal size LC (002) in the C-axis direction is 35 people, and the half-width of C1s by X-ray photoelectron spectroscopy (ES CA) is 1.44. Carbonaceous fibers were obtained.

この炭素繊維を68%の濃硝酸で所定時間処理した。処
理条件は第1表に示す通りである。なお、処理後の炭素
繊維はイオン交換水により約1時間水洗した後、120
℃のオーブン中で30分間乾燥し、処理物の評価を行っ
た。X線光電子分光法(ESCA)による酸素濃度(0
1S/CI S)および滴定法によるカルボキシル末端
基量の測定法は前述のとおである。
This carbon fiber was treated with 68% concentrated nitric acid for a predetermined time. The processing conditions are as shown in Table 1. The treated carbon fibers were washed with ion-exchanged water for about 1 hour, and then
The treated product was dried in an oven at ℃ for 30 minutes and evaluated. Oxygen concentration (0
The method for measuring the amount of carboxyl end groups by titration (1S/CIS) and titration is as described above.

(比較例1) 電気炉内にアルミナ質炉芯管(内径10cm、長さ10
100cIを水平に装備し、その中にFeの超微粉(3
00人下)を散布した黒鉛製造板をセットした。基板は
巾5cm、長さ30cm、厚さ0.5 cffiで、超
微粉の散布は、これをメチルアルコール中に懸濁させ、
スプレーにより行った。散布は基板上、はぼ一様に行い
、その散布した超微粉量は約IMgであった。炉芯管の
1端にはガス導入管、他端には排出管を接続し、ガス導
入管にはベンゼン蒸気をlO容容量台む水素ガスを毎分
1000cc(常温)流した。そして温度を1000℃
に昇温し、その温度で180分間保持した。次いで温度
を1200℃に昇温し、その温度で60分間保持した。
(Comparative Example 1) An alumina furnace core tube (inner diameter 10 cm, length 10 cm) was placed in an electric furnace.
A 100cI is installed horizontally, and ultrafine Fe powder (3
A graphite manufacturing board sprayed with 0.000 g) was set. The substrate is 5 cm wide, 30 cm long, and 0.5 cffi thick, and the ultrafine powder is dispersed by suspending it in methyl alcohol.
This was done by spraying. The scattering was carried out evenly over the substrate, and the amount of ultrafine powder dispersed was about IMg. A gas inlet pipe was connected to one end of the furnace core tube, and a discharge pipe was connected to the other end, and hydrogen gas containing 100 ml of benzene vapor was flowed through the gas inlet pipe at a rate of 1000 cc per minute (at room temperature). and set the temperature to 1000℃
and held at that temperature for 180 minutes. The temperature was then raised to 1200°C and held at that temperature for 60 minutes.

その後ガスを窒素に切換えて冷却し基板を取出した。生
成した炭素繊維を基板から取り出して秤量した。その結
果、繊維径10μmの炭素繊維が0.033g/crA
−hr得られた。
Thereafter, the gas was changed to nitrogen, the temperature was cooled, and the substrate was taken out. The produced carbon fibers were taken out from the substrate and weighed. As a result, carbon fiber with a fiber diameter of 10 μm was 0.033 g/crA
-hr obtained.

炭素繊維の径は10 μm、doo2は3.52人、E
SCAにおけるC1sの半値中は1.72であった。こ
の繊維について68%の濃硝酸で第1表に示す通り処理
を行った。
The diameter of carbon fiber is 10 μm, doo2 is 3.52 people, E
The half value of C1s in SCA was 1.72. The fibers were treated with 68% concentrated nitric acid as shown in Table 1.

(比較例2) アクリロニトリル(AN)99.5モル%とイタコン酸
0.5モル%からなる固有粘度(η)が1.80の共重
合体に、アンモニアを吹き込み共重合体のカルボキシル
基末端水素をアンモニウム基で置換して、変性ポリマを
作成し、この変性ポリマの濃度が20重量%のジメチル
スルホキシド(DMSo)溶液を作成した。この溶液を
炉材として、目びらきが5μの焼結金属フィルターを用
いて濾過した後、温度60℃に調整し、温度60℃濃度
50%のDMSO水溶液中に吐出した。口金としては、
孔径0.05mm、ホール数4500のものを用い、凝
固引取り速度を18m/分とした。凝固糸条を水洗後、
熱水中で4倍に延伸した後、シリコーン系油剤処理を行
った後、130〜160℃に加熱されたローラ表面に接
触させて乾燥緻密化後、40kg/a11の加圧スチー
ム中で、3倍に延伸して単糸繊度0.7dトータル・デ
ニール3150Dの繊維束を得た(特開昭57−117
622号)。
(Comparative Example 2) Ammonia was blown into a copolymer of 99.5 mol% acrylonitrile (AN) and 0.5 mol% itaconic acid with an intrinsic viscosity (η) of 1.80, and hydrogen at the carboxyl group terminal of the copolymer was added. was substituted with an ammonium group to prepare a modified polymer, and a solution of the modified polymer in dimethyl sulfoxide (DMSo) having a concentration of 20% by weight was prepared. This solution was filtered using a sintered metal filter with a mesh opening of 5 μm as a furnace material, the temperature was adjusted to 60° C., and the solution was discharged into a DMSO aqueous solution having a concentration of 50% at 60° C. As a base,
A material with a hole diameter of 0.05 mm and 4,500 holes was used, and the solidification and withdrawal speed was 18 m/min. After washing the coagulated thread with water,
After stretching 4 times in hot water, processing with silicone oil, drying and densification by contacting with a roller surface heated to 130 to 160°C, and then stretching in pressurized steam at 40 kg/a11 for 3 A fiber bundle with a single filament fineness of 0.7d and a total denier of 3150D was obtained by drawing it twice (Japanese Patent Application Laid-Open No. 57-117
No. 622).

炭素繊維の(002)平面間隔d 002は3.68人
、ESCAにおけるC1sの半値中は1.85であった
。この繊維について濃硝酸で第1表に示す通り処理を行
った。
The (002) plane distance d 002 of carbon fiber was 3.68 people, and the half value of C1s in ESCA was 1.85. The fibers were treated with concentrated nitric acid as shown in Table 1.

上記実施例1、比較例1および2で得られた炭素繊維の
酸性官能基の導入のし易さを比較するために、68%の
濃硝酸で所定時間処理した。処理条件は第1表に示す通
りである。なお、処理後の炭素繊維はイオン交換水によ
り約1時間水洗した後、120℃のオープン中で30分
間乾燥し、処理物の評価を行った。評価の内X線電子分
光法(ESCA)による酸素濃度(Cs / Cs )
は、X線光電子分光装置を用い、励起X線としてARK
α1486.6eVを用い、X線出力10kV、2Qm
A、温度40℃真空度IQ  torrで測定したもの
である。得られたスペクトルからCsに対するO3の相
対積分強度を計算し、炭素繊維表面の酸素含有官能基量
の指標とした。
In order to compare the ease with which acidic functional groups can be introduced into the carbon fibers obtained in Example 1 and Comparative Examples 1 and 2, the carbon fibers were treated with 68% concentrated nitric acid for a predetermined period of time. The processing conditions are as shown in Table 1. The treated carbon fibers were washed with ion-exchanged water for about 1 hour, then dried in an open air at 120° C. for 30 minutes, and the treated products were evaluated. Oxygen concentration (Cs/Cs) determined by X-ray electron spectroscopy (ESCA)
Using an X-ray photoelectron spectrometer, ARK was used as the excited X-ray.
Using α1486.6eV, X-ray output 10kV, 2Qm
A: Measured at a temperature of 40° C. and a vacuum of IQ torr. The relative integrated intensity of O3 with respect to Cs was calculated from the obtained spectrum and used as an index of the amount of oxygen-containing functional groups on the carbon fiber surface.

また滴定法によるカルボキシル末端基量は次の方法で求
めた値である。すなわち試料約5gを300 m j!
共栓三角フラスコに秤量し、水5 Q m 12.11
5ONaOH20mj+をホールビヘットで正確に加え
さらに水30mj+を加えて100mAとし、時々振り
まぜながら20分放置後超音波加振器に15分間浸し、
溶液50 m Aをホールピペットでダルマフラスコに
採取し、115 oNHcJ以下余白 第1表 次に前記酸性基を導入した炭素質繊維とエポキシ樹脂と
の反応性を試験した。すなわち、エポキシ樹脂(ビスフ
ェノールA型)DER661(ダウケミカル社製)の1
0%(重量)キシレン溶液500mjl!を150℃に
加熱し、これに前記濃硝酸で処理した炭素質繊維5gを
浸漬した。1時間処理後繊維を炉別し、アセトンで未反
応エポキシ樹脂を洗浄した後、減圧下で乾燥した。得ら
れた繊維の重量を精秤し、重量増加(単位100重量当
たり)を求め炭素質繊維と結合したエポキシ樹脂の量を
測定した。その結果を第2表に示す。
Furthermore, the amount of carboxyl terminal groups determined by titration is a value determined by the following method. In other words, about 5 g of sample was heated to 300 m j!
Weigh into a stoppered Erlenmeyer flask and add 5 Q m of water 12.11
Accurately add 20mj+ of 5ONaOH whole-bichet, add 30mj+ of water to make 100mA, leave it for 20 minutes while shaking occasionally, and then soak it in an ultrasonic vibrator for 15 minutes.
50 mA of the solution was collected into a Daruma flask using a whole pipette, and the reactivity of the carbon fiber into which the acidic group had been introduced and the epoxy resin was tested. That is, 1 of epoxy resin (bisphenol A type) DER661 (manufactured by Dow Chemical Company)
500 mjl of 0% (weight) xylene solution! was heated to 150° C., and 5 g of the carbonaceous fibers treated with concentrated nitric acid were immersed therein. After treatment for 1 hour, the fibers were separated in a furnace, unreacted epoxy resin was washed with acetone, and then dried under reduced pressure. The weight of the obtained fibers was accurately weighed, the weight increase (per unit of 100 weight) was determined, and the amount of epoxy resin bonded to the carbonaceous fibers was measured. The results are shown in Table 2.

第2表 実施例2〜5 第2表に示す有機金属化合物および原料炭化水素、キャ
リアガスおよび冷却ガスを用いる以外は実施例1と同様
の条件で炭素繊維を製造した。得られた炭素繊維の諸物
性を第3表に示す。
Table 2 Examples 2 to 5 Carbon fibers were produced under the same conditions as in Example 1 except that the organometallic compounds, raw material hydrocarbons, carrier gas, and cooling gas shown in Table 2 were used. Table 3 shows the physical properties of the obtained carbon fiber.

以下余白 第3表 上記実施例4で得られた繊維について実施例1と同様の
濃硝酸酸処理を行なった。得られた繊維のOs / C
sは1.85、滴定による酸性基は、45μmol/g
であった。
Margin Table 3 Below: The fibers obtained in Example 4 above were subjected to the same concentrated nitric acid treatment as in Example 1. Os/C of the obtained fiber
s is 1.85, acidic group by titration is 45 μmol/g
Met.

上記実施例5の繊維について空気中、450℃で1分間
処理した。得られた繊維のOs / Csは0.63、
滴定による酸性基は5.2 μm o 1 / gであ
った。
The fibers of Example 5 were treated in air at 450° C. for 1 minute. The Os/Cs of the obtained fiber was 0.63,
The amount of acidic groups determined by titration was 5.2 μm o 1 /g.

上記実施例2の繊維について、濃硝酸処理を120℃で
10分間行った。得られた繊維のOs/C8は0.54
、滴定による酸性基は4.9μmol/gであった。
The fibers of Example 2 were treated with concentrated nitric acid at 120° C. for 10 minutes. Os/C8 of the obtained fiber is 0.54
The amount of acidic groups determined by titration was 4.9 μmol/g.

上記実施例3の繊維について、濃硝酸処理を120℃で
20分間行った。滴定による酸性基は95μm o l
 / gであった。
The fibers of Example 3 were treated with concentrated nitric acid at 120° C. for 20 minutes. The acidic group by titration is 95 μm o l
/g.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の炭素質繊維の製造に用いる装置の一
例を示す説明図である。 1・・・装置本体、3・・・ノズル、5・・・ヒーター
、7・・・反応塔(反応部)、9・・・キャリアガス、
11・・・原料液、13・・・冷却用ガス、15・・・
冷却ガス用ノズル、17・・・バッグフィルター(回収
部)、19・・・排ガス、21・・・連通部。 代理人 弁理士 川 北 武 長 2:ノズル 5:ヒータ 7:反応部 9:ガス(水素) 11:思料液 19:排ガス 2F連通部
FIG. 1 is an explanatory diagram showing an example of an apparatus used for producing carbonaceous fibers of the present invention. DESCRIPTION OF SYMBOLS 1... Apparatus body, 3... Nozzle, 5... Heater, 7... Reaction tower (reaction part), 9... Carrier gas,
11... Raw material liquid, 13... Cooling gas, 15...
Cooling gas nozzle, 17... Bag filter (recovery section), 19... Exhaust gas, 21... Communication section. Agent Patent Attorney Takeshi Kawakita 2: Nozzle 5: Heater 7: Reaction part 9: Gas (hydrogen) 11: Reaction liquid 19: Exhaust gas 2F communication part

Claims (1)

【特許請求の範囲】[Claims] (1)繊維の直径が0.01〜4μm、繊維の長さ/繊
維径が20以上、滴定法によるカルボキシル末端基量が
0.1〜500μ・mol/g、X線光分光法(ESC
A)による酸素濃度O_1s/C_1sが0.05以上
で、黒鉛または黒鉛に容易に転化する炭素の層が長手軸
に平行に年輪状に配列して形成された、酸性基を有する
炭素質繊維。 (1)特許請求の範囲(1)において、炭素質繊維の捲
縮数が1以上、捲縮度が0.5〜50%であることを特
徴とする酸性基を有する炭素質繊維。
(1) The fiber diameter is 0.01 to 4 μm, the fiber length/fiber diameter is 20 or more, the amount of carboxyl end groups is 0.1 to 500 μmol/g by titration method, and X-ray optical spectroscopy (ESC)
A carbonaceous fiber having an acidic group in which the oxygen concentration O_1s/C_1s according to A) is 0.05 or more and is formed by arranging graphite or carbon layers that are easily converted into graphite in the form of growth rings parallel to the longitudinal axis. (1) The carbonaceous fiber having an acidic group according to claim (1), characterized in that the carbonaceous fiber has a crimp number of 1 or more and a crimp degree of 0.5 to 50%.
JP60058818A 1985-03-23 1985-03-23 Carbonaceous fiber having acidic groups Expired - Lifetime JPH0663133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60058818A JPH0663133B2 (en) 1985-03-23 1985-03-23 Carbonaceous fiber having acidic groups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60058818A JPH0663133B2 (en) 1985-03-23 1985-03-23 Carbonaceous fiber having acidic groups

Publications (2)

Publication Number Publication Date
JPS61225326A true JPS61225326A (en) 1986-10-07
JPH0663133B2 JPH0663133B2 (en) 1994-08-17

Family

ID=13095196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60058818A Expired - Lifetime JPH0663133B2 (en) 1985-03-23 1985-03-23 Carbonaceous fiber having acidic groups

Country Status (1)

Country Link
JP (1) JPH0663133B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339818A (en) * 1992-06-11 1993-12-21 Mitsui Eng & Shipbuild Co Ltd Carbon fiber made by activated vapor phase
JPH06212517A (en) * 1991-07-05 1994-08-02 Nikkiso Co Ltd Graphite fiber and its production
US5965470A (en) * 1989-05-15 1999-10-12 Hyperion Catalysis International, Inc. Composites containing surface treated carbon microfibers
US7410628B2 (en) 1992-01-15 2008-08-12 Hyperion Catalysis International, Inc. Surface treatment of carbon microfibers
WO2009128374A1 (en) * 2008-04-16 2009-10-22 日信工業株式会社 Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
JP2010018744A (en) * 2008-07-11 2010-01-28 Nissin Kogyo Co Ltd Carbon fiber composite material excellent in chlorine resistance and method for producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF CATALYSIS=1972 *
JOURNAL OF CATALYSIS30=1973 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965470A (en) * 1989-05-15 1999-10-12 Hyperion Catalysis International, Inc. Composites containing surface treated carbon microfibers
JPH06212517A (en) * 1991-07-05 1994-08-02 Nikkiso Co Ltd Graphite fiber and its production
US7410628B2 (en) 1992-01-15 2008-08-12 Hyperion Catalysis International, Inc. Surface treatment of carbon microfibers
US7862794B2 (en) 1992-01-15 2011-01-04 Hyperion Cataylsis International, Inc. Surface treatment of carbon microfibers
JPH05339818A (en) * 1992-06-11 1993-12-21 Mitsui Eng & Shipbuild Co Ltd Carbon fiber made by activated vapor phase
WO2009128374A1 (en) * 2008-04-16 2009-10-22 日信工業株式会社 Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
JP2009275337A (en) * 2008-04-16 2009-11-26 Nissin Kogyo Co Ltd Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
US8263698B2 (en) 2008-04-16 2012-09-11 Nissin Kogyo Co., Ltd. Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
US8415420B2 (en) 2008-04-16 2013-04-09 Nissin Kogyo Co., Ltd. Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
JP2010018744A (en) * 2008-07-11 2010-01-28 Nissin Kogyo Co Ltd Carbon fiber composite material excellent in chlorine resistance and method for producing the same

Also Published As

Publication number Publication date
JPH0663133B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
KR101262827B1 (en) Carbon nanotubes functionalized with fullerenes
CN109309214B (en) Preparation method of carbon-coated nickel nano composite material
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
US10273599B2 (en) Apparatus for manufacturing carbon nanotube fiber
WO2019113993A1 (en) Carbon nanotube and method for fabrication thereof
Kibria et al. Synthesis of narrow-diameter carbon nanotubes from acetylene decomposition over an iron–nickel catalyst supported on alumina
JP5947545B2 (en) Method for synthesizing carbon nanotubes on long particulate micrometer materials
WO2007074629A1 (en) Process for producing carbon nanotube and catalyst for carbon nanotube production
KR20070020164A (en) Production of agglomerates from gas phase
CN112536055B (en) Nitrogen-doped carbon-coated cobaltosic oxide nanowire monolithic catalyst and preparation method thereof
US20060046051A1 (en) Vapor grown carbon fiber, and production method and use thereof
JPS61225326A (en) Carbonaceous fiber having acidic group
Keller et al. Carbon nanotube formation in situ during carbonization in shaped bulk solid cobalt nanoparticle compositions
JPS61225325A (en) Carbonaceous fiber
JP3888317B2 (en) Coating liquid for manufacturing ceramic tube and method for manufacturing ceramic tube
JPS61225319A (en) Carbonaceous fiber
JPS61132630A (en) Carbonaceous fiber
KR100478145B1 (en) Method for Manufacturing Carbon Nano Fiber
Bai et al. A novel method for preparing preforms of porous alumina and carbon nanotubes by CVD
RU2756759C1 (en) Method for producing nanocomposites of niobium and tantalum carbides in the carbon matrix - nbc/c and tac/c
CN112794309B (en) Preparation method of carbon nano tube based on silk template
JPS639044B2 (en)
KR20180091321A (en) the fabricating method of metal oxides-carbon nano tube composite and the use thereof
JPS61225322A (en) Production of carbonaceous fiber
JPS6224522B2 (en)