JP2005015339A - Fine carbon fiber, method of manufacturing the same and conductive material containing fine carbon fiber - Google Patents

Fine carbon fiber, method of manufacturing the same and conductive material containing fine carbon fiber Download PDF

Info

Publication number
JP2005015339A
JP2005015339A JP2004268974A JP2004268974A JP2005015339A JP 2005015339 A JP2005015339 A JP 2005015339A JP 2004268974 A JP2004268974 A JP 2004268974A JP 2004268974 A JP2004268974 A JP 2004268974A JP 2005015339 A JP2005015339 A JP 2005015339A
Authority
JP
Japan
Prior art keywords
carbon fiber
fine carbon
fiber
fine
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004268974A
Other languages
Japanese (ja)
Inventor
Toshio Morita
利夫 森田
Hitoshi Inoue
斉 井上
Kunio Nishimura
邦夫 西村
Yutaka Suhara
豊 須原
Satoru Oshima
哲 大嶋
Morio Yumura
守雄 湯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004268974A priority Critical patent/JP2005015339A/en
Publication of JP2005015339A publication Critical patent/JP2005015339A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine carbon fiber having excellent conductivity and excellent adhesion to a resin, a rubber or the like as a filler material having <100 nm diameter. <P>SOLUTION: The fine carbon fiber comprises a hollow center structure and a multi-layer cylindrical structure of a plurality of carbon layers to form annual rings, wherein the cylindrical carbon layers form an incomplete cylinder, i.e., the carbon layers are partially broken or disrupted in a longitudinal direction, and the outer diameter of the carbon fiber and/or the diameter of the hollow center portion are not uniform in a longitudinal direction and has an outer diameter of about 1 to about 80 nm and an aspect ratio of 10 to 30,000, The carbon fiber is obtained by instantaneously reacting a carrier gas at a high temperature with an organic compound gas kept at a temperature below the decomposition temperature of the transition metal compound and has a conductivity equivalent to that of a conventional vapor phase method and is useful as the filler material for resins, rubbers, paints and the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は特異な構造を持つ微細炭素繊維及びその製造方法に関し、特に樹脂、ゴム等複合材のフィラーとして適した微細炭素繊維及びその製造方法に関する。さらに、本発明はそのような微細炭素繊維含む導電性材料に関する。  The present invention relates to a fine carbon fiber having a unique structure and a method for producing the same, and more particularly to a fine carbon fiber suitable as a filler for composite materials such as resins and rubbers and a method for producing the same. Furthermore, the present invention relates to a conductive material containing such fine carbon fibers.

炭素繊維は、高強度、高弾性率、高導電性等の優れた特性を持つので各種の複合材料に使用されている。また炭素繊維は優れた機械的特性を有するばかりでなく、炭素繊維あるいは炭素材料に備わった導電性を生かし、その応用範囲が広い。そのため近年では炭素繊維はエレクトロニクス技術の発展に伴い、電磁波シールド材、静電防止材用の導電性樹脂フィラーとして、あるいは自動車の軽量化に伴い樹脂への静電塗装のためのフィラーとして広くその用途が期待されている。  Carbon fibers are used in various composite materials because they have excellent properties such as high strength, high elastic modulus, and high conductivity. Carbon fibers not only have excellent mechanical properties, but also have a wide range of applications by taking advantage of the conductivity of carbon fibers or carbon materials. Therefore, in recent years, carbon fiber has been widely used as a conductive resin filler for electromagnetic shielding materials and antistatic materials with the development of electronics technology, or as a filler for electrostatic coating on resins with the weight reduction of automobiles. Is expected.

従来の炭素繊維は、PAN、ピッチ、セルロース等の繊維を熱処理し炭化することにより製造され、いわゆる有機系カーボンファイバーとして大規模に生産されている。一般に、カーボンファイバーを繊維強化複合材のフィラーとして用いる場合、母材との接触面積を大きくするために、その径を細くすること、あるいは長さを長くすることで、複合材の補強効果を上げることができる。また、母材との接着性を改善するためには、炭素繊維の表面を滑らかにせず、荒れた状態のほうが好ましい。このために炭素繊維を空気中で高温に晒して酸化させたり、表面にコーティング剤を施したりする表面処理が行なわれている。  Conventional carbon fibers are produced by heat treating and carbonizing fibers such as PAN, pitch, and cellulose, and are produced on a large scale as so-called organic carbon fibers. In general, when carbon fiber is used as a filler for fiber-reinforced composite materials, in order to increase the contact area with the base material, the diameter is reduced or the length is increased to increase the reinforcing effect of the composite material. be able to. Moreover, in order to improve the adhesiveness with the base material, it is preferable that the surface of the carbon fiber is not smooth and is in a rough state. For this purpose, surface treatment is performed in which the carbon fiber is oxidized by exposing it to high temperature in the air or a coating agent is applied to the surface.

しかし、これまでの炭素繊維は、その原料となる有機繊維の糸の直径がせいぜい5μm〜10μm程度であり、微細な炭素繊維の製造は不可能であった。また、直径(単に径ともいう。)にたいする長さの比(アスペクト比=長さ/直径)に限界があり、細くてアスペクト比の大きい炭素繊維が要望されていた。  However, conventional carbon fibers have a diameter of the organic fiber used as a raw material of at most about 5 μm to 10 μm, and it has been impossible to produce fine carbon fibers. In addition, there is a limit to the ratio of length to diameter (also simply referred to as diameter) (aspect ratio = length / diameter), and a thin and high aspect ratio carbon fiber has been desired.

また、炭素繊維の自動車ボディー樹脂への使用、あるいは電子機器の樹脂・ゴム等への使用に関しては、金属並の導電性が要求され、フィラー材として導電性の向上が必要とされてきた。  In addition, regarding the use of carbon fiber for automobile body resin, or the use of resin or rubber for electronic equipment, electrical conductivity equivalent to that of metal is required, and improvement of electrical conductivity as a filler material has been required.

導電性向上の手段として、炭素繊維を黒鉛化して結晶度を向上させることが必要であり、このためにより高温での黒鉛化処理が行なわれるのが通例である。しかし、この黒鉛化処理によっても金属並の導電性が得られず、結果的に複合材料を製造する時には、繊維自体の導電性を補うためにその配合量を多くする試みがなされている。そして配合量を増やした場合、配合された複合材料の加工性や機械的特性が低下するという問題が生じ、実用上、繊維自体の更なる導電性の向上、繊維の細径化による強度の向上等が求められている。  As a means for improving the conductivity, it is necessary to graphitize the carbon fiber to improve the crystallinity. For this reason, the graphitization treatment at a high temperature is usually performed. However, even with this graphitization treatment, conductivity equivalent to that of metal cannot be obtained, and as a result, attempts have been made to increase the blending amount in order to supplement the conductivity of the fiber itself when producing a composite material. When the blending amount is increased, there arises a problem that the workability and mechanical properties of the blended composite material are lowered, and practically further improvement of the conductivity of the fiber itself and improvement of the strength by reducing the diameter of the fiber. Etc. are required.

1980年代後半には、これらPANなどの有機系繊維の炭化及び黒鉛化とは製法を異にする方法により得られた炭素繊維として、気相法炭素繊維(Vapor Grown Carbon Fiber)が見出された。  In the late 1980s, vapor grown carbon fibers were found as carbon fibers obtained by a method different from carbonization and graphitization of organic fibers such as PAN. .

この気相法炭素繊維(以下VGCFと略す。)は、炭化水素等のガスを金属系触媒の存在下で気相熱分解することによって製造され、直径1μm〜数100nmまでの炭素繊維が得られている。  This vapor-grown carbon fiber (hereinafter abbreviated as VGCF) is produced by vapor-phase pyrolysis of a gas such as hydrocarbon in the presence of a metal catalyst to obtain carbon fiber having a diameter of 1 μm to several hundred nm. ing.

炭素繊維を製造するための気相法は、たとえば、ベンゼン等の有機化合物を原料とし、フェロセン等の有機遷移金属化合物を金属系触媒として用い、これらをキャリアーガスとともに高温の反応炉に導入し、基板上に生成させる方法(特許文献1)、浮遊状態でVGCFを生成させる方法(特許文献2)、あるいは反応炉壁に成長させる方法(特許文献3)等が知られている。  The gas phase method for producing carbon fiber is, for example, using an organic compound such as benzene as a raw material, using an organic transition metal compound such as ferrocene as a metal catalyst, introducing these together with a carrier gas into a high-temperature reactor, A method of generating on a substrate (Patent Document 1), a method of generating VGCF in a floating state (Patent Document 2), a method of growing on a reactor wall (Patent Document 3), etc. are known.

これらの製法により、比較的細くて導電性に優れ、アスペクト比の大きいフィラー材に適した炭素繊維が得られるようになり、100nm〜200nm程度の径で、アスペクト比10〜500程度のものが量産化され、導電性フィラー材として導電性樹脂用フィラーや鉛蓄電池の添加材等に使用されるようになった。  By these manufacturing methods, carbon fibers that are relatively thin and excellent in electrical conductivity and suitable for filler materials having a large aspect ratio can be obtained, and mass production with diameters of about 100 nm to 200 nm and aspect ratios of about 10 to 500 is possible. As a conductive filler material, it has been used for fillers for conductive resins, lead-acid battery additives, and the like.

VGCFは、形状や結晶構造に特徴があり、炭素六角網面の結晶が年輪状に巻かれ積層した構造を示し、その中心部には極めて細い中空部を有している。  The VGCF is characterized by its shape and crystal structure, and shows a structure in which crystals of carbon hexagonal mesh surface are wound and laminated in an annual ring shape, and has a very thin hollow portion at the center.

しかし、これまでVGCFの量産規模では、100nm未満の細い径の繊維は製造されなかった。  However, until now, on the scale of mass production of VGCF, fibers with a small diameter of less than 100 nm have not been produced.

最近、このVGCFよりも更に細い炭素繊維として、飯島らによりヘリウムガス中でアーク放電により炭素電極を蒸発させた煤の中から、多層カーボンナノチューブが発見された。この多層カーボンナノチューブは、直径1nm〜30nmであり、VGCFと同様に炭素六角網面の結晶が繊維の軸を中心に年輪状に幾重にも重なり、その中心部に中空径を有する微細炭素繊維である。  Recently, multi-walled carbon nanotubes have been discovered by Iijima et al. As a carbon fiber that is thinner than VGCF, from a tube obtained by evaporating a carbon electrode by arc discharge in helium gas. This multi-walled carbon nanotube is a fine carbon fiber having a diameter of 1 nm to 30 nm, and a carbon hexagonal network surface overlapping like a ring around the axis of the fiber in the same manner as VGCF. is there.

このアーク放電を使用する方法は、その製法から量産には向かず実用化には至っていない。  This method of using arc discharge is not suitable for mass production because of its production method and has not been put into practical use.

一方、気相法によるものは大きなアスペクト比、高導電性の炭素繊維が得られる可能性があり、そのためこの方法を改良し、より細い炭素繊維を製造しようとする試みがなされている。特許文献4、特許文献5には、約3.5〜70nmの径でアスペクト比100以上の黒鉛質からなる円柱状の炭素フィブリルが開示されている。その構造は、規則的に配列した炭素原子の連続層が多層にわたり円柱軸に対し同心的に配列され、炭素原子の各層のC軸がフィブリルの円柱軸に実質的に直交しており、全体に熱分解により析出する熱分解炭素被膜を含まず、滑らかな表面を持っているものである。  On the other hand, there is a possibility that a carbon fiber having a large aspect ratio and high conductivity can be obtained by the vapor phase method. Therefore, an attempt has been made to improve this method and produce a finer carbon fiber. Patent Documents 4 and 5 disclose cylindrical carbon fibrils made of graphite having a diameter of about 3.5 to 70 nm and an aspect ratio of 100 or more. The structure is such that a continuous layer of regularly arranged carbon atoms is arranged concentrically with respect to the cylinder axis across multiple layers, and the C axis of each layer of carbon atoms is substantially perpendicular to the cylinder axis of the fibril, It does not contain a pyrolytic carbon film that is deposited by pyrolysis and has a smooth surface.

同様に、特許文献6には、直径10nm〜500nmでアスペクト比2〜30,000の気相法による炭素繊維が開示されており、熱分解炭素層の厚みが直径の20%以下であることが示されている。  Similarly, Patent Document 6 discloses a carbon fiber by a vapor phase method having a diameter of 10 nm to 500 nm and an aspect ratio of 2 to 30,000, and the thickness of the pyrolytic carbon layer is 20% or less of the diameter. It is shown.

上述の2つの炭素繊維は、いずれも繊維表面が滑らかで、面が平らで摩擦力がほとんど働かず、面の起伏が少ないため化学反応性に乏しく、複合材料として用いる場合には表面を十分酸化処理する等の表面処理が必要になってくる。  Both of the above-mentioned two carbon fibers have a smooth fiber surface, a flat surface, almost no frictional force, few surface undulations, poor chemical reactivity, and sufficient surface oxidation when used as a composite material. Surface treatment such as treatment is required.

特開昭60−27700号公報JP-A-60-27700 特開昭60−54998号公報JP-A-60-54998 特開平7−150419号公報JP-A-7-150419 米国特許第4663230号公報US Pat. No. 4,663,230 特公平3−64606号公報Japanese Patent Publication No. 3-64606 特開昭61−70014号公報JP 61-70014 A

本発明の目的は、導電性に優れ、直径100nm未満のフィラー材として樹脂、ゴム等への接着性に優れた微細な炭素繊維を提供することである。  An object of the present invention is to provide fine carbon fibers having excellent conductivity and excellent adhesion to a resin, rubber or the like as a filler material having a diameter of less than 100 nm.

本発明の別の目的は、そのような炭素繊維の製造方法を提供することである。  Another object of the present invention is to provide a method for producing such carbon fibers.

本発明のさらに別の目的は、そのような炭素繊維を含む導電性材料を提供することである。  Yet another object of the present invention is to provide a conductive material comprising such carbon fibers.

本発明者らは、従来とは全く違った構造を持つ新しい炭素繊維を提供する。すなわち本発明は、下記を提供する。
1)繊維の中心部が中空構造であり、筒状の層状炭素(炭素シートともいう。)が年輪状に多層構造をなす炭素繊維であって、その筒状の層状炭素が完全な筒を形成せず一部途切れ、あるいは長手方向で分断され、繊維の外径及び/又は中空部分の径が長手方向において一様でない外径1nm〜80nm、アスペクト比10〜30000の微細炭素繊維。
2)繊維の中心部をなす中空部分に関して左右で、多層構造の層状炭素の厚み幅、又は炭素構造が部分的に異なる上記1)に記載の微細炭素繊維。
3)外径1nm〜80nm、アスペクト比10〜30000の微細炭素繊維中に、上記1)又は2)記載の微細炭素繊維が10質量%以上を占める微細炭素繊維。
4)上記1)〜3)のいずれか一つに記載の微細炭素繊維を熱処理することにより得られた微細炭素繊維。
5)熱処理温度が、900〜3000℃である上記4)記載の微細炭素繊維。
6)筒状の層状炭素が重なり合った多層構造であり、繊維の中心部が中空構造である炭素繊維であって、外径1nm〜80nm、アスペクト比10〜30,000、ラマン分光測定によるR値(I/I)が0.6〜1.6、X線回折による面間隔Cが6.70〜6.95Åであり、繊維軸方向に垂直な断面の形状が多角化している微細炭素繊維。
7)筒状の層状炭素が重なり合った多層構造であり、繊維の中心部が中空構造である炭素繊維であって、外径1nm〜80nm、アスペクト比10〜30,000、ラマン分光測定によるR値(I/I)が0.1〜1、X線回折による面間隔Cが6.70〜6.90Åであり、繊維軸方向に垂直な断面の形状が多角化している微細炭素繊維。
8)筒状の層状炭素が重なり合った多層構造であり、繊維の中心部が中空構造である炭素繊維であって、外径1nm〜80nm、アスペクト比10〜30,000、繊維軸方向に垂直な断面の形状が多角化しており、中空径を中心に年輪状に配列した筒状の層状炭素同士が結合している上記6)又は7)に記載の微細炭素繊維。
9)外径1nm〜80nm、アスペクト比10〜30,000の微細炭素繊維中に上記6)〜8)のいずれか一つに記載の微細炭素繊維が10質量%以上を占める微細炭素繊維。
10)有機遷移金属化合物及び必要に応じ硫黄化合物を溶解した有機化合物溶液を気化させ、該有機遷移金属化合物の分解温度未満に保温、保持した状態で反応炉へ送る工程と、別経路より送られる予熱したキャリアーガスを反応炉へ送る工程と、両ガスを反応炉の700〜1300℃の加熱反応帯域にて初めて合体させ、瞬時に反応させる工程とを含む微細炭素繊維の製造方法。
11)予熱温度が、500℃〜1300℃である上記10)に記載の微細炭素繊維の製造方法。
12)有機遷移金属化合物及び必要に応じ硫黄化合物を溶解した有機化合物溶液を気化させ、該有機遷移金属化合物の分解温度未満に保温、保持した状態で反応炉へ送る工程と、別経路より送られる予熱したキャリアーガスを反応炉へ送る工程と、両ガスを反応炉の700〜1300℃の加熱反応帯域にて初めて合体させ、瞬時に反応させる工程とを含む製造方法にて製造される上記1)〜3)及び6)〜9)のいずれか一つに記載の微細炭素繊維。
13)有機遷移金属化合物及び必要に応じ硫黄化合物を溶解した有機化合物溶液を気化させ、該有機遷移金属化合物の分解温度未満に保温、保持した状態で反応炉へ送る工程と、別経路より送られる予熱したキャリアーガスを反応炉へ送る工程と、両ガスを反応炉の700〜1300℃の加熱反応帯域にて初めて合体させ、瞬時に反応させる工程とを含む製造方法により製造される微細炭素繊維を更に熱処理することによって得られた上記1)〜3)及び6)〜9)のいずれか一つに記載の微細炭素繊維。
14)熱処理温度が、900〜3000℃であることを特徴とする上記13)に記載の微細炭素繊維。
15)予熱温度が、500℃〜1300℃である上記12)〜14)のいずれか一つに記載の微細炭素繊維。
16)上記1)〜9)及び12)〜15)のいずれか一つに記載の微細炭素繊維を含む導電性材料。
The present inventors provide a new carbon fiber having a completely different structure. That is, the present invention provides the following.
1) The center portion of the fiber has a hollow structure, and the cylindrical layered carbon (also referred to as a carbon sheet) is a carbon fiber having a multi-layered structure like an annual ring, and the cylindrical layered carbon forms a complete cylinder. A fine carbon fiber having an outer diameter of 1 nm to 80 nm and an aspect ratio of 10 to 30000, which is partially interrupted or divided in the longitudinal direction and the outer diameter of the fiber and / or the diameter of the hollow portion is not uniform in the longitudinal direction.
2) The fine carbon fiber according to 1) above, wherein the thickness width of the layered carbon having a multilayer structure or the carbon structure is partially different on the left and right with respect to the hollow portion forming the center of the fiber.
3) A fine carbon fiber in which the fine carbon fiber described in 1) or 2) occupies 10% by mass or more in a fine carbon fiber having an outer diameter of 1 nm to 80 nm and an aspect ratio of 10 to 30000.
4) Fine carbon fiber obtained by heat-treating the fine carbon fiber according to any one of 1) to 3) above.
5) The fine carbon fiber according to 4) above, wherein the heat treatment temperature is 900 to 3000 ° C.
6) A carbon fiber having a multilayer structure in which cylindrical layered carbons are overlapped, and the center part of the fiber is a hollow structure, and has an outer diameter of 1 nm to 80 nm, an aspect ratio of 10 to 30,000, and an R value by Raman spectroscopic measurement. (I D / I G ) is 0.6 to 1.6, plane spacing C 0 by X-ray diffraction is 6.70 to 6.95 mm, and the cross-sectional shape perpendicular to the fiber axis direction is diversified Carbon fiber.
7) A carbon fiber having a multilayer structure in which cylindrical layered carbons are overlapped, and the center part of the fiber is a hollow structure, and has an outer diameter of 1 nm to 80 nm, an aspect ratio of 10 to 30,000, and an R value by Raman spectroscopic measurement. Fine carbon fiber having (I D / I G ) of 0.1 to 1, surface spacing C 0 by X-ray diffraction of 6.70 to 6.90 mm, and diversified cross-sectional shape perpendicular to the fiber axis direction .
8) A carbon fiber having a multilayer structure in which cylindrical layered carbons are overlapped, and the center part of the fiber is a hollow structure, and has an outer diameter of 1 nm to 80 nm, an aspect ratio of 10 to 30,000, and perpendicular to the fiber axis direction. The fine carbon fiber according to 6) or 7), wherein the cross-sectional shape is diversified, and cylindrical layered carbons arranged in an annual ring shape around a hollow diameter are bonded to each other.
9) A fine carbon fiber in which the fine carbon fiber according to any one of 6) to 8) occupies 10% by mass or more in a fine carbon fiber having an outer diameter of 1 nm to 80 nm and an aspect ratio of 10 to 30,000.
10) A process of vaporizing an organic transition metal compound and, if necessary, an organic compound solution in which a sulfur compound is dissolved, sending it to the reactor in a state where the temperature is kept below the decomposition temperature of the organic transition metal compound, and sent from another route A method for producing fine carbon fibers, comprising: a step of sending a preheated carrier gas to a reaction furnace; and a step of combining both gases for the first time in a heating reaction zone of 700 to 1300 ° C. of the reaction furnace and reacting them instantaneously.
11) The manufacturing method of the fine carbon fiber as described in said 10) whose preheating temperature is 500 to 1300 degreeC.
12) A step of vaporizing an organic compound solution in which an organic transition metal compound and, if necessary, a sulfur compound are vaporized, keeping the temperature below the decomposition temperature of the organic transition metal compound and sending it to the reaction furnace, and a separate route The above 1) produced by a production method comprising a step of sending a preheated carrier gas to a reactor and a step of combining both gases for the first time in a heating reaction zone of 700 to 1300 ° C. of the reactor and reacting them instantaneously. The fine carbon fiber according to any one of -3) and 6) -9).
13) Evaporating the organic transition metal compound and, if necessary, the organic compound solution in which the sulfur compound is dissolved, sending it to the reaction furnace while keeping the temperature below the decomposition temperature of the organic transition metal compound, and sending it from another route A fine carbon fiber produced by a production method comprising a step of sending a preheated carrier gas to a reaction furnace and a step of combining both gases for the first time in a heating reaction zone of 700 to 1300 ° C. of the reaction furnace to react instantaneously. The fine carbon fiber according to any one of 1) to 3) and 6) to 9) obtained by further heat treatment.
14) The fine carbon fiber according to 13) above, wherein the heat treatment temperature is 900 to 3000 ° C.
15) The fine carbon fiber according to any one of 12) to 14) above, wherein the preheating temperature is 500 ° C to 1300 ° C.
16) The electroconductive material containing the fine carbon fiber as described in any one of 1) to 9) and 12) to 15) above.

以下、本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.

本発明の微細炭素繊維の製造方法は、原料及び触媒となる有機化合物溶液を気化させ、触媒として作用する有機遷移金属化合物の分解温度未満に保温保持しつつ反応炉へ送る経路と、別経路で高温に予熱したキャリアーガスを反応炉へ送る経路を分け、初めて反応炉の700〜1300℃の反応帯にて瞬時に合体させることに特徴がある。キャリアーガスを気化原料とは別に有機遷移金属化合物の分解温度以上、反応温度近辺まで上げた状態で反応帯に送ることができることにより原料気体との合体以降の反応を速やかに行うことができる。また、気化原料と経路を分けることにより気化原料が反応前に異常に加熱されることが無いため、遷移金属は反応路内に入ってから分解が始まる。これにより微細な炭素繊維の成長が得られる。  The method for producing fine carbon fibers of the present invention comprises a route for vaporizing an organic compound solution serving as a raw material and a catalyst and sending it to the reactor while keeping the temperature below the decomposition temperature of the organic transition metal compound acting as a catalyst. It is characterized by dividing the route for sending the carrier gas preheated to a high temperature to the reactor and instantly combining them for the first time in the reaction zone of 700 to 1300 ° C. of the reactor. Since the carrier gas can be sent to the reaction zone in a state where the carrier gas is raised above the decomposition temperature of the organic transition metal compound to near the reaction temperature separately from the vaporized raw material, the reaction after the coalescence with the raw material gas can be performed rapidly. Further, since the vaporized raw material is not abnormally heated before the reaction by separating the vaporized raw material and the path, the transition metal starts to decompose after entering the reaction path. Thereby, the growth of fine carbon fibers can be obtained.

本発明の炭素繊維の製造方法において、使用される金属系触媒の有機遷移金属化合物は、周期律表第IVa,Va,VIa,VIIa,VIII族の金属元素の中から選ばれる少なくとも1種の元素を含む化合物であり、好ましくはフェロセン、ニッケルセン等のメタロセン化合物が使用される。本発明においては、触媒中の遷移金属の含有量は、触媒中の炭素量に対して0.03〜10.0質量%好ましくは0.1〜5.0質量%がよい。  In the method for producing carbon fiber of the present invention, the organic transition metal compound of the metal catalyst used is at least one element selected from the group IVa, Va, VIa, VIIa, and VIII metal elements. Preferably, a metallocene compound such as ferrocene or nickel sen is used. In the present invention, the content of the transition metal in the catalyst is 0.03 to 10.0% by mass, preferably 0.1 to 5.0% by mass, based on the amount of carbon in the catalyst.

またその他、助触媒として硫黄化合物を用いてもよいが、その形態は特に制限は無く、炭素源であるベンゼン、トルエン等の有機化合物に溶解するものが好ましい。その硫黄化合物として、チオフェンや各種チオールあるいは、無機硫黄等が用いられる。その使用量は有機化合物に対して0.01〜5.0質量%、好ましくは0.1〜3.0質量%がよい。  In addition, a sulfur compound may be used as a co-catalyst, but the form thereof is not particularly limited, and those that dissolve in an organic compound such as benzene or toluene as a carbon source are preferable. As the sulfur compound, thiophene, various thiols, inorganic sulfur, or the like is used. The amount used is 0.01 to 5.0% by mass, preferably 0.1 to 3.0% by mass, based on the organic compound.

炭素繊維の炭素源となる有機化合物は、ベンゼン、トルエン、キシレン、メタノール、エタノール、ナフタレン、フェナントレン、シクロプロパン、シクロペンテン、シクロヘキサンなどの有機化合物、及びそれらの混合物や揮発油、灯油等あるいはCO、天然ガス、メタン、エタン、エチレン、アセチレン等のガスも使用可能である。中でもベンゼン、トルエン、キシレン等の芳香族化合物が特に好ましい。  Organic compounds that are carbon sources for carbon fibers are organic compounds such as benzene, toluene, xylene, methanol, ethanol, naphthalene, phenanthrene, cyclopropane, cyclopentene, cyclohexane, mixtures thereof, volatile oil, kerosene, etc., CO, natural Gases such as gas, methane, ethane, ethylene, and acetylene can also be used. Of these, aromatic compounds such as benzene, toluene and xylene are particularly preferred.

キャリアーガスとしては、通常水素ガスが使用される。本発明では、キャリアーガスをあらかじめ加熱しておく。加熱温度は500〜1300℃が好ましい。さらに好ましくは、700〜1300℃である。キャリアーガスを加熱する理由は、反応時に触媒の金属粒子の生成と有機化合物の熱分解による炭素源の供給時期を一致させ反応を瞬時に起こすためである。  As the carrier gas, hydrogen gas is usually used. In the present invention, the carrier gas is heated in advance. The heating temperature is preferably 500 to 1300 ° C. More preferably, it is 700-1300 degreeC. The reason for heating the carrier gas is that the generation of catalyst metal particles coincides with the supply timing of the carbon source by the thermal decomposition of the organic compound during the reaction, and the reaction occurs instantly.

キャリアーガスを有機化合物、遷移金属化合物を含む原料ガスと混合した際に、キャリアーガスの加熱温度が500℃未満では、原料の有機化合物の熱分解が起こりにくく、また1300℃を超えると炭素繊維の径方向の成長が起こりやすくなり、径が太くなりやすい。  When the carrier gas is mixed with a raw material gas containing an organic compound and a transition metal compound, if the heating temperature of the carrier gas is less than 500 ° C., thermal decomposition of the organic compound of the raw material hardly occurs, and if it exceeds 1300 ° C., Radial growth tends to occur and the diameter tends to increase.

本発明における遷移金属化合物、有機化合物、キャリアーガスの割合は、およそ(0.005〜0.2):(0.5〜6):(94〜99.5)(モル%)全量で100モル%が適当である。  The ratio of the transition metal compound, the organic compound, and the carrier gas in the present invention is approximately (0.005 to 0.2) :( 0.5 to 6) :( 94 to 99.5) (mol%) in a total amount of 100 mol. % Is appropriate.

径の微細な炭素繊維を得るためには、キャリアーガスとして水素ガスを使用した場合、水素ガスの比率を90モル%以上、好ましくは、94モル%以上、さらに好ましくは96モル%以上にし、有機化合物の炭素源濃度(モル%)を小さくするほうがよい。  In order to obtain carbon fibers having a fine diameter, when hydrogen gas is used as a carrier gas, the ratio of hydrogen gas is 90 mol% or more, preferably 94 mol% or more, more preferably 96 mol% or more, and organic It is better to reduce the carbon source concentration (mol%) of the compound.

気化された原料ガスは、たとえばフェロセンを遷移金属化合物として使用する場合、反応炉に入るまで200〜400℃の範囲内の温度に設定することが重要である。この温度が450℃を超えると、ガス化した有機遷移金属化合物が熱分解し、原子化した遷移金属が凝集し始める。その際、炭素源の有機化合物の分解が伴わないと炭素繊維が生成しない。また、炭素繊維は、遷移金属を核として成長するため、遷移金属の径が繊維の径を決めることになる。従って遷移金属が凝集し、その二次粒子径が大きくなると生成される炭素繊維の径も太くなる。このため、原料ガスが反応炉に入るまでの温度を遷移金属化合物の分解温度未満に抑える必要がある。  For example, when ferrocene is used as a transition metal compound, it is important that the vaporized source gas is set to a temperature in the range of 200 to 400 ° C. until entering the reactor. When this temperature exceeds 450 ° C., the gasified organic transition metal compound is thermally decomposed and the atomized transition metal starts to aggregate. At that time, carbon fiber is not generated unless the organic compound of the carbon source is decomposed. Further, since the carbon fiber grows with the transition metal as a nucleus, the diameter of the transition metal determines the diameter of the fiber. Therefore, when the transition metal is aggregated and the secondary particle diameter is increased, the diameter of the produced carbon fiber is increased. For this reason, it is necessary to suppress the temperature until the source gas enters the reaction furnace below the decomposition temperature of the transition metal compound.

有機化合物と遷移金属化合物を含む原料ガスは、遷移金属化合物の分解温度未満のまま、別に500〜1300℃程度に加熱した例えば水素キャリアーガスとともに反応炉の700〜1300℃の熱領域帯へ、好ましくは1000℃〜1300℃の熱領域帯へ瞬時に導入することが好ましい。  The raw material gas containing the organic compound and the transition metal compound is preferably heated to a temperature region of 700 to 1300 ° C. in the reactor together with, for example, a hydrogen carrier gas, which is heated to about 500 to 1300 ° C. while remaining below the decomposition temperature of the transition metal compound. Is preferably introduced instantaneously into a heat zone of 1000 ° C to 1300 ° C.

通常は、反応炉として筒型の電気炉を使用し、これに原料ガス、キャリアーガスを吹き込む方法をとるので、なるべくパイプ、チューブ等により所定の温度領域へそれらのガスが直接届くようにするのが好ましい。この場合、原料ガス供給用のパイプと加熱したキャリアーガス供給用のパイプは、別々にして分けておいたほうが、原料ガスの温度管理の点で好ましい。瞬時に導入するとは、パイプ内でガスが高温化しないように有機遷移金属化合物の分解温度以上の時間が0.5秒以下、さらに0.1秒以下であることが好ましい。このため、各パイプの先端を近接させ所定の温度領域に設けておくこと、必要に応じパイプを断熱しておくことが肝要である。  Normally, a cylindrical electric furnace is used as the reaction furnace, and the raw material gas and carrier gas are blown into the reactor, so that these gases are directly delivered to a predetermined temperature region as much as possible. Is preferred. In this case, it is preferable in terms of temperature control of the source gas that the source gas supply pipe and the heated carrier gas supply pipe are separated separately. To introduce instantaneously, it is preferable that the time above the decomposition temperature of the organic transition metal compound is 0.5 seconds or less, more preferably 0.1 seconds or less, so that the temperature of the gas does not rise in the pipe. For this reason, it is important that the tips of the pipes are close to each other and provided in a predetermined temperature region, and that the pipes are insulated as necessary.

このようにして反応炉に吹き込まれた原料ガスが熱分解し、有機化合物は炭素源となり、有機遷移金属化合物は触媒の遷移金属粒子となり、この遷移金属粒子を核とした微細炭素繊維の生成が行われる。得られた繊維は、必要に応じ900〜3000℃、用途により900℃〜1900℃、あるいは2000℃〜3000℃の熱処理を行うことにより本発明の特異な微細炭素繊維が得られる。  In this way, the raw material gas blown into the reaction furnace is thermally decomposed, the organic compound becomes a carbon source, the organic transition metal compound becomes the transition metal particle of the catalyst, and the production of fine carbon fibers with the transition metal particle as a nucleus is generated. Done. The obtained fiber is subjected to a heat treatment at 900 to 3000 ° C., or 900 ° C. to 1900 ° C., or 2000 ° C. to 3000 ° C. depending on the use, and the specific fine carbon fiber of the present invention is obtained.

また、熱処理は一度でなく、数回にわけて段階的に行ってもよく、熱処理温度の最高温度、保持時間によって炭素繊維の物性、構造等が定まる。保持時間は装置、炭素繊維の処理量、密度、径、アスペクト比等に影響され、一概には決められないが、通常は数分〜数時間、好ましくは10分〜3時間程度である。  Further, the heat treatment may be carried out in stages, not once, and the physical properties, structure, etc. of the carbon fiber are determined by the maximum heat treatment temperature and the holding time. The holding time is influenced by the apparatus, carbon fiber throughput, density, diameter, aspect ratio, etc., and is not generally determined, but is usually several minutes to several hours, preferably about 10 minutes to 3 hours.

熱処理は、通常の電気炉を用いて行えばよいが、N以外の不活性ガス雰囲気(例えば、アルゴン、ヘリウムなど)中で行うことが表面の窒素化を防止するために好ましい。この熱処理を行うことにより、熱処理なしの炭素繊維に比べてより導電性のよい繊維が得られる。The heat treatment may be performed using a normal electric furnace, but is preferably performed in an inert gas atmosphere (for example, argon, helium, etc.) other than N 2 in order to prevent surface nitrification. By performing this heat treatment, fibers having better conductivity can be obtained as compared with carbon fibers without heat treatment.

本発明の微細炭素繊維について説明する。  The fine carbon fiber of the present invention will be described.

本発明の微細炭素繊維の特徴の第一は、
1)繊維の中心部が中空構造であり、筒状の層状炭素が年輪状に多層構造をなす炭素繊維において、その筒状の層状炭素が完全な筒を形成せず一部途切れ、あるいは長手方向で分断され、繊維の外径及び/又は中空部分の内径が長手方向において一様でない外径1nm〜80nm、アスペクト比10〜30000の微細炭素繊維、
2)繊維の中心部をなす中空部分に関して左右で、多層構造の層状炭素の厚み幅、又は炭素構造が部分的に異なる上記1)記載の微細炭素繊維、
3)外径1nm〜80nm、アスペクト比10〜30000の微細炭素繊維中に、上記1)または2)記載の微細炭素繊維が10質量%以上を占める微細炭素繊維である。
The first feature of the fine carbon fiber of the present invention is
1) In a carbon fiber in which the center of the fiber has a hollow structure, and the cylindrical layered carbon forms a multi-layered structure in an annual ring shape, the cylindrical layered carbon does not form a complete cylinder, or is partially interrupted or longitudinally A fine carbon fiber having an outer diameter of 1 nm to 80 nm and an aspect ratio of 10 to 30000, wherein the outer diameter of the fiber and / or the inner diameter of the hollow portion is not uniform in the longitudinal direction,
2) The fine carbon fiber according to the above 1), wherein the thickness width of the layered carbon of the multilayer structure or the carbon structure is partially different on the left and right with respect to the hollow portion forming the center of the fiber,
3) The fine carbon fiber in which the fine carbon fiber described in 1) or 2) occupies 10% by mass or more in the fine carbon fiber having an outer diameter of 1 nm to 80 nm and an aspect ratio of 10 to 30,000.

本発明の微細炭素繊維は、先に従来法として挙げた各種気相法による炭素繊維と類似の構造であるが、以下の点に特異性がある。  The fine carbon fiber of the present invention has a structure similar to that of carbon fibers obtained by the various gas phase methods mentioned above as a conventional method, but is unique in the following points.

まず、構造としては、炭素原子からなる筒状層状炭素が年輪状に重なりあった多層構造である。この層状炭素は規則的に配列した炭素原子が連続したものであるが、繊維の長手直角方向からこれを透過型電子顕微鏡(TEM)にて観察したものの模式図を第1(A)図、第1(B)図に示す。これらの図に示すように、層状炭素がおおむね繊維方向(長手方向)に直線状に、多重に重なりあって見られ、従来の気相法炭素繊維と類似しているように見えるが、各所でこの筒状の層状炭素が長手方向において途切れて不連続になっている部分が見られる点に従来法による炭素繊維に無い特徴を持っている。すなわち、第3図は従来の気相法炭素繊維の説明図であるが、中心に中空部11を持ち、中心軸A−A′の両側に左右対称の規則的に配列した円筒状の層状炭素12が見られる。第4図は本発明による微細炭素繊維の説明図であるが、この層状炭素12が中心軸A−A′の両側に左右対称ではなく、従って円周上に完全な円筒を形成しておらず、円筒の一部が欠損し、隣接する他の円筒状の層状炭素間にはさまれて分断している部分が多数見られる。  First, the structure is a multilayer structure in which cylindrical layered carbon composed of carbon atoms overlaps in an annual ring shape. This layered carbon is a series of regularly arranged carbon atoms, and a schematic diagram of what is observed with a transmission electron microscope (TEM) from the direction perpendicular to the longitudinal direction of the fiber is shown in FIGS. It is shown in Fig. 1 (B). As shown in these figures, the layered carbon appears to be almost linearly overlapped in the fiber direction (longitudinal direction) and overlapped with each other, and appears to be similar to the conventional vapor grown carbon fiber. This cylindrical layered carbon has a feature that is not found in carbon fibers according to the conventional method in that a portion where the layered carbon is interrupted and discontinuous in the longitudinal direction is seen. That is, FIG. 3 is an explanatory view of a conventional vapor grown carbon fiber, but has a hollow portion 11 in the center, and is a cylindrical layered carbon that is regularly arranged symmetrically on both sides of the central axis A-A ′. 12 is seen. FIG. 4 is an explanatory view of the fine carbon fiber according to the present invention, but the layered carbon 12 is not symmetrical on both sides of the central axis A-A ′, and therefore does not form a complete cylinder on the circumference. A part of the cylinder is missing, and there are many parts that are separated by being sandwiched between other adjacent cylindrical carbon layers.

また、中心部には中空の空洞部分11が存在する点は従来法のものと類似しているが、本発明の微細炭素繊維はその中空部11の径dが一定していない点に特異性がある。Although the center point of the hollow cavity portion 11 is present is similar to that of the prior art, the fine carbon fibers of the present invention specifically in that the diameter d 2 of the hollow portion 11 is not constant There is sex.

本発明の微細炭素繊維は、その中心部にある中空部分11の中心軸A−A′の左右で多層構造の重なり合った層状炭素12の層の厚み幅eが異なる。この厚み幅eは、仮想的な円周上の完全な筒に比べて外径側に厚くなったり、内部の中空部分11に食い込んだりし、その結果として繊維の外径dを大きく変えたり、中空部分11の径dを変化させていることになる。この外径dあるいは径dのばらつきは、大きな部分では、最小直径の10数%近くに達し、小さな部分でも2〜3%になることがあり、これが長手方向に部分的に突起状態となって現れている。これらにより、この炭素繊維は完全な円柱状を示すといえないことが特徴である。In the fine carbon fiber of the present invention, the thickness width e of the layers of the layered carbon 12 having a multilayer structure is different on the left and right of the central axis A-A ′ of the hollow portion 11 at the center. The thickness width e is being thick on the outer diameter side than full cylinder on virtual circumference, and pressed into the interior of the hollow portion 11, changing increasing the outer diameter d 1 of the fiber as a result , it means that by changing the diameter d 2 of the hollow portion 11. The variation in the outer diameter d 1 or the diameter d 2 reaches nearly 10% of the minimum diameter in a large portion and may be 2 to 3% even in a small portion. It appears. Accordingly, this carbon fiber is characterized in that it cannot be said to exhibit a complete columnar shape.

層状炭素12の層の厚み幅eの厚い部分は、長手方向に分断された層状炭素12が入り込んで層数が多くなったり、層状炭素12の端面が外部に開放されている部分も見られる。ここで層状炭素12の層の厚み幅eとは、繊維の外周位置から中心へ向かって中空部分11が始まるまでの距離と言い換えられる。  In the portion where the thickness width e of the layered carbon 12 is thick, the layered carbon 12 divided in the longitudinal direction enters and the number of layers increases, or a portion where the end surface of the layered carbon 12 is open to the outside is also seen. Here, the thickness e of the layer of the layered carbon 12 is paraphrased as a distance from the outer peripheral position of the fiber toward the center until the hollow portion 11 starts.

また、本発明の微細炭素繊維を熱硬化性樹脂に埋め込み固定した後、研磨して、その繊維方向(長手方向)に対して垂直な断面を切り出し、その断面を透過型電子顕微鏡により撮影した写真を第5図及び第6図に示す。第5図及び第6図から明らかなように、その断面の形状は円筒ではなく多角化している。また、中空径を中心に年輪状に配列した筒状の層状炭素(炭素シート)同士が結合している。  Moreover, after embedding and fixing the fine carbon fiber of the present invention in a thermosetting resin, it was polished, a cross section perpendicular to the fiber direction (longitudinal direction) was cut out, and the cross section was photographed with a transmission electron microscope Are shown in FIG. 5 and FIG. As is apparent from FIGS. 5 and 6, the cross-sectional shape is not a cylinder but a polygon. Further, cylindrical layered carbons (carbon sheets) arranged in an annual ring shape around the hollow diameter are bonded to each other.

これらの層状炭素12の厚み幅eの変化する部分では、この中空部分11の電子回折を観察すると、その回折像が非対称であり、炭素構造が部分的に異なっているものが見られて一様でない。  In the portion where the thickness width e of the layered carbon 12 varies, when the electron diffraction of the hollow portion 11 is observed, the diffraction image is asymmetrical, and the carbon structure is partially different and uniform. Not.

また、本発明の微細炭素繊維のラマン分光を測定すると、1360cm−1付近に吸収を持ついわゆるDピークと1580cm−1付近に吸収を持ついわゆるGピークとのピーク強度比R値(I/I)が、900℃〜1500℃の熱処理を施したものでは0.6〜1.6であり、2000℃〜3000℃の高温熱処理を施したものでは0.1〜1であった。Also, when measuring the Raman spectroscopy of the fine carbon fiber of the present invention, the peak intensity ratio R value of so-called G peak having an absorption in the vicinity of the so-called D peak and 1580 cm -1 having an absorption in the vicinity of 1360cm -1 (I D / I G ) was 0.6 to 1.6 when subjected to heat treatment at 900 ° C. to 1500 ° C., and 0.1 to 1 when subjected to high temperature heat treatment at 2000 ° C. to 3000 ° C.

また、どんなに高温で熱処理をしてもR値は0.1以下にならなかった。  Further, the R value did not become 0.1 or less even when heat treatment was performed at any high temperature.

さらに学振法(炭素、No.36、25−34頁、1963年)に準じたX線回折による面間隔Cが、900℃〜1500℃の熱処理を施したものでは6.70〜6.95Å(0.670〜0.695nm)であり、2000℃〜3000℃の高温熱処理を施したものでは6.70〜6.90Å(0.670〜0.690nm)であった。Furthermore, in the case where the surface interval C 0 by X-ray diffraction according to the Gakushin method (Carbon, No. 36, pages 25-34, 1963) is subjected to heat treatment at 900 ° C. to 1500 ° C., 6.70 to 6. It was 95 mm (0.670 to 0.695 nm), and 6.70 to 6.90 mm (0.670 to 0.690 nm) when subjected to high temperature heat treatment at 2000 to 3000 ° C.

このように外径が一様でないことあるいは完全な円柱でないことにより、本発明の微細炭素繊維を樹脂、ゴム等へ添加する場合、従来法による炭素繊維と異なり接着性がよく、なんらの前処理を行うことなくフィラー材として添加することが可能である。  In this way, when the fine carbon fiber of the present invention is added to a resin, rubber, etc. due to non-uniform outer diameter or not a perfect cylinder, it has good adhesiveness unlike the carbon fiber by the conventional method, and any pretreatment It is possible to add as a filler material without performing.

また、本発明の微細炭素繊維を10質量%以上、好ましくは15質量%以上含むとその構造の特徴により、導電性フィラー等として使用した場合、樹脂、ゴム等への接着性が向上した導電性材料が得られる。  In addition, when the fine carbon fiber of the present invention is contained in an amount of 10% by mass or more, preferably 15% by mass or more, due to the characteristics of the structure, when used as a conductive filler, etc., the conductivity is improved in adhesion to resin, rubber, etc. A material is obtained.

本発明の微細炭素繊維は、外径が1nm〜80nmで、アスペクト比10〜30000の微細で長い繊維として得られるので、フェラー材として多量に添加が可能であり補強効果に優れ、かつ加工性もよい。  Since the fine carbon fiber of the present invention is obtained as a fine and long fiber having an outer diameter of 1 nm to 80 nm and an aspect ratio of 10 to 30000, it can be added in a large amount as a feller material, has an excellent reinforcing effect, and has a good workability. Good.

更に、先に述べた特徴として、層状炭素の一部端面が外部に出ている(開放されている)ことから、電池の添加材として使用した場合に、イオンの補足性がよく、また導電性についても従来の気相法炭素繊維と変わらず、かつ表面が平滑でないため電池の電解液との濡れ性もよい。従って電池用の添加材として好適である。  Furthermore, as described above, since part of the surface of the layered carbon is exposed to the outside (opened), when used as a battery additive, it has good ion-supplementability and conductivity. In addition, since the surface is not smooth, the wettability with the battery electrolyte is good. Therefore, it is suitable as an additive for batteries.

以下、本発明を実施例をあげて説明するが、本発明は実施例の内容に制限されるものではない。
(実施例1)
第2図に微細炭素繊維を製造する製造装置の概略図を示す。この装置は縦型加熱炉1(内径170mm、長さ1500mm)の頂部に、原料気化器5を通して気化させた原料を導入する原料供給管4と、キャリアーガス加熱器7を通して昇温したキャリアーガスを供給するキャリアーガス供給管6を取りつけたものである。また、原料供給管4は、その先端が炉内の1000℃の温度領域帯に位置するように調節して取りつけた。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not restrict | limited to the content of an Example.
(Example 1)
FIG. 2 shows a schematic view of a production apparatus for producing fine carbon fibers. This apparatus has a raw material supply pipe 4 for introducing a raw material vaporized through a raw material vaporizer 5 and a carrier gas heated through a carrier gas heater 7 at the top of a vertical heating furnace 1 (inner diameter 170 mm, length 1500 mm). A carrier gas supply pipe 6 to be supplied is attached. Further, the raw material supply pipe 4 was adjusted and attached so that the tip thereof was positioned in a temperature range of 1000 ° C. in the furnace.

原料供給管4から、フェロセン4質量%、チオフェン2質量%とを溶解したベンゼン溶液を気化させ200℃に保って18g/分の速度で加熱炉に供給し、キャリアーガスの水素はキャリアーガス加熱器7で600℃に加熱されて100リットル/分で加熱炉内に供給し、両ガスを1000℃下で反応させた。  From the raw material supply pipe 4, a benzene solution in which 4% by mass of ferrocene and 2% by mass of thiophene are vaporized is vaporized and maintained at 200 ° C. and supplied to the heating furnace at a rate of 18 g / min. The carrier gas hydrogen is a carrier gas heater. 7 was heated to 600 ° C. and supplied into the heating furnace at 100 liters / minute, and both gases were reacted at 1000 ° C.

この反応で得られた微細炭素繊維を集め、Ar(アルゴン)雰囲気下1300℃で20分間熱処理した。次に1300℃処理品の一部をAr雰囲気下2800℃で20分間熱処理した。  The fine carbon fibers obtained by this reaction were collected and heat-treated at 1300 ° C. for 20 minutes in an Ar (argon) atmosphere. Next, a part of the 1300 ° C. treated product was heat-treated at 2800 ° C. for 20 minutes in an Ar atmosphere.

1300℃処理品、2800℃処理品のいずれの場合も、TEM観察により、第5図に示すように炭素原子からなる筒状の層状炭素が重なりあった多層構造が見られ、また一部この筒状の層状炭素が長手軸方向にて途切れて不連続になっている構造が見られた。また、本発明の微細炭素繊維の中空部分の中心軸の対象位置(図において左右)で多層構造を構成する層状炭素の層の厚み幅が部分的に異なっている部分が見られた。  In either case of the 1300 ° C. treated product and the 2800 ° C. treated product, a TEM observation shows a multilayer structure in which cylindrical layered carbons composed of carbon atoms are overlapped as shown in FIG. A structure was observed in which the layered carbon was discontinuous in the longitudinal direction. Moreover, the part from which the thickness width of the layered carbon layer which comprises a multilayer structure differs partially in the object position (left and right in a figure) of the central axis of the hollow part of the fine carbon fiber of this invention was seen.

この製造方法により得られた該繊維の外径は、ほとんどが約10nm〜50nmの範囲で、かつアスペクト比数10以上の繊維であった。また、筒状の層状炭素が途中で分断され、外径の一定でない構造上の特徴を持った繊維が得られた該繊維の半数以上を占めており、同一繊維において該繊維の外径及び中空径が10数%のばらつきを有する長さであることが認められた。  Most of the outer diameters of the fibers obtained by this production method were in the range of about 10 nm to 50 nm and the aspect ratio was 10 or more. In addition, the cylindrical layered carbon is divided in the middle and accounts for more than half of the obtained fibers having structural characteristics with a non-constant outer diameter. It was recognized that the diameter was a length having a variation of several 10%.

また、本発明の微細炭素繊維の導電性は、従来の径が100nm以上であるVGCFと同等レベルであった。  Further, the conductivity of the fine carbon fiber of the present invention was equivalent to that of VGCF having a conventional diameter of 100 nm or more.

本発明によれば、本発明の微細炭素繊維は、従来のPANなどの炭素繊維や従来の気相法炭素繊維(VGCF)と異なり、外径が1nm〜80nmと小さく、そのアスペクト比が10〜30000で、炭素繊維を構成する筒状の層状炭素が乱れ、樹脂、ゴム等の導電性フィラーとして表面処理を施すことなく用いることができる。また、本発明の炭素繊維は電池用添加材として電解液との濡れ性の優れる炭素材料を提供できる。  According to the present invention, unlike the conventional carbon fiber such as PAN and the conventional vapor grown carbon fiber (VGCF), the fine carbon fiber of the present invention has an outer diameter as small as 1 nm to 80 nm and an aspect ratio of 10 to 10. At 30000, the cylindrical layered carbon constituting the carbon fiber is disturbed and can be used as a conductive filler such as resin or rubber without being subjected to surface treatment. Moreover, the carbon fiber of this invention can provide the carbon material which is excellent in wettability with electrolyte solution as an additive for batteries.

第1(A)図は本発明の微細炭素繊維の構造の1例を表す模式図である。第1(B)図は本発明の微細炭素繊維の構造の他の例を表す模式図である。FIG. 1 (A) is a schematic view showing an example of the structure of the fine carbon fiber of the present invention. FIG. 1 (B) is a schematic view showing another example of the structure of the fine carbon fiber of the present invention. 第2図は実施例において使用される縦型加熱炉を備えた製造装置の概略図である。FIG. 2 is a schematic view of a production apparatus provided with a vertical heating furnace used in the examples. 第3図は従来の気相法による炭素繊維の説明図である。FIG. 3 is an explanatory view of carbon fiber by a conventional vapor phase method. 第4図は本発明による微細炭素繊維の説明図である。FIG. 4 is an explanatory view of the fine carbon fiber according to the present invention. 第5図は本発明の微細炭素繊維の透過型電子顕微鏡写真である。FIG. 5 is a transmission electron micrograph of the fine carbon fiber of the present invention. 第6図は本発明の微細炭素繊維の透過型電子顕微鏡写真である。FIG. 6 is a transmission electron micrograph of the fine carbon fiber of the present invention.

Claims (16)

繊維の中心部が中空構造であり、筒状の層状炭素が年輪状に多層構造をなす炭素繊維であって、その筒状の層状炭素が完全な筒を形成せず一部途切れ、あるいは長手方向で分断され、繊維の外径及び/又は中空部分の径が長手方向において一様でない外径1nm〜80nm、アスペクト比10〜30000の微細炭素繊維。  The center of the fiber has a hollow structure, and the cylindrical layered carbon is a carbon fiber having a multi-layered structure like an annual ring, and the cylindrical layered carbon does not form a complete cylinder, or is partially interrupted or longitudinally Fine carbon fibers having an outer diameter of 1 nm to 80 nm and an aspect ratio of 10 to 30000, which are separated by the outer diameter of the fiber and / or the diameter of the hollow portion is not uniform in the longitudinal direction. 繊維の中心部をなす中空部分の中心軸に関して対象位置で、多層構造の層状炭素繊維の厚み幅、又は炭素構造が部分的に異なる請求項1記載の微細炭素繊維。  The fine carbon fiber according to claim 1, wherein the thickness width or the carbon structure of the layered carbon fiber having a multilayer structure is partially different at a target position with respect to the central axis of the hollow portion forming the center of the fiber. 外径1nm〜80nm、アスペクト比10〜30000の微細炭素繊維中に、請求項1又は2記載の微細炭素繊維が10質量%以上を占める微細炭素繊維。  The fine carbon fiber in which the fine carbon fiber according to claim 1 or 2 occupies 10% by mass or more in the fine carbon fiber having an outer diameter of 1 nm to 80 nm and an aspect ratio of 10 to 30000. 請求項1〜3のいずれか一つに記載の微細炭素繊維を熱処理することにより得られた微細炭素繊維。  The fine carbon fiber obtained by heat-processing the fine carbon fiber as described in any one of Claims 1-3. 熱処理温度が、900〜3000℃である請求項4記載の微細炭素繊維。  The fine carbon fiber according to claim 4, wherein the heat treatment temperature is 900 to 3000 ° C. 筒状の層状炭素が重なり合った多層構造であり、繊維の中心部が中空構造である炭素繊維であって、外径1nm〜80nm、アスペクト比10〜30,000、ラマン分光測定によるR値(I/I)が0.6〜1.6、X線回折による面間隔Cが0.670nm〜0.695nmであり、繊維軸方向に垂直な断面の形状が多角化している微細炭素繊維。This is a carbon fiber having a multilayer structure in which cylindrical layered carbons are overlapped, and the center part of the fiber is a hollow structure, and has an outer diameter of 1 nm to 80 nm, an aspect ratio of 10 to 30,000, and an R value (I D / I G ) is 0.6 to 1.6, the interplanar spacing C 0 by X-ray diffraction is 0.670 nm to 0.695 nm, and the shape of the cross section perpendicular to the fiber axis direction is diversified. . 筒状の層状炭素が重なり合った多層構造であり、繊維の中心部が中空構造である炭素繊維であって、外径1nm〜80nm、アスペクト比10〜30,000、ラマン分光測定によるR値(I/I)が0.1〜1、X線回折による面間隔Cが0.670nm〜0.690nmであり、繊維軸方向に垂直な断面の形状が多角化している微細炭素繊維。This is a carbon fiber having a multilayer structure in which cylindrical layered carbons are overlapped, and the center part of the fiber is a hollow structure, and has an outer diameter of 1 nm to 80 nm, an aspect ratio of 10 to 30,000, and an R value (I D / I G ) is 0.1 to 1, the interplanar spacing C 0 by X-ray diffraction is 0.670 nm to 0.690 nm, and the shape of the cross section perpendicular to the fiber axis direction is diversified. 筒状の層状炭素が重なり合った多層構造であり、繊維の中心部が中空構造である炭素繊維であって、外径1nm〜80nm、アスペクト比10〜30,000、繊維軸方向に垂直な断面の形状が多角化しており、中空径を中心に年輪状に配列した筒状の層状炭素同士が結合している請求項6又は7に記載の微細炭素繊維。  It is a multi-layered structure in which cylindrical layered carbon overlaps, and the center part of the fiber is a carbon fiber having a hollow structure, having an outer diameter of 1 nm to 80 nm, an aspect ratio of 10 to 30,000, and a cross section perpendicular to the fiber axis direction. The fine carbon fiber according to claim 6 or 7, wherein the shape is diversified, and cylindrical layered carbons arranged in an annual ring shape around a hollow diameter are bonded to each other. 外径1nm〜80nm、アスペクト比10〜30,000の微細炭素繊維中に請求項6〜8のいずれか一つに記載の微細炭素繊維が10質量%以上を占める微細炭素繊維。  The fine carbon fiber which the fine carbon fiber as described in any one of Claims 6-8 occupies 10 mass% or more in fine carbon fiber with an outer diameter of 1 nm to 80 nm and an aspect ratio of 10 to 30,000. 有機遷移金属化合物及び必要に応じ硫黄化合物を溶解した有機化合物溶液を気化させ、該有機遷移金属化合物の分解温度未満に保温、保持した状態で反応炉へ送る工程と、別経路より送られる予熱したキャリアーガスを反応炉へ送る工程と、両ガスを反応炉の700〜1300℃の加熱反応帯域にて初めて合体させ、瞬時に反応させる工程とを含む微細炭素繊維の製造方法。  The organic compound solution in which the organic transition metal compound and, if necessary, the sulfur compound are dissolved is vaporized, kept below the decomposition temperature of the organic transition metal compound, and sent to the reactor in a state of being kept, and preheated from another route. A method for producing fine carbon fibers, comprising: a step of sending a carrier gas to a reaction furnace; and a step of combining both gases for the first time in a heating reaction zone of 700 to 1300 ° C. of the reaction furnace and reacting them instantaneously. 予熱温度が、500℃〜1300℃である請求項10に記載の微細炭素繊維の製造方法。  The method for producing fine carbon fibers according to claim 10, wherein the preheating temperature is 500C to 1300C. 有機遷移金属化合物及び必要に応じ硫黄化合物を溶解した有機化合物溶液を気化させ、該有機遷移金属化合物の分解温度未満に保温、保持した状態で反応炉へ送る工程と、別経路より送られる予熱したキャリアーガスを反応炉へ送る工程と、両ガスを反応炉の700〜1300℃の加熱反応帯域にて初めて合体させ、瞬時に反応させる工程とを含む製造方法にて製造される請求項1〜3及び6〜9のいずれか一つに記載の微細炭素繊維。  The organic compound solution in which the organic transition metal compound and, if necessary, the sulfur compound are dissolved is vaporized, kept below the decomposition temperature of the organic transition metal compound, and sent to the reactor in a state of being kept, and preheated from another route. Claims 1 to 3 produced by a production method comprising a step of sending a carrier gas to a reaction furnace and a step of combining both gases for the first time in a heating reaction zone of 700 to 1300 ° C in the reaction furnace and reacting them instantaneously. And the fine carbon fiber as described in any one of 6-9. 有機遷移金属化合物及び必要に応じ硫黄化合物を溶解した有機化合物溶液を気化させ、該有機遷移金属化合物の分解温度未満に保温、保持した状態で反応炉へ送る工程と、別経路より送られる予熱したキャリアーガスを反応炉へ送る工程と、両ガスを反応炉の700〜1300℃の加熱反応帯域にて初めて合体させ、瞬時に反応させる工程とを含む製造方法により製造される微細炭素繊維を更に熱処理することによって得られた請求項1〜3及び6〜9のいずれか一つに記載の微細炭素繊維。  The organic compound solution in which the organic transition metal compound and, if necessary, the sulfur compound are dissolved is vaporized, kept below the decomposition temperature of the organic transition metal compound, and sent to the reactor in a state of being kept, and preheated from another route. The fine carbon fiber produced by the production method including the step of sending the carrier gas to the reaction furnace and the step of combining both gases for the first time in the heating reaction zone of 700 to 1300 ° C. of the reaction furnace and reacting instantaneously is further heat-treated. The fine carbon fiber as described in any one of Claims 1-3 and 6-9 obtained by doing. 熱処理温度が、900〜3000℃であることを特徴とする請求項13に記載の微細炭素繊維。  The fine carbon fiber according to claim 13, wherein the heat treatment temperature is 900 to 3000 ° C. 予熱温度が、500℃〜1300℃である請求項12〜14のいずれか一つに記載の微細炭素繊維。  The preheating temperature is 500 ° C to 1300 ° C, and the fine carbon fiber according to any one of claims 12 to 14. 請求項1〜9及び12〜15のいずれか一つに記載の微細炭素繊維を含む導電性材料。  The electroconductive material containing the fine carbon fiber as described in any one of Claims 1-9 and 12-15.
JP2004268974A 2000-04-12 2004-08-20 Fine carbon fiber, method of manufacturing the same and conductive material containing fine carbon fiber Pending JP2005015339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004268974A JP2005015339A (en) 2000-04-12 2004-08-20 Fine carbon fiber, method of manufacturing the same and conductive material containing fine carbon fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000110675 2000-04-12
JP2004268974A JP2005015339A (en) 2000-04-12 2004-08-20 Fine carbon fiber, method of manufacturing the same and conductive material containing fine carbon fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001575268A Division JP3841684B2 (en) 2000-04-12 2001-04-10 Fine carbon fiber, method for producing the same, and conductive material containing the fine carbon fiber

Publications (1)

Publication Number Publication Date
JP2005015339A true JP2005015339A (en) 2005-01-20

Family

ID=34196390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004268974A Pending JP2005015339A (en) 2000-04-12 2004-08-20 Fine carbon fiber, method of manufacturing the same and conductive material containing fine carbon fiber

Country Status (1)

Country Link
JP (1) JP2005015339A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235279A (en) * 2001-02-08 2002-08-23 Showa Denko Kk Vapor-grown carbon fiber coated with electrical insulator, method for producing the same, and use thereof
JP2002308612A (en) * 2001-04-02 2002-10-23 Gogotsi Yury Graphite polycrystalline body and isolation method for the same and application for the same
WO2007013199A1 (en) * 2005-07-29 2007-02-01 Bussan Nanotech Research Institute Inc. Electromagnetic wave absorber
JP2007169814A (en) * 2005-12-21 2007-07-05 Jfe Engineering Kk Micro-carbon fiber and biodevice using the same
JP2008308515A (en) * 2007-06-12 2008-12-25 Nissin Kogyo Co Ltd Carbon nanofiber and manufacturing method for it, and carbon fiber composite material
US8329293B2 (en) 2006-04-28 2012-12-11 Nissin Kogyo Co., Ltd. Carbon fiber composite material
US9000085B2 (en) 2006-04-28 2015-04-07 Nissin Kogyo Co., Ltd. Carbon fiber composite resin material and method of producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238826A (en) * 1986-04-01 1987-10-19 Asahi Chem Ind Co Ltd Production of carbon fiber
JPS63503555A (en) * 1986-06-06 1988-12-22 ハイピリオン・カタリシス・インターナシヨナル・インコーポレイテツド Novel carbon fibrils
JPH08209456A (en) * 1995-01-23 1996-08-13 Nikkiso Co Ltd Production apparatus for gas-phase-grow carbon fiber
JPH10121334A (en) * 1988-01-28 1998-05-12 Hyperion Catalysis Internatl Complex containing carbon fibril material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238826A (en) * 1986-04-01 1987-10-19 Asahi Chem Ind Co Ltd Production of carbon fiber
JPS63503555A (en) * 1986-06-06 1988-12-22 ハイピリオン・カタリシス・インターナシヨナル・インコーポレイテツド Novel carbon fibrils
JPH10121334A (en) * 1988-01-28 1998-05-12 Hyperion Catalysis Internatl Complex containing carbon fibril material
JPH08209456A (en) * 1995-01-23 1996-08-13 Nikkiso Co Ltd Production apparatus for gas-phase-grow carbon fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235279A (en) * 2001-02-08 2002-08-23 Showa Denko Kk Vapor-grown carbon fiber coated with electrical insulator, method for producing the same, and use thereof
JP2002308612A (en) * 2001-04-02 2002-10-23 Gogotsi Yury Graphite polycrystalline body and isolation method for the same and application for the same
WO2007013199A1 (en) * 2005-07-29 2007-02-01 Bussan Nanotech Research Institute Inc. Electromagnetic wave absorber
JP2007169814A (en) * 2005-12-21 2007-07-05 Jfe Engineering Kk Micro-carbon fiber and biodevice using the same
US8329293B2 (en) 2006-04-28 2012-12-11 Nissin Kogyo Co., Ltd. Carbon fiber composite material
US9000085B2 (en) 2006-04-28 2015-04-07 Nissin Kogyo Co., Ltd. Carbon fiber composite resin material and method of producing the same
JP2008308515A (en) * 2007-06-12 2008-12-25 Nissin Kogyo Co Ltd Carbon nanofiber and manufacturing method for it, and carbon fiber composite material

Similar Documents

Publication Publication Date Title
US6489025B2 (en) Fine carbon fiber, method for producing the same and electrically conducting material comprising the fine carbon fiber
JP5030907B2 (en) Fine carbon fiber and composition containing the same
JP3841684B2 (en) Fine carbon fiber, method for producing the same, and conductive material containing the fine carbon fiber
US6974627B2 (en) Fine carbon fiber mixture and composition thereof
KR100781664B1 (en) Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
US7824768B2 (en) Carbon fibrous structure
US6565971B2 (en) Fine carbon fiber and method for producing the same
JPH11116218A (en) Production of single layered nanotube
JP4010767B2 (en) Fine carbon fiber aggregate
JP4405650B2 (en) Carbonaceous nanotube, fiber assembly, and method for producing carbonaceous nanotube
JP2005015339A (en) Fine carbon fiber, method of manufacturing the same and conductive material containing fine carbon fiber
JP4663187B2 (en) Fine carbon fiber mixture and composition containing the same
JP4357163B2 (en) Fine carbon fiber and composition containing the same
JP2004238791A (en) Fine carbon fiber
Qian Multiwalled carbon nanotube CVD synthesis, modification, and composite applications
JPS61619A (en) Production of carbonaceous fiber
WO2006120789A1 (en) Method for manufacturing carbon nanotubes by catalyst, method for manufacturing electric field emission electron source, electric field emission electron source, and electric field emission display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809