JPS61225319A - Carbonaceous fiber - Google Patents

Carbonaceous fiber

Info

Publication number
JPS61225319A
JPS61225319A JP5881085A JP5881085A JPS61225319A JP S61225319 A JPS61225319 A JP S61225319A JP 5881085 A JP5881085 A JP 5881085A JP 5881085 A JP5881085 A JP 5881085A JP S61225319 A JPS61225319 A JP S61225319A
Authority
JP
Japan
Prior art keywords
fiber
fibers
carbonaceous
crimp
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5881085A
Other languages
Japanese (ja)
Inventor
Yukinari Komatsu
小松 行成
Katsuyuki Nakamura
克之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5881085A priority Critical patent/JPS61225319A/en
Priority to US06/807,355 priority patent/US4816289A/en
Publication of JPS61225319A publication Critical patent/JPS61225319A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a carbonaceous fiber having the fiber diameter, aspect ratio, number of crimp and percentage crimp falling within specific respective ranges, having extremely fine fiber diameter and high uniformity and giving an aggregate or a resin composition having high degree of entanglement and remarkably improved electrical conductivity. CONSTITUTION:The objective carbonaceous fiber has a fiber diameter of 0.05-4mu, preferably 0.2-2mu, an aspect ratio (length/diameter) of >=100, a number of crimp (the total number of the crest and trough in 20mu of the crimped fiber) of >=1 and a percentage crimp of 0.5-50%, preferably 5-50%. The carbonaceous fiber is preferably the one containing graphite layers or carbon layers convertible easily to graphite and arranged concentrically parallel to the fiber axis.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明τよ炭素質繊維に関し、さらに詳しくは気相法に
よる細径の炭素質繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to carbonaceous fibers, and more particularly to small-diameter carbonaceous fibers produced by a vapor phase process.

(従来の技術) 炭素質繊維は、その優れた機械的物性から各種複合材料
として近年急速に伸びつつある材料である。従来の炭素
繊維は有機繊維を炭化する等の方法により製造されてい
たが、最近、本発明のごとき炭化水素の熱分解および触
媒反応によって炭素質繊維を生成させる気相法による炭
素繊維の製造も試みられている。気相法で得られた炭素
繊維は従来のものに比較して優れた結晶性、配向性およ
び高強度を有し、また該繊維から得られた不織布は電気
伝導性を有しているので、電池の電極材、面状発熱体等
に、またその耐熱、耐薬品性を利用してフィルターや触
媒担持体等に、また各種の複合材料、その他の用途への
展開が期待されている。
(Prior Art) Carbon fiber is a material that has been rapidly gaining popularity in recent years as a variety of composite materials due to its excellent mechanical properties. Conventionally, carbon fibers have been produced by carbonizing organic fibers, but recently, carbon fibers have also been produced by a gas phase method, in which carbon fibers are produced by thermal decomposition of hydrocarbons and a catalytic reaction, as in the present invention. is being attempted. Carbon fibers obtained by the vapor phase method have excellent crystallinity, orientation, and high strength compared to conventional ones, and nonwoven fabrics obtained from these fibers have electrical conductivity. It is expected to be used in battery electrode materials, planar heating elements, etc., as well as in filters, catalyst carriers, etc. due to its heat resistance and chemical resistance, and in various composite materials and other applications.

従来の繊維強化複合材料に用いて、強化繊維としては一
般に径が細い方が同量の強化繊維を入れた場合に母材樹
脂との接触面積が大きくなるために補強効果が優れるこ
とが知られている。特に炭素繊維は母材樹脂とのぬれ性
が良くないために、できるだけ径の細いものが望まれて
いる。
When used in conventional fiber-reinforced composite materials, it is known that reinforcing fibers with a smaller diameter generally have a better reinforcing effect because the contact area with the base resin increases when the same amount of reinforcing fibers is added. ing. In particular, carbon fibers do not have good wettability with the base resin, so carbon fibers are desired to have as small a diameter as possible.

しかしながら、従来のアクリル繊維を焼成したり、また
はピッチを不融化して得た炭素繊維は、前駆体繊維等の
紡糸が難しいために、せいぜい6〜10μ径程度の直径
のものしか得られていない。
However, conventional carbon fibers obtained by firing acrylic fibers or by infusible pitch can only be obtained with a diameter of about 6 to 10 μm at most due to the difficulty of spinning precursor fibers. .

一方、特開昭58−180615号公報には、高融点金
属、例えば950〜1300℃において気化しない金属
またはその酸化物、窒素物、塩類等の超微粉末を炭化水
素の熱分解帯域に浮遊するように存在させることにより
、炭素繊維を成長せしめることが示されているが、この
方法では、前記超微粉末が付着すればそこから枝状に炭
素繊維が成長するので、枝分かれ部分の多い炭素繊維し
か得られなかった。
On the other hand, JP-A-58-180615 discloses that ultrafine powder of high-melting point metals, such as metals that do not vaporize at 950 to 1300°C, or their oxides, nitrogen compounds, salts, etc., is suspended in a hydrocarbon thermal decomposition zone. However, in this method, if the ultrafine powder adheres, carbon fibers grow in the form of branches, so carbon fibers with many branched parts grow. I could only get it.

このようなことから補強効果を充分に発揮するように、
繊維径が細く、均一で、かつ分枝の少ない炭素質繊維は
今までに得られなかった。さらに、導電材として黒鉛化
性の良い補強用短繊維であって、補強するに充分な繊維
長/Iii維径を有するものはなく、当該短繊維はこの
ような用途分野で強く望まれていた。
For this reason, in order to fully demonstrate the reinforcing effect,
Until now, carbonaceous fibers with a small fiber diameter, uniformity, and few branches have not been obtained. Furthermore, there is no reinforcing short fiber that has good graphitizability as a conductive material and has a sufficient fiber length/Iiii fiber diameter for reinforcement, and such short fibers are strongly desired in such application fields. .

(発明が解決しようとする問題点) 本発明の目的は、繊維の直径が極めて綱(、均一で、補
強するに充分な繊維長/繊維径を有し、かつ集合体また
は樹脂組成物としたときに絡合程度が大きく、電気伝導
性が大幅に向上する炭素質繊維を提供することにある。
(Problems to be Solved by the Invention) The object of the present invention is to provide fibers with extremely uniform diameters, sufficient fiber length/fiber diameter for reinforcement, and to form an aggregate or resin composition. The object of the present invention is to provide carbonaceous fibers that are sometimes highly entangled and have significantly improved electrical conductivity.

(問題点を解決するための手段) 本発明の炭素質繊維は、繊維の直径が0.05〜4μ、
好ましくは0.1〜3μm1最も好ましくは0.2〜2
.crm、IJti維の長さ/繊維径が100以上、I
壱縮数が1以上、捲縮度が0.5〜50%、好ましくは
5〜50%である炭素質繊維である。
(Means for solving the problem) The carbonaceous fiber of the present invention has a fiber diameter of 0.05 to 4μ,
Preferably 0.1-3μm1 Most preferably 0.2-2μm
.. crm, IJti fiber length/fiber diameter is 100 or more, I
The carbonaceous fiber has a crimp number of 1 or more and a crimp degree of 0.5 to 50%, preferably 5 to 50%.

本発明における捲縮数は、繊維長20μmの中の屈曲の
山と谷の総数をいい、また捲縮度は、繊維の2点間a、
bを直線距離で40μmとり、その間の実際の繊維長a
bをプラニメータで測定し、次式によって計算したもの
である(ランダムに5回測定の平均値)。
In the present invention, the number of crimps refers to the total number of peaks and valleys of bending within a fiber length of 20 μm, and the degree of crimps refers to the distance between two points of the fiber, a,
b is a straight line distance of 40 μm, and the actual fiber length a between them is
b was measured with a planimeter and calculated using the following formula (average value of 5 random measurements).

本発明において、上記捲縮数が1未満、および捲縮度が
0.5%に達しないと、集合体または樹脂組成物として
用いた場合に繊維間の交絡が少くなり、充分な電気伝導
性が得られに(くなる。
In the present invention, if the number of crimp is less than 1 and the degree of crimp is less than 0.5%, when used as an aggregate or a resin composition, intertwining between fibers will be reduced and sufficient electrical conductivity will be achieved. will be obtained.

また本発明の炭素質繊維は、走査型および透過型の電子
顕微鏡で観察したところ、炭素の層が繊維の長手軸方向
に平行に年輪状に配列していることが認められた。
Furthermore, when the carbonaceous fiber of the present invention was observed using a scanning and transmission electron microscope, it was found that the carbon layers were arranged in the shape of annual rings in parallel to the longitudinal axis of the fiber.

本発明の炭素質繊維は、上述のように非常に細く、太さ
が例えば±10%以内と均一で、実質的に枝分かれがな
く、典型的にはその両端が半球状を呈し、はとんど中実
の断面を有し、上述のような捲縮を有する。
As mentioned above, the carbonaceous fibers of the present invention are very thin, have a uniform thickness of, for example, within ±10%, are substantially unbranched, typically have hemispherical ends, and are extremely thin. It has a solid cross section and has crimps as described above.

本発明の炭素質繊維は、均一な細径を有し、かつ繊維長
が長く、捲縮を有するので、後述するように、柔軟性の
ある繊維集合体として得られ、そのまま、または適当な
形状および密度に成型加工して用いることができる。ま
た本発明の炭素質繊維は、分枝がほとんどないので、乾
式または湿式でほぐして再集成することができ、混合性
も良好・である。さらに2000℃以上の熱処理により
容易に黒鉛化することができるので、補強材等の他に特
に導電性材料として通している。さらに繊維内の中空部
がほとんどなく、実質上中実の断面を有するので、例え
ばメタル等の補強用として用いる場合、中空部に吸収さ
れたガスが放出され、欠陥を生じる等の弊害がない。
The carbonaceous fibers of the present invention have a uniform small diameter, a long fiber length, and crimps, so that they can be obtained as a flexible fiber aggregate as described later, and can be used as is or in an appropriate shape. It can be used after being molded to a desired density. Furthermore, since the carbonaceous fiber of the present invention has almost no branches, it can be loosened and reassembled in a dry or wet manner, and has good mixability. Furthermore, since it can be easily graphitized by heat treatment at 2000° C. or higher, it is used as a particularly conductive material in addition to reinforcing materials. Furthermore, since there are almost no hollow parts in the fibers and the fibers have a substantially solid cross section, when used for reinforcing metals, for example, the gas absorbed in the hollow parts will be released and there will be no problems such as defects.

本発明の炭素質繊維は、炭化水素および特定の有機金属
化合物またはこれらと搬送媒体(キャリヤガス)を反応
域に導入し、炭化水素を熱分解、触媒反応せしめること
によって製造される。
The carbonaceous fiber of the present invention is produced by introducing a hydrocarbon and a specific organometallic compound, or a carrier medium (carrier gas) together with the hydrocarbon into a reaction zone, and causing the hydrocarbon to undergo thermal decomposition and catalytic reaction.

本発明に用いる炭化水素は、特に制限されるものではな
く、アントラセン、ナフタレン等を含む室温で固体状の
炭化水素、ベンゼン、トルエン、ヘキサン、イソオクタ
ン等を含む室温で液体状の炭化水素、またはメタン、プ
ロパン、エチレン、アセチレン等を含む気体状の炭化水
素のいずれでもよい。さらに、これらを混合しても良い
The hydrocarbons used in the present invention are not particularly limited, and include hydrocarbons that are solid at room temperature including anthracene, naphthalene, etc., hydrocarbons that are liquid at room temperature including benzene, toluene, hexane, isooctane, etc., or methane. , propane, ethylene, acetylene, and the like. Furthermore, these may be mixed.

本発明に用いる有機金属化合物としそは、周期律表の第
Na族、第Va族、第VIa族、第■a族、第1族に属
する金属、例えばTi、Zr5V% Cr、MO,W%
 Mixs Fe、Cos Nis Ru。
The organometallic compound used in the present invention contains metals belonging to Group Na, Group Va, Group VIa, Group IVa, and Group 1 of the periodic table, such as Ti, Zr5V% Cr, MO, W%
Mixes Fe, Cos Nis Ru.

Rh、Pd、Os、I r% Pt、などの化合物、特
にシクロペンタジェニル系金属化合物、カルボニル系金
属化合物、ベンゼン−金属化合物、アルキル、アリルま
たはアルキニル金属化合物、β−ジケトン金属錯体、ケ
ト酸エステル金属錯体、これらの置換体、誘導体等が好
ましく用いられる。
Compounds such as Rh, Pd, Os, Ir% Pt, especially cyclopentadienyl metal compounds, carbonyl metal compounds, benzene-metal compounds, alkyl, allyl or alkynyl metal compounds, β-diketone metal complexes, keto acids Ester metal complexes, substituted products and derivatives thereof, etc. are preferably used.

これらのうち、特にビス(シクロペンタジェニル)鉄、
ニッケルまたはコバルト等のシクロペンタジェニル化合
物、鉄カルボニル、ニッケルカルボニル、コバルトカル
ボニル、ビス(シクロペンタジェニルカルボニル)鉄な
どの鉄、ニッケルまたはコバルト等のカルボニル化合物
、ジまたはトリアセチルアセトンの鉄、ニッケルまたは
コバルト錯体等のβ−ジケトン金N錯体、ジまたはトリ
アセト酢酸エステルの鉄、ニッケルまたはコバルト錯体
、もしくはこれらの誘導体等が好結果を与える。
Among these, especially bis(cyclopentagenyl)iron,
Cyclopentagenyl compounds such as nickel or cobalt, iron carbonyl, nickel carbonyl, cobalt carbonyl, iron such as bis(cyclopentagenylcarbonyl) iron, carbonyl compounds such as nickel or cobalt, iron, nickel or di- or triacetylacetone β-diketone gold N complexes such as cobalt complexes, iron, nickel or cobalt complexes of di- or triacetoacetic esters, or derivatives thereof, etc. give good results.

前記有機金属化合物の供給方法としては、これらを直接
加熱して気体状態で供給したり、または該有機金属化合
物を炭化水素の液体中に溶解させ、それを加熱して供給
したり、噴出させたりする等の方法が用いられる。
The method for supplying the organometallic compound includes directly heating them and supplying them in a gaseous state, or dissolving the organometallic compound in a hydrocarbon liquid and heating it and supplying it, or ejecting it. Methods such as doing this are used.

上記有機金属化合物の供給量(毎分光たりの供給重量%
)は炭化水素との混合物に対して0.01重量%以上、
好ましくはO,OSg量%以上沙に0゜2%以上20%
以下である。有機金属化合物の量が少なすぎると、繊維
状物ができにくり、粒状物が増加する傾向にある。
Supply amount of the above organometallic compound (supply weight % per light per minute)
) is 0.01% by weight or more based on the mixture with hydrocarbon,
Preferably O, OSg amount% or more, 0°2% or more 20%
It is as follows. If the amount of organometallic compound is too small, fibrous materials tend to be difficult to form and granular materials tend to increase.

炭化水素および有機金属化合物の導入温度帯域は150
0℃以下、好ましくは1300℃以下とに好ましくは1
00〜500℃の位置が適当である。該導入位置の温度
が100℃に達しないと、原料が気相状態を維持しにく
く、また500℃を超えると炭化して粒状物の生成が多
くなり、詰まりを起こして繊維の収率が低下する傾向に
ある。
The temperature range for introducing hydrocarbons and organometallic compounds is 150
0°C or lower, preferably 1300°C or lower, preferably 1
A position between 00 and 500°C is suitable. If the temperature at the introduction point does not reach 100°C, it will be difficult for the raw material to maintain a gaseous state, and if it exceeds 500°C, it will carbonize and produce more particulate matter, causing clogging and reducing the fiber yield. There is a tendency to

また反応加熱温度帯域は600℃以上、好ましくは90
0℃以上、好ましくは800〜1800℃、特に好まし
くは800〜1500℃である。
The reaction heating temperature range is 600°C or higher, preferably 90°C or higher.
The temperature is 0°C or higher, preferably 800 to 1800°C, particularly preferably 800 to 1500°C.

反応部の温度が800℃未満では粒状物が生成し易くな
る。
If the temperature of the reaction section is less than 800°C, particulate matter is likely to be generated.

以下、本発明の炭素質繊維の製法を図面により詳細に説
明する。
Hereinafter, the method for producing carbonaceous fibers of the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の炭素質繊維を製造するための実験装
置である。この装置は、電気炉1内に挿入された炉管2
と、該炉管2の入口側に設けられたシール栓7を貫通し
て設けられた不活性ガス等の導管3および炭化水素の導
管4と、該導管3および4を加熱または保温するための
ヒーター6および6Aと、該炉管2の出口側に設けられ
たシール栓8に挿入されたガス排出管5とから主として
構成される。
FIG. 1 shows an experimental apparatus for producing carbonaceous fibers of the present invention. This device consists of a furnace tube 2 inserted into an electric furnace 1.
, an inert gas conduit 3 and a hydrocarbon conduit 4 provided through a seal plug 7 provided on the inlet side of the furnace tube 2, and a conduit 4 for heating or keeping the conduits 3 and 4 warm. It mainly consists of heaters 6 and 6A, and a gas exhaust pipe 5 inserted into a seal plug 8 provided on the outlet side of the furnace tube 2.

このような装置において、炉管2は縦型、横型あるいは
適当な勾配で用いられ、その入口温度が100゛〜50
0℃程度、および炉管2の中心温度が800〜1800
℃程度になるように電気炉2の温度が設定される。炉管
2内を水素ガスまたは不活性ガス(例えば窒素ガス、ア
ルゴンガス等)で置換した後、有機金属化合物が導管3
から、水素ガスまたは不活性ガス、もしくはそれらの混
合ガスとともに炉管2内の100〜5oo℃の位置に導
入される。さらに別の導管4から炭化水素が水素ガスま
たは不活性ガス、もしくはそれらの混合ガスとともに炉
管内の100〜soo’cの位置に導入される。この場
合、炭化水素ガスを予めヒーター6Aを用いて保温する
ことが好ましい。炭化水素と有機金属化合物は最終的に
前述のように800〜1800℃の温度域で反応し、炭
素繊維が気流中で生成するが、これらは下方に落下、堆
積するので、炉の冷却後、炉外に取り出される。
In such a device, the furnace tube 2 is used vertically, horizontally, or with an appropriate slope, and the inlet temperature is 100° to 50°.
around 0°C, and the center temperature of the furnace tube 2 is 800 to 1800°C.
The temperature of the electric furnace 2 is set to approximately .degree. After replacing the inside of the furnace tube 2 with hydrogen gas or inert gas (e.g. nitrogen gas, argon gas, etc.), the organometallic compound flows into the conduit 3.
It is then introduced into the furnace tube 2 at a temperature of 100 to 50° C. together with hydrogen gas, an inert gas, or a mixed gas thereof. Further, hydrocarbons are introduced from another conduit 4 together with hydrogen gas or an inert gas or a mixture thereof into the furnace tube at a position of 100 to soo'c. In this case, it is preferable to keep the hydrocarbon gas warm in advance using the heater 6A. Hydrocarbons and organometallic compounds ultimately react in the temperature range of 800 to 1800°C as described above, and carbon fibers are produced in the airflow, but these fall and accumulate downward, so after the furnace is cooled, It is taken out of the furnace.

本発明における繊維の直径および繊維の長さ/繊維径お
よび捲縮の状態を調整するには、炭化水素と有機金属化
合物の割合、これらを含む混合ガスの設定温度域、例え
ば800〜1800℃における該ガスの滞留時間を変化
させたり、炭化水素の濃度を変化させて行なうことがで
きる。一般に有機金属化合物を導入し、加熱する帯域の
温度分布や気流の乱れを作る程、捲縮数および擾縮度の
高い繊維が得やすい、なお、炭化水素と有機金属化合物
は、予め炉外で混合後、気相あるいは液相で供給してよ
い。
In order to adjust the fiber diameter, fiber length/fiber diameter, and crimp state in the present invention, the proportion of hydrocarbon and organometallic compound, the set temperature range of the mixed gas containing these, for example, 800 to 1800 ° C. This can be carried out by changing the residence time of the gas or by changing the concentration of the hydrocarbon. In general, the more an organometallic compound is introduced and the more turbulent the temperature distribution and airflow in the heating zone, the easier it is to obtain fibers with a high number and degree of crimp. After mixing, it may be supplied in gas phase or liquid phase.

このようにして得られた炭素繊維は、前記所定の捲縮を
有する、細長い繊維であり、その繊維の直径は0.05
〜4μ(好ましくは0.1〜3μ)と極めて細く、また
均一であり、その繊維の長さ/繊維径は100以上であ
った。
The carbon fibers thus obtained are elongated fibers having the predetermined crimps, and the diameter of the fibers is 0.05.
The fibers were extremely thin and uniform at ~4μ (preferably 0.1~3μ), and the fiber length/fiber diameter was 100 or more.

また上述の炭素繊維は、粉末X線回折法(炭素材料実験
技術(1)、55頁、昭和53年6月1日、科学技術社
発行)によって測定したC軸方向の結晶サイズLc=5
0Å以下、かつ(OO2)平面間隔dooz=3.45
Å以上であり、さらにこの繊維を黒鉛化するために20
00℃以上で熱処理した場合に、C軸方向の結晶サイズ
Lc=100Å以上で、かつ(OO2)平面間隔がao
oz”3.40Å以下となるものであった。この熱処理
した場合の結晶サイズLcおよび平面間隔aoozの意
味は、2000℃以上で熱処理した場合の黒鉛化性が高
いことを意味し、熱処理することによって通常の炭素繊
維から黒鉛繊維が容易に得られることを意味する。黒鉛
化する場合の熱処理温度は、通常2000℃以上、好ま
しくは2500℃以上である。本発明の炭素質繊維は炭
素繊維と黒鉛繊維の両方を総称するものとする。
In addition, the above-mentioned carbon fiber has a crystal size Lc in the C-axis direction measured by powder X-ray diffraction method (Carbon Materials Experimental Technology (1), p. 55, June 1, 1970, published by Kagaku Gijutsusha).
0 Å or less and (OO2) plane spacing dooz = 3.45
20 Å or more to further graphitize this fiber.
When heat treated at 00°C or higher, the crystal size in the C-axis direction Lc = 100 Å or more and the (OO2) plane spacing is ao
The crystal size Lc and the plane spacing aooz when heat treated mean that the graphitization property is high when heat treated at 2000°C or higher. This means that graphite fibers can be easily obtained from ordinary carbon fibers.The heat treatment temperature for graphitization is usually 2000°C or higher, preferably 2500°C or higher.The carbonaceous fibers of the present invention are carbon fibers and A generic term for both graphite fibers.

(発明の効果) 本発明の炭素質繊維は、繊維径が極めて細く、均一であ
ること、十分な繊維長さ/繊維径を有すること、捲縮を
有すること、絡合した集合体として得られることから各
種の樹脂、ゴム等の有機材料、金属、セメント等の無機
材料等の充填材、補強材等として好適に使用することが
できるのみならず、黒鉛化性のよいことを利用し、さら
に熱処理を施して黒鉛繊維として各種の樹脂、ゴム等に
混合することにより電磁波障害等の防止にも有効に利用
することができる。特に本発明の炭素質繊維は、良好な
捲縮を有するので、集合体または充填物として樹脂組成
物としたときに繊維同士が絡合し、接触割合が高くなる
ために電気伝導性が向上する。このため、静電気などに
よるノイズ発生の防止が望まれる材料、例えばコンピュ
ーターハウジング、OA機器の構造材等や、シールド特
性、制電性を要する物品の構成素材として好適に使用す
ることができる。
(Effect of the invention) The carbonaceous fiber of the present invention has an extremely thin and uniform fiber diameter, has sufficient fiber length/fiber diameter, has crimps, and can be obtained as an entangled aggregate. Therefore, it can not only be suitably used as fillers and reinforcing materials for organic materials such as various resins and rubbers, and inorganic materials such as metals and cement, but also by taking advantage of its good graphitization properties. By subjecting it to heat treatment and mixing it with various resins, rubbers, etc. as graphite fibers, it can be effectively used to prevent electromagnetic interference. In particular, the carbonaceous fibers of the present invention have good crimp, so when made into a resin composition as an aggregate or filler, the fibers become entangled with each other, increasing the contact ratio and improving electrical conductivity. . Therefore, it can be suitably used as a material for which it is desired to prevent the generation of noise due to static electricity, such as computer housings, structural materials for office automation equipment, etc., and as constituent materials for articles that require shielding properties and antistatic properties.

(実施例) 実施例1 鉄カルボニル10重量%を溶解させたベンゼンを水素ガ
スに同伴させて、1−4 g/m i nの供給量で約
1200℃に昇温された反応管内に供給し、炭素質繊維
を得た。この炭素質繊維を走査型電子顕微鏡で観察し、
その2000倍の写真から捲縮数および捲縮度を測定し
た。また該炭素質繊維を走査型および透過型の電子顕微
鏡により観察したところ、炭素の層が長手軸に平行に年
輪状に配列していることが分かった。
(Example) Example 1 Benzene in which 10% by weight of iron carbonyl was dissolved was entrained in hydrogen gas and fed into a reaction tube heated to about 1200°C at a feed rate of 1-4 g/min. , carbonaceous fibers were obtained. This carbonaceous fiber was observed with a scanning electron microscope,
The number of crimp and degree of crimp were measured from the 2000x photograph. When the carbonaceous fibers were observed using scanning and transmission electron microscopes, it was found that the carbon layers were arranged parallel to the longitudinal axis in the form of tree rings.

上述の炭素質繊維を2700℃で10分間熱処理して黒
鉛化した後、エポキシ樹脂と混合し、長さ57fl、幅
13鶴、厚さ5fiの試験片に成型した。エポキシ樹脂
の調整は、エポキシ樹脂A (AFR337(登録商標
)、旭チバ株式会社製)とエポキシ樹脂B(EP  8
2B(登録商標)、シェル株式会社製)を2/1にブレ
ンドし、これにアミン系硬化促進剤(コルドバアクセー
レーターAPC−3(登録商標)、セール・チルニ・リ
ミテッド社製)をエポキシ樹脂に対して1.2部、フタ
ル酸無水物をエポキシ樹脂に対してQ、9mo1%触媒
として加え、室温で混合した後、80℃、60分間保持
し、撹拌しつつ炭素質繊維を混入して得た。次いでこの
炭素質繊維樹脂組成物を型枠に入れて150℃、2時間
硬化させることにより前述の試験片を製造した。この試
験片の電気抵抗を測定した。これらの結果を第1表に示
す。
The above-mentioned carbonaceous fiber was heat treated at 2700° C. for 10 minutes to graphitize it, then mixed with an epoxy resin and molded into a test piece with a length of 57fl, a width of 13mm, and a thickness of 5fi. The epoxy resin was prepared using epoxy resin A (AFR337 (registered trademark), manufactured by Asahi Ciba Corporation) and epoxy resin B (EP 8).
2B (registered trademark), manufactured by Shell Co., Ltd.) in a 2/1 ratio, and an amine curing accelerator (Cordoba Accelerator APC-3 (registered trademark), manufactured by Serre Chiruni Ltd.) is blended with the epoxy resin. 1.2 parts of phthalic anhydride was added to the epoxy resin as a 9 mo1% catalyst, mixed at room temperature, held at 80°C for 60 minutes, and mixed with carbonaceous fibers while stirring. Obtained. Next, this carbon fiber resin composition was placed in a mold and cured at 150° C. for 2 hours to produce the above-mentioned test piece. The electrical resistance of this test piece was measured. These results are shown in Table 1.

実施例2.3および比較例1 炉温およびH2ガス流量を第1表のように変化し、実施
例1と同様に炭素質繊維を製造し、その混合樹脂の電気
抵抗を測定した結果を第1表に示す。なお、比較例1は
従来の炭素質繊維のデータである。
Example 2.3 and Comparative Example 1 Carbon fibers were manufactured in the same manner as in Example 1 by changing the furnace temperature and H2 gas flow rate as shown in Table 1, and the results of measuring the electrical resistance of the mixed resin are shown in Table 1. It is shown in Table 1. Note that Comparative Example 1 is data for conventional carbonaceous fibers.

以下余白 第1表 第1表により、本発明の炭素質繊維は良好な捲縮性を示
し、また得られたエポキシ樹脂混合組成物は良好な電気
伝導性を示すことが分かる。
From Table 1 below, it can be seen that the carbonaceous fiber of the present invention exhibits good crimpability, and the obtained epoxy resin mixed composition exhibits good electrical conductivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に用いる炭素繊維の製造方の一例を示
す説明図である。 1・・・電気炉、2・・・炉管、3・・・有機金属化合
物を含むガスを導入する管、4・・・炭化水素を含むガ
スを導入する導管、5・・・排ガスを排出する導管、6
.6A・・・ヒーター、7.8・・・シール栓。
FIG. 1 is an explanatory diagram showing an example of a method of manufacturing carbon fiber used in the present invention. 1... Electric furnace, 2... Furnace tube, 3... Pipe introducing gas containing an organometallic compound, 4... Conduit introducing gas containing hydrocarbon, 5... Discharging exhaust gas conduit, 6
.. 6A...Heater, 7.8...Seal plug.

Claims (2)

【特許請求の範囲】[Claims] (1)繊維の直径が0.05〜4μ、繊維の長さ/繊維
径が100以上、捲縮数が1以上、捲縮度が0.5〜5
0%であることを特徴とする炭素質繊維。
(1) Fiber diameter is 0.05-4μ, fiber length/fiber diameter is 100 or more, number of crimp is 1 or more, degree of crimp is 0.5-5
A carbonaceous fiber characterized by being 0%.
(2)黒鉛または黒鉛に容易に転化する炭素の層が長手
軸に平行に年輪状に配列して形成された特許請求の範囲
第1項記載の炭素質繊維。
(2) The carbonaceous fiber according to claim 1, in which layers of graphite or carbon that is easily converted to graphite are arranged in an annual ring shape parallel to the longitudinal axis.
JP5881085A 1984-04-25 1985-03-23 Carbonaceous fiber Pending JPS61225319A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5881085A JPS61225319A (en) 1985-03-23 1985-03-23 Carbonaceous fiber
US06/807,355 US4816289A (en) 1984-04-25 1985-12-10 Process for production of a carbon filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5881085A JPS61225319A (en) 1985-03-23 1985-03-23 Carbonaceous fiber

Publications (1)

Publication Number Publication Date
JPS61225319A true JPS61225319A (en) 1986-10-07

Family

ID=13094959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5881085A Pending JPS61225319A (en) 1984-04-25 1985-03-23 Carbonaceous fiber

Country Status (1)

Country Link
JP (1) JPS61225319A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192824A (en) * 1988-01-20 1989-08-02 Showa Denko Kk Carbon fiber produced by vapor phase process
JPH02503448A (en) * 1988-03-07 1990-10-18 ザ ダウ ケミカル カンパニー Buoyant carbonaceous fiber structure coated with water-insoluble hydrophobic material
JPH03104927A (en) * 1989-06-28 1991-05-01 Central Glass Co Ltd Coil-like carbon fiber and carbon composite material
JPH03227412A (en) * 1990-01-31 1991-10-08 Central Glass Co Ltd Coiled fiber and production thereof
US5409775A (en) * 1992-07-06 1995-04-25 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers, process for preparing same, molded members thereof, and composite members thereof
US5512393A (en) * 1992-07-06 1996-04-30 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers process for preparing same molded members thereof and composite members thereof
US5863601A (en) * 1995-07-10 1999-01-26 Research Development Corporation Of Japan Process of producing graphite fiber
US7771694B2 (en) 2003-08-26 2010-08-10 Showa Denko K.K. Crimped carbon fiber and production method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192824A (en) * 1988-01-20 1989-08-02 Showa Denko Kk Carbon fiber produced by vapor phase process
JPH02503448A (en) * 1988-03-07 1990-10-18 ザ ダウ ケミカル カンパニー Buoyant carbonaceous fiber structure coated with water-insoluble hydrophobic material
JPH03104927A (en) * 1989-06-28 1991-05-01 Central Glass Co Ltd Coil-like carbon fiber and carbon composite material
JPH03227412A (en) * 1990-01-31 1991-10-08 Central Glass Co Ltd Coiled fiber and production thereof
US5409775A (en) * 1992-07-06 1995-04-25 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers, process for preparing same, molded members thereof, and composite members thereof
US5512393A (en) * 1992-07-06 1996-04-30 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers process for preparing same molded members thereof and composite members thereof
US5863601A (en) * 1995-07-10 1999-01-26 Research Development Corporation Of Japan Process of producing graphite fiber
US7771694B2 (en) 2003-08-26 2010-08-10 Showa Denko K.K. Crimped carbon fiber and production method thereof

Similar Documents

Publication Publication Date Title
US4816289A (en) Process for production of a carbon filament
US4855091A (en) Method for the preparation of carbon filaments
CN1321232C (en) Fine carbon fiber mixture and composition thereof
JP2016102047A (en) Producing method of aggregate
EP0353296A4 (en) Carbon fibrils.
US7824768B2 (en) Carbon fibrous structure
JPS62500943A (en) carbon fibril
WO1990007023A1 (en) Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
US8173261B2 (en) Fine carbon fibrous structure
KR20130041152A (en) Vapor grown carbon fiber aggregate
Li et al. Microstructures and mechanical properties of carbon/carbon composites reinforced with carbon nanofibers/nanotubes produced in situ
JPS61225319A (en) Carbonaceous fiber
EP1570119A1 (en) Vapor grown carbon fiber, and production method and use thereof
JPH0645724B2 (en) Carbon fiber composite resin composition
JPS61132630A (en) Carbonaceous fiber
JPS61132600A (en) Whisker-shaped carbonaceous material
JPS61225325A (en) Carbonaceous fiber
JPS61218669A (en) Paint or adhesive composition containing carbonaceous fiber
JPS61225326A (en) Carbonaceous fiber having acidic group
JPS61132663A (en) Carbonaceous fiber aggregate
JP2890548B2 (en) Carbonaceous fiber and method for producing the same
JPS61225320A (en) Metal-containing carbonaceous fiber and production thereof
KR20190067963A (en) High density and high strength carbon nanotube fibers and evaluating method therof
JPS61219710A (en) Activated carbonaceous fiber
Igbokwe Optimization of the production of carbon nanotube yarns in a continuous chemical vapour deposition and application in incandescent bulb