JPS60157203A - Powder magnetic material - Google Patents

Powder magnetic material

Info

Publication number
JPS60157203A
JPS60157203A JP59010999A JP1099984A JPS60157203A JP S60157203 A JPS60157203 A JP S60157203A JP 59010999 A JP59010999 A JP 59010999A JP 1099984 A JP1099984 A JP 1099984A JP S60157203 A JPS60157203 A JP S60157203A
Authority
JP
Japan
Prior art keywords
powder
gas
magnetic material
metal
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59010999A
Other languages
Japanese (ja)
Inventor
Haruyuki Morita
治幸 森田
Jiro Yoshinari
次郎 吉成
Masatoshi Nakayama
正俊 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP59010999A priority Critical patent/JPS60157203A/en
Publication of JPS60157203A publication Critical patent/JPS60157203A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/063Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a non magnetic core

Abstract

PURPOSE:To obtain magnetic having high coercive force and high stability by a dry process by introducing a reaction gas containing metallic compound gases of one kind or more into a decompressed vacuum vessel, applying induction energy to produce a low-temperature plasma atmosphere and bringing atmosphere and a powdered material to be treated into contact. CONSTITUTION:Powder to be treated 1 is put into a vessel 2, and housed into a vacuum vessel 3. The vessels 2 and 3 are made of quartz glass so that induction energy is transmitted excellently over a reaction gas in the vessels. The vessels 2 and 3 are evacuated by an exhaust system 4. A gas, such as H2, Ar, He, H2O, O2, CO, CO2, N2, etc. from bombs 5 and 6 and a raw material gas such as metallic carbonyl from bombs 7 and 8 are introduced into the vessel 2 through a mixer 9 and a gas introducing nozzle 10. Induction energy is applied to electrodes 13 and 13' while turning the vessel 2 by an external turning gear 12, low-temperature plasma is generated in the vessels 2 and 3, and the layers of a metal or an oxide of the metal are formed on the surfaces of grains to be treated.

Description

【発明の詳細な説明】 発明の分野 本発明は粉末磁性材料に関し、特に磁気記録媒体で使用
される高保磁力の粉末磁性材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to powdered magnetic materials, and more particularly to high coercivity powdered magnetic materials used in magnetic recording media.

従来技術 従来、磁気記録媒体用の粉末磁性材料としては、主に針
状酸化鉄が使用されてきたが、家庭用VTRの普及や高
性能オーディオカセットテープの実用化に代表されるよ
うに、磁気記録媒体に使用される信号の記録密度、が高
まるにつれて、針状酸化鉄のみでは磁気記録の高密度化
に対処できなくなり、現在、さらに高保磁力、高磁束密
度を有する磁性材料が種々開発されつつある。
PRIOR ART Traditionally, acicular iron oxide has been mainly used as a powder magnetic material for magnetic recording media, but magnetic As the recording density of signals used in recording media increases, acicular iron oxide alone cannot cope with the increased density of magnetic recording, and various magnetic materials with even higher coercive force and higher magnetic flux density are currently being developed. be.

このような材料の1つとして、針状γ−Fe203粒子
の表面にコバルト化合物を被着した、いわゆるコバルト
被着型γ−Fe203粒子が開発され、高性能オーディ
オテープ、ビデオテープ等で実用化されている。代表的
なコバルト被着型γ−Fe203粒子の作製は、特公昭
56−48444の実施例中に示されているように、次
のようにして行なわれる。
As one such material, so-called cobalt-coated γ-Fe203 particles, in which a cobalt compound is coated on the surface of acicular γ-Fe203 particles, have been developed and have been put into practical use in high-performance audio tapes, video tapes, etc. ing. Typical cobalt-coated γ-Fe203 particles are produced in the following manner, as shown in Examples of Japanese Patent Publication No. 56-48444.

保磁力4000eの針状7−Fe2O31000Fを水
10tに分散させる。これに硫酸コバルト1911を1
tの水に溶解したものを加える。これに苛性ソーダ40
02を1tの水に溶解したものを加える。さらに硫酸第
1鉄7502を2tの水に溶解したものを加える。この
ようにして出来たスラリーを加熱し、1時間煮沸し、洗
浄、ろ過、乾燥して磁性粉を得る。
Acicular 7-Fe2O3 1000F having a coercive force of 4000e is dispersed in 10 tons of water. To this, add 1 part of cobalt sulfate 1911.
Add t dissolved in water. Add 40 ml of caustic soda to this
Add 02 dissolved in 1 t of water. Furthermore, ferrous sulfate 7502 dissolved in 2 tons of water is added. The slurry thus produced is heated, boiled for 1 hour, washed, filtered and dried to obtain magnetic powder.

このようにして得られた磁性粉は高い保磁力 1(上記
の実施例では8000e )を有し、温度安定性が高い
ことが示されている。
It has been shown that the magnetic powder thus obtained has a high coercive force 1 (8000e in the above example) and high temperature stability.

上記した方法によりコバルト被着型γ−F@203粒子
を得る場合、粒子の還元、酸化というドライプロセスで
作製されたγ−Fe203粒子を再び水中に分散させコ
バルト被着処理するというウェットプルセスを経て、そ
してまた再度乾燥させるというドライとウェットの混在
した磁性粉製造プロセスとなるという欠点を有している
When obtaining cobalt-coated γ-F@203 particles by the method described above, a wet process is performed in which γ-Fe203 particles produced by a dry process of particle reduction and oxidation are dispersed in water again and subjected to cobalt coating treatment. The disadvantage is that the magnetic powder production process involves a mixture of dry and wet processes, in which the magnetic powder is then dried again.

さらに、コバルト被着処理において多量のアルカリを使
用するため、被着処理後に洗浄する必要があり、これに
人足の水と時間を要する。
Furthermore, since a large amount of alkali is used in the cobalt deposition process, it is necessary to clean it after the cobalt deposition process, which requires a lot of water and time.

発明の目的 本発明の目的は、高い保磁力を有し、温度安定性のすぐ
れた粉末磁性材料をドライプロセスで提供することにあ
る。
OBJECTS OF THE INVENTION An object of the present invention is to provide a powder magnetic material having high coercive force and excellent temperature stability using a dry process.

発明の構成 本発明の目的は、減圧された真空容器内に1種類以上の
金属化合物気体を含む反応ガスを導入し、該反応ガスに
誘導エネルギーを加えることにより該反応ガスを低温プ
ラズマ界囲気とし、これと粉末状の被処理物とを接触さ
せることにより達成される。
Structure of the Invention An object of the present invention is to introduce a reaction gas containing one or more types of metal compound gas into a reduced pressure vacuum container, and apply induction energy to the reaction gas to transform the reaction gas into a low-temperature plasma surrounding atmosphere. This is accomplished by bringing this into contact with a powdered object to be processed.

低圧に保った気体に電界を作用させると、気体中に存在
する自由電子が電界加速されて運動エネルギーを獲得す
る。このとき、系内は低圧であるため分子あるいは原子
間の距離は常圧に比べて非常に大きくなっており、原子
は空間中を充分長く加速されて10〜20 eVものエ
ネルギーを持つようになる。このように高いエネルギー
を持つ電子が気体中の分子や原子に衝突すると、これら
を励起しラジカル、イオン、電子などを生成する。
When an electric field is applied to a gas kept at low pressure, the free electrons present in the gas are accelerated by the electric field and acquire kinetic energy. At this time, because the pressure inside the system is low, the distance between molecules or atoms is much larger than at normal pressure, and the atoms are accelerated in space for a long enough time to have an energy of 10 to 20 eV. . When these high-energy electrons collide with molecules or atoms in a gas, they excite them and generate radicals, ions, electrons, etc.

ここで生成した電子は再び電界加速を受けて別の分子や
原子に衝突し、これらを励起する。こうした連釦作用で
系内の気体は電子、イオン、ラジカルなどを豊富に含ん
だ状態となり、これはプラズマガスと呼ばれている。
The electrons generated here are accelerated by the electric field again and collide with other molecules or atoms, exciting them. Due to this combination of buttons, the gas within the system becomes rich in electrons, ions, radicals, etc., and this is called plasma gas.

上記のプラズマ中ではイオンも当然電界加速を受けるが
、電子に比べてはるかに質量が大きいので速度をあまり
獲得できず、またラジカル−や未励起分子、原子はまっ
たく加速されない。このように、低圧におけるプラズマ
では、イオン、ラジカル、未励起分子、原子はほとんど
速度を持たず、電子だけが高速度を持っている。この状
態を低温プラズマと呼び、化学的に活性なラジカルやイ
オンを豊富に含んでいるため化学反応の起りやすい状態
になっている。本発明は、この状態を利用して被処理物
粒子表面に金属または金属の酸化物の層を形成しようと
いう新規な方法によるものであり、工程がドライ化でき
るという点に特徴がある。
In the plasma described above, ions are naturally accelerated by an electric field, but since they have much larger mass than electrons, they cannot gain much velocity, and radicals, unexcited molecules, and atoms are not accelerated at all. Thus, in a plasma at low pressure, ions, radicals, unexcited molecules, and atoms have almost no velocity, and only electrons have high velocity. This state is called low-temperature plasma, and it contains abundant chemically active radicals and ions, making it easy for chemical reactions to occur. The present invention is based on a novel method that utilizes this state to form a layer of metal or metal oxide on the surface of the particles to be treated, and is characterized in that the process can be made dry.

本発明の好適な実施態様は、減圧された真空容器内にコ
バルト化合物気体を含む反応ガスを導入し、これを低温
プラズマ雰囲気に変換して針状酸化鉄粉末(F e30
4 、γ−Fe2.03など)と接触させることにより
、針状酸化鉄粒子表面にコバルトまたはコバルトを含む
酸化物の層を形成したコバルト被着針状酸化鉄である。
In a preferred embodiment of the present invention, a reaction gas containing a cobalt compound gas is introduced into a reduced pressure vacuum vessel, and this is converted into a low-temperature plasma atmosphere to produce acicular iron oxide powder (Fe30
4, γ-Fe2.03, etc.) to form a layer of cobalt or an oxide containing cobalt on the surface of the acicular iron oxide particles.

本発明における金属化合物は金属のカルボニル化合物、
ハロゲ、ン化物、ア七チルアセトン塩、ビスジクロペン
タジェニル化合物、アルコラード等が利用できる。しか
し本発明では、これらの化合物を真空容器内に気体とし
て導入しなければならず、この目的のためにはFe (
Co )5 N Cot (Co)s −。
The metal compound in the present invention is a metal carbonyl compound,
Halogens, dichloride, a7tylacetone salt, bisdiclopentagenyl compound, alcoholade, etc. can be used. However, in the present invention, these compounds must be introduced as gases into the vacuum container, and for this purpose Fe (
Co)5NCot(Co)s-.

N1(Co)、などの低温で気化可能な金属カルボニル
が最も有効に使用しうる。
Metal carbonyls that can be vaporized at low temperatures, such as N1(Co), can be used most effectively.

上記金属化合物気体の他に、Hz 、Ar、 He、H
z0.02、C01C02、N2などのガスが真空容器
内に導入される。これらのガスは、真空容器内の圧力を
コントロールしたり、真空容器内での低温プラズマの発
生を容易にしたり、反応ガス中の金属化合物と反応して
金属または金属の酸化物の層を被処理物粒子表面に形成
させるために使用される。
In addition to the above metal compound gases, Hz, Ar, He, H
Gases such as z0.02, C01C02, N2 are introduced into the vacuum vessel. These gases can be used to control the pressure inside the vacuum vessel, facilitate the generation of low-temperature plasma within the vacuum vessel, or react with metal compounds in the reaction gas to form a layer of metal or metal oxide to be treated. It is used to form particles on the surface of particles.

低温プラズマ雰囲気を形成するために加えられる誘導エ
ネルギーとしては、DC電界、103〜10”Hzのラ
ジオ波電界、109〜10口Hzのマイクロ波電界など
が利用できる。
As the induction energy applied to form the low-temperature plasma atmosphere, a DC electric field, a radio wave electric field of 10 3 to 10'' Hz, a microwave electric field of 10 9 to 10 Hz, etc. can be used.

低温プラズマ雰囲気と被処理物との接触は通常室温−で
行なわれる。室温で行なっても被処理物粒子表面には金
属または金属の酸化物の層が充分に形成されるが、接触
を加熱下で行なうと層の形成速度が増し、針状酸化鉄粒
子表面にコバルト化合物の層を形成した時の保磁力の上
昇も大きく好ましい。加熱する温度は100℃以上が望
ましい。
The contact between the low-temperature plasma atmosphere and the object to be processed is usually carried out at room temperature. Even when the contact is carried out at room temperature, a layer of metal or metal oxide is sufficiently formed on the surface of the particles to be treated, but when the contact is carried out under heating, the rate of layer formation increases, and cobalt is formed on the surface of the acicular iron oxide particles. It is also preferable that the coercive force increases greatly when a layer of the compound is formed. The heating temperature is preferably 100°C or higher.

さらに、被処理物粒子表面に金属または金属の酸化物の
層を形成した後に熱処理を施すと、やはり保磁力が上昇
し好ましい。この−加熱は200℃以上が望ましい。ま
たこの加熱は低温プラズマ中で行なうこともできるが、
この時の加熱は100℃以上とすることが望ましい。 
− 以下に図面を用いて本発明をく−わしく説明する。
Furthermore, it is preferable to perform heat treatment after forming a layer of metal or metal oxide on the surface of the particles to be treated, since the coercive force will also increase. This heating is preferably at 200°C or higher. This heating can also be done in low temperature plasma;
It is desirable that the heating at this time be 100° C. or higher.
- The present invention will be explained in detail below using the drawings.

第1図は、本発明で使用された低温プラズマ処理装置の
1例である。被処理粉*1は”容器29中に入れられ、
さらに真空容器3に納められている。
FIG. 1 shows an example of a low-temperature plasma processing apparatus used in the present invention. The powder to be treated *1 is placed in a container 29,
Furthermore, it is housed in a vacuum container 3.

容器2および3は内部の反応ガスに誘導エネルギーがよ
く伝達されるように石英ガラスで作られている。容器2
および3は、排気装置4によって排気される。このとき
、被処理物粒子表面に金属の層を形成したい場合は容器
2および3内を1×3 10 Torr以下の高真空に排気するのが望ましい。
The containers 2 and 3 are made of quartz glass so that the induced energy is well transferred to the reaction gas inside. container 2
and 3 are exhausted by the exhaust device 4. At this time, if it is desired to form a metal layer on the surface of the particles to be treated, it is desirable to evacuate the inside of the containers 2 and 3 to a high vacuum of 1×3 10 Torr or less.

次にボンベ5および6からHz、A r % H@ S
n20.02 、C0% COx 、N2などのガスを
、またボンベ7および8からは金属カルボニルなどの原
料ガスをミキサー9およびガス導入?ズル10を介して
容器2内に導入する。ここで、ボンベ5および6から導
入されるガスは、被処理物粒子表面に金属の層を形成し
たい場合はHzあるいはN HzとAr。
Next, from cylinders 5 and 6 Hz, A r % H@S
Gases such as n20.02, C0% COx, and N2 are introduced into the mixer 9 and raw material gases such as metal carbonyl are introduced from cylinders 7 and 8. It is introduced into the container 2 through the nozzle 10. Here, the gases introduced from the cylinders 5 and 6 are Hz or NHz and Ar when it is desired to form a metal layer on the surface of the particles to be treated.

He 、、N2などの不活性ガスとの混合ガスが好適に
選定される。また被処理物粒子表面に酸化物を形成した
い場合は、Hz0、Co5CO2,02などが、あるい
は、これらとAr、HeXN2などの不活性ガスとの混
合ガスが好適に選定される。
A gas mixture with an inert gas such as He, N2 is preferably selected. Further, when it is desired to form an oxide on the surface of the particles to be treated, gases such as Hz0, Co5CO2,02, or a mixed gas of these and an inert gas such as Ar or HeXN2 are suitably selected.

次いで、真空容器2および6内を圧力フントt+−ルバ
ルブ11の開閉を利用して0.01〜10Torrに制
御する。次に、容器2内の被処理粉末1が均一に処理さ
れるように、外部回転装置12で容器2を1〜30回転
/回転中っくりした速度で回転させながら、電極13お
よび13′に誘導エネルギーを加え、容器2および3内
に低温プラズマを発生させ、被処理物粒子表面に金属ま
たは金属の酸化物の層を形成する。この処理の過程で、
電気炉14.14′により加熱しながら行なうことも可
能であるし、また処理後に加熱を行なうこ七もできる。
Next, the inside of the vacuum vessels 2 and 6 is controlled to 0.01 to 10 Torr by opening and closing the pressure valve 11. Next, in order to uniformly process the powder 1 in the container 2, the container 2 is rotated by the external rotating device 12 at a moderate speed of 1 to 30 revolutions, and the electrodes 13 and 13' are rotated. Inductive energy is applied to generate low-temperature plasma in the containers 2 and 3, and a layer of metal or metal oxide is formed on the surface of the particles to be treated. During this process,
It is possible to carry out the process while being heated in an electric furnace 14, 14', or it is also possible to carry out heating after the treatment.

針状酸化鉄粒子を上記のように処理し、粒子表面にコバ
ルFあるいはコバルトを含む酸化物の層を形成した場合
、処理された針状酸化鉄粒子は高保磁力を有し、しかも
温度安定性のすぐれたものになる。
When acicular iron oxide particles are treated as described above to form a layer of cobal F or an oxide containing cobalt on the particle surface, the treated acicular iron oxide particles have high coercive force and are temperature stable. become excellent.

以下実施例により本発明をさらに詳細に説明するO 〔実施例1〕 第1図において、被処理粉末1としてγ−F6203s
oot(針状比7 : 1.6 =78 emu/S’
、Ilc=3800e)を容器2内に入れ、容器2およ
び3内を排気装置4によって7X10 Torrまで排
気した。次にボンベ5から)I2ガスを毎分200 c
m”の割合で、またボンベ7からコバルトカルボニルC
og(Co)aのガスを毎分200 cm”の割合で容
器2内に流した。1次いで、容′n2および3内をa、
5Torrに制御し、容器2を毎分5回転で回転させな
がら、電極13.13′に1&56MHzの高周波を2
00W印加し、γ−Fe203粉末を処理した。
[Example 1] In Fig. 1, the powder to be treated 1 is γ-F6203s.
oot (acicular ratio 7: 1.6 = 78 emu/S'
, Ilc=3800e) was placed in container 2, and the insides of containers 2 and 3 were evacuated to 7×10 Torr by exhaust device 4. Next, from cylinder 5) I2 gas at 200 c/min
m” and cobalt carbonyl C from cylinder 7.
og(Co)a gas was flowed into container 2 at a rate of 200 cm/min.
While controlling the pressure to 5 Torr and rotating the container 2 at 5 revolutions per minute, high frequencies of 1 and 56 MHz are applied to the electrodes 13 and 13'.
00W was applied to process the γ-Fe203 powder.

第2図に処理時間とコバルトの付着量を示した。・また
第3図は、コバルトの付着量と保磁力fleの関係を示
している。これらの図中、21および51の線は上記の
方法で処理した場合の関係を示しており、22および3
2の線は上記の方法において150℃に加熱しながら処
理した場合の関係を示している。
Figure 2 shows the treatment time and the amount of cobalt deposited.・Furthermore, FIG. 3 shows the relationship between the amount of cobalt deposited and the coercive force fle. In these figures, lines 21 and 51 show the relationship when processed by the above method, and lines 22 and 3
Line 2 shows the relationship when processing is performed while heating at 150° C. in the above method.

〔実施例2〕 第1図において、被処理粉末1としてγ−Fa203s
oar(針状比7:1、σ、=78 emu/f s 
He=5800e)を容器2内に入れ、容器2および3
内を排気装置4によってI X 10 Torrまで排
気した。次にボンベ5からArガスを毎分150cm”
の割合で、またボンベ6から02ガスを毎分50cm’
の割合で、またボンベ7からコバルトカルボニルCod
(Co)龜のガスを毎分200 am”の割合で、また
ボンベ8から鉄カルボニ/I/F・(CO)、のガスを
毎分200 cm”の割合で容器2内に流した。次いで
、容器2および3内を0.5 Torrに制御し、容器
2を毎分5回転で回転させながら、電filii13.
13′にIN54MHzの高周波を200W印加し、γ
−Fe20B粉末を処理した。
[Example 2] In Fig. 1, γ-Fa203s was used as the powder to be treated 1.
oar (acicular ratio 7:1, σ, = 78 emu/f s
He=5800e) into container 2, and containers 2 and 3.
The inside was evacuated to I x 10 Torr using an exhaust device 4. Next, Ar gas is supplied from cylinder 5 at a rate of 150cm/min.
02 gas from cylinder 6 at a rate of 50 cm' per minute.
Also from cylinder 7 cobalt carbonyl Cod
(Co) gas was flowed into the container 2 at a rate of 200 am'' per minute, and iron carbony/I/F.(CO) gas was flowed into the container 2 from the cylinder 8 at a rate of 200 cm'' per minute. Next, while controlling the insides of containers 2 and 3 to 0.5 Torr and rotating container 2 at 5 revolutions per minute, an electric current 13.
Apply 200W of IN54MHz high frequency to 13',
- Treated Fe20B powder.

第4図は処理時間とコバルトの付着量の関係を示す。ま
た第5図は、このときのコバルト付着量と保磁力Heの
関係を示している。第6図は上記の方法において、加熱
しながら10分間処理した場合の処理時の温度とコバル
ト付着量との関係(61)および処理時の温度と保磁力
Heの関係(62)を示している。
FIG. 4 shows the relationship between treatment time and amount of cobalt deposited. Further, FIG. 5 shows the relationship between the amount of cobalt deposited and the coercive force He at this time. Figure 6 shows the relationship between the temperature during treatment and the amount of cobalt deposited (61) and the relationship between the temperature during treatment and the coercive force He (62) when the process is performed for 10 minutes while heating in the above method. .

第7図は、上記の方法において、コバルト付着量Co/
γ−Fez03が3wt%になるように室温で処理した
後、各温度で熱処理した時の熱処理温度と保磁力Heの
関係を示している。図中71の線は空気中30分間熱処
理したものであり、72の線は空気のプラズマ(容器内
の圧力はI Torrに制御した)中で熱処理を行なっ
たものである。
FIG. 7 shows the amount of cobalt deposited Co/
It shows the relationship between heat treatment temperature and coercive force He when heat treatment was performed at each temperature after treatment at room temperature so that γ-Fez03 was 3 wt%. In the figure, the line 71 shows the result of heat treatment in air for 30 minutes, and the line 72 shows the result of heat treatment in air plasma (the pressure inside the container was controlled at I Torr).

第8図は、温度安定性を示すものであり、各温度におけ
る保磁力と25℃における保磁力の比を加熱温度に対し
て示している。図中82の線が本実施例で得られたもの
であり、コバルト付着量Co/γF@203が5vt%
になるように室温で処理したものである。また図中81
および83の線は、比較のためそれぞれγF103およ
びコバルトドープyF@10aの温度依存性を示してい
る。
FIG. 8 shows the temperature stability, and shows the ratio of the coercive force at each temperature and the coercive force at 25° C. with respect to the heating temperature. The line 82 in the figure is obtained in this example, and the cobalt adhesion amount Co/γF@203 is 5vt%.
It was processed at room temperature so that Also, 81 in the figure
Lines 83 and 83 show the temperature dependence of γF103 and cobalt-doped yF@10a, respectively, for comparison.

〔発明の効果〕〔Effect of the invention〕

、 実施例1における第2図及び第3図の結果、及び書
施例2における第4図及び第5図の結果から分るように
、プラズマ処理時間やガス組成を調整することによりC
o被着量を制御することができ、それに比例して保磁力
Heを広い範囲で制御することができる。また、第2図
、第3図、及び第6図に示されたように、ブラズヤ処理
温度を変えることによりCo被着量及び保磁力を制御す
ることができる。さらに、得られたCo被着磁性粉は第
7図に示すように熱処理を行うことによって保磁力を制
御することも可能である0これらのデータから分るよう
に、本発明のプラズマ処理プロセスにより、磁性粉の保
磁力は6重量%程度までのC。
As can be seen from the results in Figures 2 and 3 in Example 1 and Figures 4 and 5 in Example 2, by adjusting the plasma treatment time and gas composition, C
o The amount of deposition can be controlled, and the coercive force He can be controlled within a wide range in proportion to it. Furthermore, as shown in FIGS. 2, 3, and 6, the amount of Co deposited and the coercive force can be controlled by changing the blasting temperature. Furthermore, it is also possible to control the coercive force of the obtained Co-coated magnetic powder by subjecting it to heat treatment as shown in Figure 7. As can be seen from these data, the plasma treatment process of the present invention , the coercive force of the magnetic powder is C up to about 6% by weight.

被着によりHc=80DO・程度までの保磁力を有する
磁性粉末を自由に得ることができる。また、本発明のC
o被着γFe2O3粉末はビデオテープ等に応用される
もので、広範囲の使用温度条件下に使用されるが、第8
図の結果から分るように、本発明の磁性粉末(82のも
の)は従来のCoドープrFe*ox(8!iのもの)
よりもはるかに温度安定性が良い。
By deposition, it is possible to freely obtain magnetic powder having a coercive force up to about Hc=80 DO. Moreover, C of the present invention
o The adhered γFe2O3 powder is applied to video tapes, etc., and is used under a wide range of operating temperature conditions.
As can be seen from the results in the figure, the magnetic powder of the present invention (82) is different from the conventional Co-doped rFe*ox (8!i)
It has much better temperature stability than

以上のように、本発明によると、ドライプロセスにより
Co等を被着したγFe2O3等の高保磁力及び高安定
性の磁性粉末が得られる。またこのため、従来必要であ
った湿式処理の欠点が無くなり、工程上も非常に有利に
なる。
As described above, according to the present invention, a magnetic powder having high coercive force and high stability, such as γFe2O3, coated with Co or the like can be obtained by a dry process. Furthermore, this eliminates the drawbacks of the conventionally necessary wet processing, which is very advantageous in terms of process.

なお、本発明はγFe2O31’にCoまたはCo−F
eを被着する例について説明したが、Fe3O4粉末に
対するドライブ田七入処理にも適用できるし、さらに被
着金属もCo、F@、Ni、Crの少くとも1種などを
用いうる。そして、一般には、プラズマ化が可能な金属
化合物気体を用いて、当該金属の被着が必要な被処理磁
性粉末をプラズマ処理することも本発明に含まれる。
In addition, in the present invention, Co or Co-F is added to γFe2O31'.
Although the explanation has been given on an example in which a metal is deposited, the present invention can also be applied to a drive treatment for Fe3O4 powder, and at least one of Co, F@, Ni, and Cr may be used as the deposited metal. In general, the present invention also includes plasma-treating the magnetic powder to be treated, which requires the deposition of the metal, using a metal compound gas that can be turned into plasma.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する処理の概念図、第2図
は本発明の実施例1におけるプラズマ処理時間とコバル
ト被着量の関係を示すグラフ、第3図は実施例1におけ
るコパル)含有量と保磁力の関係を示すグラフ、第4図
は実施例2におけるプラズマ処理時間とコバルト被着量
の関係を示すグラフ、第5図は実施例2におけるコバル
ト被着量と保磁力の関係を示すグラフ、第6図は実施例
2におけるプラズマ処理温度とコバルト被着量及び保磁
力の関係を示すグラフ、第7図は実施例2で得た磁性粉
末の熱処理温度と保磁力の関係を示すグラフ、及び第8
図は実施例2で得た磁性粉末の保磁力の熱安定性を比較
例と共に示すグラフであ処1叶門(泳 Co7TFe203(57010) 第2図 第3図 第4図 0 ’10 20 30 7(埋晴間C冷) 第5図 :!I[ ″″″0 島−フ7[」 第80 手続補正書 昭和59年 3月21[1 特許庁長官 若 杉 和 夫 殿 市(’lの表示 昭和59年 特願第 10999 号
発明′)名称 粉末・・1超・注材料 補市をずろ者 ltl’lとの関係 特〃削11願人 名(イ1、(306)ティーディーケイ株式会社代理人 抽11′、の対象 1ili i+:、の内容 別紙の通り先きに提出した
図面中第2図を別紙の通り補正する。
Fig. 1 is a conceptual diagram of the process of implementing the method of the present invention, Fig. 2 is a graph showing the relationship between plasma processing time and cobalt deposition amount in Example 1 of the present invention, and Fig. 3 is a graph showing the relationship between the plasma treatment time and the amount of cobalt deposited in Example 1. ) A graph showing the relationship between content and coercive force, Figure 4 is a graph showing the relationship between plasma treatment time and cobalt deposition amount in Example 2, and Figure 5 is a graph showing the relationship between cobalt deposition amount and coercive force in Example 2. FIG. 6 is a graph showing the relationship between plasma treatment temperature, cobalt deposition amount, and coercive force in Example 2. FIG. 7 is a graph showing the relationship between heat treatment temperature and coercive force of the magnetic powder obtained in Example 2. and the eighth
The figure is a graph showing the thermal stability of the coercive force of the magnetic powder obtained in Example 2 together with a comparative example. (Buharuma C cold) Figure 5:! 1981 Patent Application No. 10999 Invention') Name: Powder...1, Relationship with the person who cheated on the supplementary market for injection materials Special cut 11 Name of applicant (I1, (306) TDC Co., Ltd. agent) Contents of the subject 1ili i+ of Person Lottery 11', Figure 2 of the drawings submitted earlier is corrected as shown in the attached sheet.

Claims (1)

【特許請求の範囲】 1、減圧された真空容器内に1種類以上の金属化合物気
体を含む反応ガスを導入し、該反応ガスに誘導エネルギ
ーを加えることにより該反応ガスを低温プラズマ雰囲気
とし、これと被処理物粉末扮末とを接触させることによ
り被処理物粉末の粒子表面に金属または金属の酸化物の
層を形成したことを特徴とする粉末磁性材料。 2、 粉末磁性材料は熱処理されている特許請求の範囲
第1項に記載の粉末磁性材料。 五 金属化合物が金属力〃ボニルであることを特徴とす
る特許請求の範囲第1項または第2項記載の粉末磁性材
料。 4、 反応ガスとして導入される少なくとも1種類の金
属化合物にコバルトを含むことを特徴とする特許請求の
範囲第1項ないし第3項のいずれかに記載の粉末磁性材
料。 5、 粉末状の被処理物が針状酸化鉄粉末であることを
特徴とする特許請求の範囲第1項ないし第4項のいずれ
かに記載の粉末磁性材料。 & 反応ガスの低温プラズマ雰囲気と粉末状の被処理物
との接触が加熱下で行なわれることを特徴とする特許請
求の範囲第1項ないし第5項のいずれかに記載の粉末磁
性材料。
[Claims] 1. A reaction gas containing one or more metal compound gases is introduced into a reduced pressure vacuum container, and induction energy is applied to the reaction gas to create a low-temperature plasma atmosphere; 1. A powder magnetic material characterized in that a layer of metal or metal oxide is formed on the surface of particles of a powder to be processed by contacting powder with a powder to be processed. 2. The powder magnetic material according to claim 1, wherein the powder magnetic material is heat-treated. (5) The powder magnetic material according to claim 1 or 2, wherein the metal compound is metallobonyl. 4. The powder magnetic material according to any one of claims 1 to 3, wherein at least one metal compound introduced as a reactive gas contains cobalt. 5. The powdered magnetic material according to any one of claims 1 to 4, wherein the powdered material to be processed is acicular iron oxide powder. & The powdered magnetic material according to any one of claims 1 to 5, wherein the contact between the low-temperature plasma atmosphere of the reactive gas and the powdered object to be processed is performed under heating.
JP59010999A 1984-01-26 1984-01-26 Powder magnetic material Pending JPS60157203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59010999A JPS60157203A (en) 1984-01-26 1984-01-26 Powder magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59010999A JPS60157203A (en) 1984-01-26 1984-01-26 Powder magnetic material

Publications (1)

Publication Number Publication Date
JPS60157203A true JPS60157203A (en) 1985-08-17

Family

ID=11765830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59010999A Pending JPS60157203A (en) 1984-01-26 1984-01-26 Powder magnetic material

Country Status (1)

Country Link
JP (1) JPS60157203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120704A (en) * 1989-10-03 1991-05-22 Fuji Photo Film Co Ltd Method for processing ferromagnetic metal powder and magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120704A (en) * 1989-10-03 1991-05-22 Fuji Photo Film Co Ltd Method for processing ferromagnetic metal powder and magnetic recording medium

Similar Documents

Publication Publication Date Title
JPS5853493B2 (en) Kiyoji Seifun Matsuno Seiho
JPS60157203A (en) Powder magnetic material
US4396596A (en) Method of preparing gamma ferric hydroxyoxide powder
US4745031A (en) Magnetic recording medium
GB2168911A (en) Magnetic recording medium
JPH021085B2 (en)
JPS6021307A (en) Production of ferromagnetic metallic powder
JPH04157615A (en) Treating method of magnetic powder
JPS6132259B2 (en)
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
US20040052935A1 (en) Magnetic thin film and production method therefor
JPS63133323A (en) Production of thin magnetic iron oxide film
JPH0361307A (en) Manufacture of metallic magnetic powder for magnetic recording
JPS5860630A (en) Preparation of cobalt-containing ferromagnetic iron oxide
JPS62156201A (en) Ferromagnetic metallic powder treated with carbon dioxide
JPS5919167B2 (en) Manufacturing method of metal magnetic powder
JP2746369B2 (en) Method for producing magnetic iron oxide powder for magnetic recording
JPS62156208A (en) Ferromagnetic metallic powder
JPS6187302A (en) Manufacture of magnetic recording medium
JPS61229305A (en) Manufacture of magnetic metal powder
JPS644336B2 (en)
JPS59172209A (en) Metal magnetic powder and manufacture thereof
JPS5998504A (en) Manufacture of magnetic recording body
JPS62104017A (en) Manufacture of ferro magnetic thin film of spinel type oxide
JPH01246302A (en) Method for treating surface of ferromagnetic iron powder