JPS644336B2 - - Google Patents

Info

Publication number
JPS644336B2
JPS644336B2 JP6939080A JP6939080A JPS644336B2 JP S644336 B2 JPS644336 B2 JP S644336B2 JP 6939080 A JP6939080 A JP 6939080A JP 6939080 A JP6939080 A JP 6939080A JP S644336 B2 JPS644336 B2 JP S644336B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
film
temperature
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6939080A
Other languages
Japanese (ja)
Other versions
JPS56164020A (en
Inventor
Masuzo Hatsutori
Tomu Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6939080A priority Critical patent/JPS56164020A/en
Publication of JPS56164020A publication Critical patent/JPS56164020A/en
Publication of JPS644336B2 publication Critical patent/JPS644336B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Chemical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酸化物磁性薄膜の製造方法に関するも
のである。 一般に、磁気記録用の媒体として、γ―Fe2O3
を主成分とする磁性体粉末にバインダーを加え、
インク状にしたのち、支持基体上に塗布形成し
た、いわゆる塗布膜が市場において圧倒的に多く
使用されている。これ以外にも、メツキ法で形成
されたNi―Co―P系などの強磁性薄膜も若干使
用されている。メツキ法は、メツキの諸条件の確
立がかなり困難である、膜の機械的強度が実用に
対して十分でないことから、塗布法よりも先に開
発に着手されているにもかかわらず、実用化に遅
れている。メツキ法による強磁性薄膜は、磁気的
性質が良好であり、現在も開発が進められてお
り、一部市場に出まわるようになつているのが実
情である。 電子計算機の大型化やメモリの高密度化が進ん
でいる今日、塗布膜の記録密度はほぼ限界に達し
ている。塗布膜は、前述したように、γ―Fe2O3
粉末にバインダーを加えてなるものであり、その
うちの磁気記録に関与するγ―Fe2O3の占める割
合が20%であり、残余がバインダーで占められて
いる。すなわち、塗布膜においては、単位面積あ
たり20%程度だけが磁気記録に有用であることに
なる。無論、この塗布膜においても、より高密度
化の検討が進められており、γ―Fe2O3粒子の配
向比の向上、その微粒子化、さらには機械的な研
摩技術を用いて薄膜化することが検討されている
が、記録密度の上限は2×104BPI程度とされて
いる。 電子計算機においてはさらに高い記録密度が要
求されており、かかる媒体の製造方法が種々検討
されている。その代表的な方法としては、真空蒸
着法、スパツタリング法、吹きつけ法などがあ
る。真空蒸着法ではFeを真空中または酸化性雰
囲気中で蒸着することが試られており、スパツタ
リング法ではFeまたはFe酸化物をターゲツトと
し、真空中または酸化性雰囲気中でスパツタする
ことが行なわれている。吹きつけ法においては、
Feの塩化物などを含む溶液を霧状にして加熱し
た基板上に吹きつけて、Feの酸化物膜を形成す
る方法がとられている。 本発明は、従来の方法とはまつたく異なる出発
材料を使用し、最終的に高密度記録の可能なガン
マへマタイト(γ―Fe2O3)膜を形成することの
できる方法を提供するものである。 すなわち、本発明の方法は、出発材料として
Fe(C5H52なるフエロセンを使用し、これが加熱
すると昇華することを利用して、酸化性ガスをキ
ヤリアガスとして、この昇華気体を内部が10-1
10-3Torr程度に減圧され、かつプラズマを発生
させている容器内に導き入れ、プラズマ中に置か
れ、かつ一定温度に保持されている基板に接触さ
せて、その表面にFeの酸化物の薄膜を形成し、
さらに還元、酸化して、γ―Fe2O3膜を得るもの
である。 Fe(C5H52は、FeCl3のように塩素を含んでい
ないため、Fe酸化物膜の形式時にHClを発生す
ることがなく、反応装置の腐蝕のおそれがなく、
また排気装置も簡単化される。 そして、プラズマ中でFe(C5H52の熱分解反応
を生じさせているため、反応に要するエネルギー
をプラズマからも得ることができ、基板の温度を
それだけ低くできる。プラズマ中で熱分解反応を
生じさせない場合であれば、基板温度を350℃以
上に保持しなければならないのに対し、プラズマ
中では、基板温度の下限を150℃程度まで下げる
ことができる。このように、プラズマ中での減圧
CVD法を用いれば、基板の加熱温度を低くして
も膜の形成ができるため、とくに耐熱性材料から
なる基板でなくても、たとえばアルミニウム合金
板、あるいはポリイミド樹脂などの有機物からな
る板などを基板として使用することができる。 Fe(C5H52より上述のようにして形成させた膜
は、酸化性ガス中で形成される場合、ほとんどが
α―Fe2O3膜となる。基板の温度をさらに低く、
たとえば室温程度まで低くした場合には、一部に
Fe3O4あるいはFe(CO22などの中間反応生成物
が形成されることがある。 以上のようにして得られたFe酸化物膜を、還
元性雰囲気中においてたとえば300〜350℃、1時
間の条件で加熱すれば、Fe3O4なるマグネタイト
となり、さらにそれをついで、酸化性雰囲気中に
おいてたとえば300〜350℃、1時間の条件で加熱
すると、γ―Fe2O3なるガンマヘマタイトに変化
する。このγ―Fe2O3膜は強磁性を示すものであ
る。 なお、これら、Fe3O4,γ―Fe2O3は、X線回
折や電子線解析でそれぞれの単相からなつている
ことを確認している。 以下に、本発明の方法の実施例について詳細に
説明する。 まず、容器内に耐熱ガラス基板を配置し、内部
を10-1Torrに減圧した。一方、Fe(C5H52なる
フエロセンを200℃に加熱して昇華させ、昇華気
体が固体化しない温度(たとえば200℃)に保持
されたパイプを通して、酸素をキヤリアガスとし
て、プラズマを発生させた容器内に150℃/分の
割合で導入した。なお、基板の温度は、あらかじ
め150℃,300℃,400℃,600℃のそれぞれの温度
に保持しておいた。そして、プラズマ中での基板
への析出時間を20分とした。 この条件で得たFeの酸化物膜を、それぞれ300
℃でH2ガス雰囲気中において2時間還元し、つ
ぎに300℃で空気中において1時間熱処理して酸
化し、最終的にγ―Fe2O3薄膜を得た。 これら各条件で作製したγ―Fe2O3薄膜の磁気
特性は下表に示すとおりであつた。
The present invention relates to a method for manufacturing an oxide magnetic thin film. Generally, γ-Fe 2 O 3 is used as a magnetic recording medium.
Add a binder to the magnetic powder whose main component is
The so-called coating film, which is made into an ink and then coated on a supporting substrate, is overwhelmingly used in the market. In addition to these, some ferromagnetic thin films such as Ni--Co--P based films formed by the plating method are also used. The plating method has been developed before the coating method because it is quite difficult to establish the conditions for plating and the mechanical strength of the film is not sufficient for practical use. is late. The ferromagnetic thin film produced by the Metzki method has good magnetic properties and is currently under development, with some of the films now on the market. Today, as electronic computers become larger and memories become more dense, the recording density of coating films has almost reached its limit. As mentioned above, the coating film is made of γ-Fe 2 O 3
It is made by adding a binder to powder, of which γ-Fe 2 O 3 , which is involved in magnetic recording, accounts for 20%, and the remainder is occupied by the binder. That is, in the coating film, only about 20% per unit area is useful for magnetic recording. Of course, efforts are being made to increase the density of this coating film, including improving the orientation ratio of γ-Fe 2 O 3 particles, making them finer, and using mechanical polishing techniques to make the film thinner. However, the upper limit of recording density is said to be about 2×10 4 BPI. Electronic computers are required to have even higher recording densities, and various methods of manufacturing such media are being studied. Typical methods include vacuum evaporation, sputtering, and spraying. In the vacuum evaporation method, attempts have been made to deposit Fe in a vacuum or in an oxidizing atmosphere, and in the sputtering method, Fe or Fe oxide is targeted and sputtered in a vacuum or in an oxidizing atmosphere. There is. In the spray method,
One method is to form an Fe oxide film by spraying a solution containing Fe chloride or the like onto a heated substrate. The present invention uses a starting material that is completely different from conventional methods, and provides a method that can ultimately form a gamma hematite (γ-Fe 2 O 3 ) film capable of high-density recording. It is. That is, the method of the present invention uses as a starting material
Fe(C 5 H 5 ) 2 ferrocene is used, and by taking advantage of the fact that it sublimates when heated, the oxidizing gas is used as a carrier gas, and this sublimated gas is heated to an internal temperature of 10 -1 ~
It is introduced into a container that is depressurized to about 10 -3 Torr and generates plasma, and is brought into contact with a substrate placed in the plasma and maintained at a constant temperature, so that Fe oxide is deposited on its surface. forming a thin film,
Further reduction and oxidation are performed to obtain a γ-Fe 2 O 3 film. Unlike FeCl 3 , Fe(C 5 H 5 ) 2 does not contain chlorine, so it does not generate HCl when forming an Fe oxide film, and there is no risk of corrosion of the reaction equipment.
The exhaust system is also simplified. Since the thermal decomposition reaction of Fe(C 5 H 5 ) 2 occurs in the plasma, the energy required for the reaction can also be obtained from the plasma, and the temperature of the substrate can be lowered accordingly. If a thermal decomposition reaction is not to occur in plasma, the substrate temperature must be maintained at 350°C or higher, whereas in plasma, the lower limit of the substrate temperature can be lowered to about 150°C. In this way, depressurization in the plasma
Using the CVD method, it is possible to form a film even if the heating temperature of the substrate is low, so even if the substrate is not made of a particularly heat-resistant material, such as an aluminum alloy plate or a plate made of an organic material such as polyimide resin, etc. Can be used as a substrate. When the film formed from Fe(C 5 H 5 ) 2 as described above is formed in an oxidizing gas, most of the film becomes an α-Fe 2 O 3 film. Lower the temperature of the board,
For example, if the temperature is lowered to about room temperature, some
Intermediate reaction products such as Fe 3 O 4 or Fe(CO 2 ) 2 may be formed. If the Fe oxide film obtained as described above is heated in a reducing atmosphere at, for example, 300 to 350°C for 1 hour, it becomes Fe 3 O 4 magnetite, which is then heated in an oxidizing atmosphere. When it is heated in a container at, for example, 300 to 350°C for one hour, it changes to gamma hematite, which is γ-Fe 2 O 3 . This γ-Fe 2 O 3 film exhibits ferromagnetism. In addition, it has been confirmed by X-ray diffraction and electron beam analysis that these Fe 3 O 4 and γ-Fe 2 O 3 are each composed of a single phase. Examples of the method of the present invention will be described in detail below. First, a heat-resistant glass substrate was placed inside the container, and the pressure inside was reduced to 10 -1 Torr. On the other hand, ferrocene, Fe(C 5 H 5 ) 2 , is heated to 200°C to sublimate it, and then passed through a pipe maintained at a temperature (e.g. 200°C) at which the sublimated gas does not solidify, using oxygen as a carrier gas to generate plasma. was introduced into the container at a rate of 150°C/min. Note that the temperature of the substrate was maintained at 150°C, 300°C, 400°C, and 600°C in advance. The deposition time on the substrate in plasma was set to 20 minutes. The Fe oxide film obtained under these conditions was
℃ in a H 2 gas atmosphere for 2 hours, and then heat-treated in air at 300 ℃ for 1 hour to oxidize, finally obtaining a γ-Fe 2 O 3 thin film. The magnetic properties of the γ-Fe 2 O 3 thin film produced under these conditions are as shown in the table below.

【表】 上表から明らかなように、得られたγ―Fe2O3
薄膜は、磁気記録用媒体として十分なものであ
る。しかも低温で膜の形成ができることから、ポ
リイミドなどの樹脂板、あるいはアルミニウム合
金板などを基板に使用しても、その表面に熱的欠
陥を与えるおそれがない。これは、たとえば電子
計算機のハードデイスク,フレキシブルデイスク
などの磁気記録媒体の形成に非常に有用である。
また、本発明では熱化学的に膜を形成しているた
め、膜の基板への付着強度が非常に強いという特
徴をもつており、有用な方法である。
[Table] As is clear from the table above, the obtained γ-Fe 2 O 3
Thin films are sufficient as magnetic recording media. Furthermore, since the film can be formed at low temperatures, there is no risk of thermal defects on the surface even if a resin plate such as polyimide or an aluminum alloy plate is used as the substrate. This is very useful for forming magnetic recording media such as hard disks and flexible disks for electronic computers.
In addition, since the film is formed thermochemically in the present invention, the film has a characteristic that the adhesion strength to the substrate is very strong, making it a useful method.

Claims (1)

【特許請求の範囲】 1 Fe(C5H52なるフエロセンの気体を、酸化性
ガスをキヤリアガスとして、プラズマ中に配置さ
れている基板上に導き、前記基板上に薄膜を形成
してから、まず還元性雰囲気中で熱処理してマグ
ネタイト薄膜とし、さらに酸化性雰囲気中で熱処
理してガンマへマタイト薄膜に変化させることを
特徴とする酸化物磁性薄膜の製造方法。 2 フエロセンからの膜形成時の基板温度を150
℃〜600℃に保持することを特徴とする特許請求
の範囲第1項に記載の酸化物磁性薄膜の製造方
法。
[Claims] 1 Fe(C 5 H 5 ) 2 ferrocene gas is introduced onto a substrate placed in plasma using an oxidizing gas as a carrier gas, and a thin film is formed on the substrate. A method for producing an oxide magnetic thin film, which comprises first heat-treating in a reducing atmosphere to form a magnetite thin film, and then heat-treating in an oxidizing atmosphere to transform it into a gamma hematite thin film. 2 Set the substrate temperature during film formation from ferrocene to 150
2. The method for manufacturing an oxide magnetic thin film according to claim 1, wherein the temperature is maintained at a temperature of .degree. C. to 600.degree.
JP6939080A 1980-05-23 1980-05-23 Production of magnetic thin film of oxide Granted JPS56164020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6939080A JPS56164020A (en) 1980-05-23 1980-05-23 Production of magnetic thin film of oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6939080A JPS56164020A (en) 1980-05-23 1980-05-23 Production of magnetic thin film of oxide

Publications (2)

Publication Number Publication Date
JPS56164020A JPS56164020A (en) 1981-12-16
JPS644336B2 true JPS644336B2 (en) 1989-01-25

Family

ID=13401216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6939080A Granted JPS56164020A (en) 1980-05-23 1980-05-23 Production of magnetic thin film of oxide

Country Status (1)

Country Link
JP (1) JPS56164020A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116118A (en) * 1983-11-29 1985-06-22 Tdk Corp Magnetic thin film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323957B2 (en) * 1973-06-01 1978-07-18
JPS5265898A (en) * 1975-11-26 1977-05-31 Nippon Telegr & Teleph Corp <Ntt> Preparing oxidized magnetic thin film

Also Published As

Publication number Publication date
JPS56164020A (en) 1981-12-16

Similar Documents

Publication Publication Date Title
JPS6180527A (en) Generation for wear and corrosion resistant film for magnetic recording medium
US4816341A (en) Magnetic recording medium
JPS61253622A (en) Magnetic recording medium and its production
JPS644336B2 (en)
JPS5915483B2 (en) Method for preparing high coercive force magnetic particles based on ferrimagnetic iron oxide and doped with cobalt
JPS646528B2 (en)
JPS646529B2 (en)
JPH04157615A (en) Treating method of magnetic powder
JPS6346970B2 (en)
JPS61246914A (en) Magnetic recording medium and its production
JP2538123B2 (en) Fixed magnetic disk and manufacturing method thereof
JPH0630133B2 (en) Magnetic recording medium and manufacturing method thereof
JP2538124B2 (en) Fixed magnetic disk and manufacturing method thereof
JPS5927505A (en) Ferromagnetic metal powder
JPH03273525A (en) Production of magnetic recording medium
JPS6122433A (en) Production of magnetic recording medium
JPS6326823A (en) Magnetic recording medium and its production
JPS592232A (en) Production of magnetic recording medium
JPH0760523B2 (en) Method of manufacturing magnetic recording medium
JPS61276115A (en) Magnetic recording medium and its production
JPS5968818A (en) Magnetic recording medium
JPH01199314A (en) Magnetic recording medium
JPS61216115A (en) Magnetic recording medium and its production
JPH0361307A (en) Manufacture of metallic magnetic powder for magnetic recording
JPS6116014A (en) Magnetic recording medium and its production