JPH0361307A - Manufacture of metallic magnetic powder for magnetic recording - Google Patents

Manufacture of metallic magnetic powder for magnetic recording

Info

Publication number
JPH0361307A
JPH0361307A JP1194590A JP19459089A JPH0361307A JP H0361307 A JPH0361307 A JP H0361307A JP 1194590 A JP1194590 A JP 1194590A JP 19459089 A JP19459089 A JP 19459089A JP H0361307 A JPH0361307 A JP H0361307A
Authority
JP
Japan
Prior art keywords
iron oxide
aluminum
oxide
compound
hydrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1194590A
Other languages
Japanese (ja)
Inventor
Masatake Maruo
丸尾 正剛
Toshihiko Kawamura
河村 俊彦
Katsuaki Kato
加藤 勝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP1194590A priority Critical patent/JPH0361307A/en
Publication of JPH0361307A publication Critical patent/JPH0361307A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To industrially and stably manufacture metallic magnetic powder for magnetic recording by heating under condition of the specific atmosphere and temp. after coating combining the specific Al compound and B compound on surface of fine ferrous oxide. CONSTITUTION:Powder of water containing iron oxide of extremely fine FeOOH, etc., having >=55m<2>/g specific surface area or iron oxide of fine Fe2O3, Fe3O4, etc., having >=40m<2>/g specific surface area, is charged into suspension of B compound of boric acid, ammonium borate, etc., and Al(OH)3 to form mixed coating layer of the B compound and Al(OH)3 on the surface of water containing iron oxide and iron oxide particles. After heating this at 550-900 deg.C in the air, this is heated and reduced under reducing atmosphere of hydrogen gas stream, etc., and successively, cooled in N2 gas and after dipping this in toluene, the toluene is vaporized at the room temp. to manufacture the ferrous fine powder being suitable to the magnetic recording.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録用に好適な鉄系金属磁性粉末の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing iron-based metal magnetic powder suitable for magnetic recording.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録媒体は、近年その記録密度を向上させ、より小
型のもの、より高性能のものに改善しようとする指向が
一段と強まってきている。これに伴い、磁気記録用磁性
粉末として、酸化鉄系磁性粉末に比し、飽和磁化および
保磁力が大きい鉄または鉄系金属磁性粉末(以下、金属
磁性粉末という)が注目されている。金属磁性粉末は、
デジタルオ−ディオテープや8mmビデオテープなどへ
の実用が図られつつあるが、近時さらに高画質ビデオテ
ープ、高記録密度ディスクなど、高性能記録媒体への適
用が一層期待されている。
2. Description of the Related Art In recent years, there has been an increasing trend toward improving the recording density of magnetic recording media and making them smaller and with higher performance. Accordingly, iron or iron-based metal magnetic powders (hereinafter referred to as metal magnetic powders), which have higher saturation magnetization and coercive force than iron oxide-based magnetic powders, are attracting attention as magnetic powders for magnetic recording. Metal magnetic powder is
Practical applications for digital audio tapes, 8 mm video tapes, etc. are being attempted, and recently there are even more expectations for its application to high-performance recording media such as high-quality video tapes and high-density disks.

とりわけ高性能磁気記録媒体用金属磁性粉末は、これが
例えば針状粒子の場合、通常、長軸が約0.5μm、さ
らには0.3μm以下の微細で焼結のないものが要求さ
れ、かつ、このものを磁性塗料としたときの分散性、そ
の塗膜での配向性、充填性、表面平滑性などの一層優れ
たものが希求されている。このためには、出発原料の含
水酸化鉄や酸化鉄は、その粒子が微細であって、かつ良
好な粒度分布のものが所望されている。しかしながら、
前記出発原料はそれが微細なものであればあるほど目的
物への還元過程で、粒子的焼結により針状形状が変化し
たり、粒子間焼結により架橋や粒子の粗大化を起こした
りして目的物の磁気特性に著しく悪影響を与える。
In particular, when the metal magnetic powder for high-performance magnetic recording media is, for example, acicular particles, it is usually required to be fine and non-sintered, with a long axis of about 0.5 μm, or even 0.3 μm or less, and When this material is used as a magnetic coating material, it is desired to have even better dispersibility, orientation in the coating film, filling property, and surface smoothness. For this purpose, it is desired that the starting raw materials, such as hydrated iron oxide and iron oxide, have fine particles and a good particle size distribution. however,
The finer the starting material is, the more likely it is that its needle-like shape changes due to particle sintering or crosslinking or coarsening occurs due to interparticle sintering during the reduction process to the target product. This will significantly adversely affect the magnetic properties of the target object.

しかして、前記問題点を解決すべく、従来から種々の方
法が提案されている。たとえば、含水酸化鉄または酸化
鉄の粒子表面に、ケイ素化合物やアルミニウム化合物、
ホウ素化合物などを被着処理した後、加熱還元処理する
方法が知られている。
In order to solve the above-mentioned problems, various methods have been proposed in the past. For example, silicon compounds, aluminum compounds,
A method is known in which a boron compound or the like is deposited and then heated and reduced.

しかしながら、これらの方法は、粒子形状の崩れや粒子
間焼結などをある程度改善し得るものの、反面前記還元
反応の進行が阻害され易かったりするなど、未だ解決を
要する問題点が少なくない。
However, although these methods can improve particle shape collapse and interparticle sintering to some extent, there are still many problems that still need to be solved, such as the progress of the reduction reaction being easily inhibited.

〔発明の目的〕[Purpose of the invention]

本発明は、前記問題点を一掃して工業的有利に磁気記録
用金属磁性粉末を製造できる方法を提供することを目的
とするものである。
An object of the present invention is to provide a method for manufacturing metal magnetic powder for magnetic recording with industrial advantage by eliminating the above-mentioned problems.

〔発明の構成〕[Structure of the invention]

本発明者等は、かねてより前記問題点を解決すべく種々
検討を進める中で、含水酸化鉄または酸化鉄を主体とす
る金属化合物を、加熱還元処理するに先立って、特定の
アルミニウム化合物と、ホウ素化合物とを組合せ被着し
、かつこのものを特定の雰囲気下、特定温度で加熱処理
することによって、還元反応を容易に進め得るとともに
、粒子形状の崩れや粒子間焼結を実質的に回避し得、か
つ得られる金属磁性粉末は緻密な結晶となり易く、この
ものは高記録密度用磁気記録媒体に極めて好適なものと
なり得ることの知見を得、本発明を完成したものである
。すなわち、本発明は、■)、含水酸化鉄または酸化鉄
の粒子表面に、アルミニウムの含水酸化物とホウ素化合
物とを被着し、次いで非還元性雰囲気下550〜900
℃で加熱処理し、しかる後加熱還元処理することを特徴
とする磁気記録用金属磁性粉末の製造方法。
The present inventors have been conducting various studies to solve the above-mentioned problems for some time, and prior to heat reduction treatment of hydrated iron oxide or a metal compound mainly composed of iron oxide, a specific aluminum compound and By applying a boron compound in combination and heat-treating this material under a specific atmosphere at a specific temperature, the reduction reaction can be easily carried out, and particle shape collapse and interparticle sintering can be virtually avoided. The present invention was completed based on the knowledge that the metal magnetic powder obtained can easily form dense crystals, and that this powder can be extremely suitable for high-density magnetic recording media. That is, in the present invention, (1) a hydrous oxide of aluminum and a boron compound are deposited on the surface of hydrated iron oxide or iron oxide particles, and then a 550 to 900
1. A method for producing a metal magnetic powder for magnetic recording, which comprises heating at a temperature of 0.degree. C. and then subjecting it to a heat reduction treatment.

2)、含水酸化鉄または酸化鉄の粒子表面に、アルミニ
ウムの含水酸化物とホウ素化合物とを被着し、さらに該
被着処理物にホウ素化合物を添加し、しかる後非還元性
雰囲気下で550〜900℃で加熱処理後、加熱還元処
理することを特徴とする磁気記録用金属磁性粉末の製造
方法。
2) A hydrated oxide of aluminum and a boron compound are deposited on the surface of hydrated iron oxide or iron oxide particles, a boron compound is further added to the deposited product, and then heated to 550°C under a non-reducing atmosphere. A method for producing metal magnetic powder for magnetic recording, which comprises heat treatment at ~900°C and then heat reduction treatment.

3)、前記請求項1または2において、含水酸化鉄また
は酸化鉄の懸濁液へ、ホウ素化合物をアルごニウムの含
水酸化物に吸着させたものを添加して該含水酸化鉄また
は酸化鉄の粒子表面にアル旦ニウムの含水酸化物とホウ
素化合物とを被着させることを特徴とする磁気記録用金
属磁性粉末の製造方法。
3) In claim 1 or 2, a boron compound adsorbed on a hydrated argonium oxide is added to the hydrated iron oxide or iron oxide suspension to prepare the hydrated iron oxide or iron oxide. A method for producing a metal magnetic powder for magnetic recording, which comprises depositing a hydrous oxide of aluminum and a boron compound on the surface of the particles.

4)、含水酸化鉄の比表面積が55m2/g以上である
ことを特徴とする請求項第1項から第3項のいづれかに
記載の磁気記録用金属磁性粉末の製造方法。
4) The method for producing a metal magnetic powder for magnetic recording according to any one of claims 1 to 3, wherein the specific surface area of the hydrated iron oxide is 55 m2/g or more.

5)、酸化鉄の比表面積が40m/g以上であることを
特徴とする請求項第1項から第3項のいづれかに記載の
磁気記録用金属磁性粉末の製造方法である。
5) The method for producing a metal magnetic powder for magnetic recording according to any one of claims 1 to 3, wherein the iron oxide has a specific surface area of 40 m/g or more.

本発明において基体粒子とする含水酸化鉄または酸化鉄
には種々のものがある。含水酸化鉄の代表的なものとし
てオキシ水酸化鉄があり、たとえばα−Fe0011、
β−FeO011、T−Fe0011などを挙げ得る。
There are various types of hydrated iron oxide or iron oxide used as the base particles in the present invention. Typical examples of hydrated iron oxide include iron oxyhydroxide, such as α-Fe0011,
β-FeO011, T-Fe0011, etc. may be mentioned.

また酸化鉄としては、たとえばα−FezO,、、Fe
、0.、γ−Fe、03、γ−FezO=を部分還元し
て得られるようなベルトライド化合物などが使用できる
。なお前記の含水酸化鉄または酸化鉄の粒子形状は、代
表的には針状であるが、それ以外の種々の形状のものが
使用できる。たとえば紡錘状、米粒状、棒状、平板状、
サイコロ状などである。
Further, as iron oxide, for example, α-FezO,,,Fe
,0. , γ-Fe, 03, and bertolide compounds obtained by partial reduction of γ-FezO= can be used. The particle shape of the above-mentioned hydrous iron oxide or iron oxide is typically acicular, but various other shapes can be used. For example, spindle-shaped, rice grain-shaped, rod-shaped, plate-shaped,
It is dice-shaped, etc.

これら基体粒子の中、とくに望ましいのは針状α−Fe
lonである。また基体粒子は、その比表面積が55i
/g以上の針状含水酸化鉄または40m/g以上の針状
酸化鉄ように微細なものが好適である。なお基体粒子は
、たとえば(alオキシ水酸化鉄の場合の脱水、焼成工
程での焼結抑制剤としてのリン化合物、ケイ素化合物な
ど(b)目的物の磁気特性の改良に寄与するコバルト化
合物、クロム化合物など(C)その他Mn、 Ni、 
Cu、 Ag、 cti、 pb、 Ca+ Mg+ 
sr、 Zn、 Sn+ W。
Among these base particles, acicular α-Fe is particularly desirable.
It is lon. Further, the base particles have a specific surface area of 55i
Fine particles such as acicular hydrated iron oxide with a particle size of 40 m/g or more or acicular iron oxide with a particle size of 40 m/g or more are preferable. The base particles may include, for example, (dehydration in the case of al-iron oxyhydroxide, phosphorus compounds as sintering inhibitors in the firing process, silicon compounds, etc.) (b) cobalt compounds, chromium, which contribute to improving the magnetic properties of the target object. Compounds etc. (C) Others Mn, Ni,
Cu, Ag, cti, pb, Ca+ Mg+
sr, Zn, Sn+W.

Zr化合物などの各種添加剤の含有を妨げない。It does not prevent the inclusion of various additives such as Zr compounds.

本発明において、前記の含水酸化鉄または酸化鉄を主体
とする金属化合物の粒子表面に、アルミニウムの含水酸
化物とホウ素化合物とを被着するには、種々の方法によ
って行なうことができるが、この被着処理について、針
状α−FeOOll (ゲーサイト)を基体粒子として
使用する場合を例にとりその代表的な工程について説明
する。
In the present invention, the hydrated oxide of aluminum and the boron compound can be deposited on the surface of the particles of the hydrated iron oxide or the metal compound mainly composed of iron oxide by various methods. Regarding the adhesion process, a typical process will be described using an example in which acicular α-FeOOll (goethite) is used as the base particle.

まず微細なゲーサイトの水性懸濁液を調製する。First, an aqueous suspension of fine goethite is prepared.

この懸濁液は必要に応じアルカリ性化合物たとえば水酸
化ナトリウム、水酸化カリウム、アンモニアなど、また
は酸性化合物たとえば硫酸、塩酸などによりρnを6.
0〜9.0に調整するのがよい。また、この懸濁液に必
要に応じ適当な分散剤たとえばリン酸塩、ポリアクリル
酸塩などを添加してゲーサイトの分散を良くすることが
できる。リン酸塩としてヘキサメタリン酸ナトリウム、
ピロリン酸ナトリウムなどを使用するときは、普通ゲー
サイトに対し0.1〜3%(P換算重量%)が好ましい
添加量である。
This suspension is prepared with an alkaline compound such as sodium hydroxide, potassium hydroxide, ammonia, etc. or an acidic compound such as sulfuric acid, hydrochloric acid, etc., as necessary, to bring the ρn to 6.
It is best to adjust it to 0 to 9.0. Further, if necessary, a suitable dispersant such as a phosphate or a polyacrylate may be added to this suspension to improve the dispersion of goethite. Sodium hexametaphosphate as phosphate,
When sodium pyrophosphate or the like is used, the preferable addition amount is usually 0.1 to 3% (weight % in terms of P) based on goethite.

次に前記の基体粒子含有水性懸濁液に、アルミニウムの
含水酸化物とホウ素化合物とを被着処理するには、種々
の方法によって行なうことができるが、たとえば(a)
硝酸アルミニウム、硫酸アルミニウム、塩化アルミニウ
ム等のアルミニウムの酸性塩類やアルミン酸ソーダ等の
アルミニウムの塩基性塩類の溶液に、アルカリまたは酸
を添加して中和しアルミニウムの含水酸化物を沈澱析出
させたり、あるいはアルミニウムアルコキシド、アルキ
ルアルミニウム化合物等の有機アルミニウム化合物の溶
液を加水分解してアルミニウムの含水酸化物を沈澱析出
させたりする過程で、前記のアル壽ニウムの塩類や有機
アルミニウム化合物の溶液へ、あるいは当該沈澱析出途
中の反応液系へ、さらには当該沈澱析出後の反応系へ、
ホウ素化合物たとえばホウ酸、ホウ酸アンモニウム、ホ
ウ酸亜鉛等の金属塩、あるいはホウ酸エステルやホウ素
アルコキシド等の有機ホウ素化合物の溶液や懸濁液ある
いは粉末状物などを、混合分11にさせて、当該添加ホ
ウ素化合物をアルミニウム含水酸化物の沈澱生成物中に
吸着させる、かくして調製された処理生成物を改良調節
剤として用いて、このものの所定量を前記の基体粒子含
有水性懸濁液へ混合分散させることによって、基体粒子
の粒子表面にアルミニウムの含水酸化物とホウ素化合物
とを緊密に被着させたり、あるいは(b)前記基体粒子
の水性懸濁液へアルミニウムの塩類溶液や有機アルミニ
ウム化合物の溶液を添加したり、あるいは塩類溶液や有
機アルミニウム化合物の溶液中へ基体粒子を添加したり
、さらには前記塩M溶液を中和するための酸やアルカリ
に基体粒子を添加し、この処理系においてアルミニウム
塩類を中和したり、あるいは有機アル逅ニウム化合物を
加水分解したりして該基体粒子表面へアルミニウムの含
水酸化物を沈澱析出させるとともにそれにホウ素化合物
を吸着させたりすることによって行なうことができる。
Next, a hydrous oxide of aluminum and a boron compound can be applied to the aqueous suspension containing the base particles by various methods, such as (a)
Alkali or acid is added to a solution of acidic salts of aluminum such as aluminum nitrate, aluminum sulfate, and aluminum chloride, or basic salts of aluminum such as sodium aluminate to neutralize it and precipitate a hydrous oxide of aluminum. Alternatively, in the process of hydrolyzing a solution of an organoaluminum compound such as an aluminum alkoxide or an alkyl aluminum compound to precipitate a hydrous oxide of aluminum, to the reaction liquid system during the precipitation precipitation, and further to the reaction system after the precipitation precipitation,
A boron compound, such as a metal salt such as boric acid, ammonium borate, or zinc borate, or a solution, suspension, or powder of an organic boron compound such as a boric acid ester or boron alkoxide, is added to a mixture of 11, The added boron compound is adsorbed into the precipitated product of aluminum hydrous oxide, and the treated product thus prepared is used as a modified modifier and a predetermined amount of this is mixed and dispersed into the aqueous suspension containing the substrate particles. (b) By adding a salt solution of aluminum or a solution of an organoaluminum compound to the aqueous suspension of the base particles, the hydrous oxide of aluminum and the boron compound are closely adhered to the particle surface of the base particles. In this treatment system, aluminum This can be carried out by neutralizing salts or hydrolyzing an organic aluminum compound to precipitate a hydrous oxide of aluminum onto the surface of the substrate particles, and at the same time adsorbing a boron compound thereto.

一般に、含水酸化鉄や酸化鉄を主体とする金属化合物の
基体粒子表面に被着されたアルくニウムの含水酸化物は
、引き続く加熱脱水処理過程では該基体粒子表面に保持
されているが、爾後の加熱還元過程で該粒子表面より偏
析したり、あるいは粒子表面に剥離したりし易く、この
ため得られる金属磁性粉末の粒子形状の崩れがさけられ
なかったりする。しかして本発明による場合は、前記の
ような被着物の偏析や剥離などが回避し易く、とりわけ
前記(a)の方法は、必要十分な量のホウ素化合物を吸
着したアルミニウムの含水酸化物を均一被着する上で比
較的容易に行ない易くより望ましいものである。
In general, the hydrated oxide of aluminium deposited on the surface of the base particle of hydrated iron oxide or a metal compound mainly composed of iron oxide is retained on the surface of the base particle during the subsequent heating and dehydration process; During the thermal reduction process, it is easy to segregate from the particle surface or peel off from the particle surface, and as a result, the particle shape of the obtained metal magnetic powder is unavoidable. However, in the case of the present invention, it is easy to avoid the segregation and peeling of the adherend as described above, and in particular, the method (a) above uniformly spreads the hydrous oxide of aluminum that has adsorbed a necessary and sufficient amount of boron compound. It is relatively easy to apply and is therefore more desirable.

前記の被着処理において、アルミニウムの含水酸化物の
被着量は、基体粒子中の鉄に対しA 1 /Feとして
、少なくとも0.5重量%;望ましくは2〜6重量%で
あり、またホウ素化合物の被着量は、基体粒子中の鉄に
対してB/Feとして、少なくとも0.2重量%、望ま
しくは0.5〜3重量%である。
In the above deposition treatment, the amount of the hydrous oxide of aluminum deposited is at least 0.5% by weight, preferably 2 to 6% by weight, as A 1 /Fe, based on the iron in the base particles, and The amount of the compound deposited is at least 0.2% by weight, preferably 0.5 to 3% by weight, based on B/Fe based on the iron in the base particles.

これらの被着量が前記より少なきに過ぎると所望の効果
がもたらされず、また被着量が前記より多きに過ぎると
目的物への還元に長時間を要したり目的物の飽和磁化が
低下したりするなど好ましくない。なお、ホウ素化合物
をアルミニウムの含水酸化物に吸着させる場合には、普
通B///!(重量比)で0.05〜2、好ましくは0
.1〜1.5である。
If the amount of these deposits is less than the above, the desired effect will not be brought about, and if the amount of deposit is too much than the above, it will take a long time to reduce the target object or the saturation magnetization of the target object will decrease. I don't like doing that. Note that when a boron compound is adsorbed on a hydrous oxide of aluminum, it is usually B///! (weight ratio) 0.05 to 2, preferably 0
.. 1 to 1.5.

B/A f値が前記より少なきに過ぎると所望の効果が
得られず、またB/A p値が前記より多きに過ぎると
アルミニウムの含水酸化物の飽和吸着を超え、引続く濾
過、水洗工程でホウ素化合物が系外に除かれ経済的に好
ましくない。前記のようにして、基体粒子表面にアルミ
ニウムの含水酸化物とホウ素化合物とを被着した処理系
は、酸またはアルカリを用いてpiが6〜9になるよう
に調整する。なお、前記被着処理工程は、常温下で行な
ってもよいが、必要に応じ加熱下で行なってよく、また
本発明において、アルミニウムの含水酸化物とはアルご
ニウムの水酸化物、水和酸化物、水和オキシ酸化物、酸
化物の部分水和物などの総称である。
If the B/A f value is too low, the desired effect will not be obtained, and if the B/A p value is too high, the saturated adsorption of hydrous oxides of aluminum will be exceeded, resulting in subsequent filtration and water washing. Boron compounds are removed from the system during the process, which is economically unfavorable. The treatment system in which the hydrous oxide of aluminum and the boron compound are deposited on the surface of the base particles as described above is adjusted to have a pi of 6 to 9 using an acid or an alkali. The above-mentioned adhesion treatment step may be carried out at room temperature, but may be carried out under heating if necessary. In the present invention, the hydrated oxide of aluminum refers to hydroxide of argonium, hydrated oxide of aluminum, etc. A general term for oxides, hydrated oxyoxides, partial hydrates of oxides, etc.

本発明において、前記のようにして含水酸化鉄または酸
化鉄の基体粒子の粒子表面にアルミニウムの含水酸化物
とホウ素化合物とを被着処理したものは、懸濁液から分
別し還元して金属磁性粉末を製造することができるが、
本発明においては、還元前に前記アルミニウムの含水酸
化物とホウ素化合物とを被着した基体粒子を、550〜
900℃、好ましくは600〜850℃で非還元性雰囲
気下、たとえば空気中、あるいは窒素などの不活性ガス
雰囲気中で加熱処理するのが必須である。この加熱処理
により、アルミニウムとホウ素との緊密な複合酸化物が
600℃以上で生成し基体粒子表面上に保持されること
による焼結や粒子形状の崩れに対する顕著な効果の発現
と、ゲーサイト粒子が焼きしまって緻密になり、還元時
の焼結や粒子形状の崩れを一層抑制することができる。
In the present invention, the surface of the hydrous iron oxide or iron oxide base particles coated with the hydrous oxide of aluminum and the boron compound as described above is separated from the suspension and reduced to produce metal magnetic material. Although powder can be produced,
In the present invention, the base particles coated with the hydrous oxide of aluminum and the boron compound before reduction have a particle size of 550 to
It is essential to carry out the heat treatment at 900°C, preferably 600-850°C, in a non-reducing atmosphere, for example in air or in an inert gas atmosphere such as nitrogen. Through this heat treatment, a close composite oxide of aluminum and boron is generated at 600°C or higher and retained on the surface of the base particle, which has a remarkable effect on sintering and deformation of the particle shape, and on goethite particles. is baked and becomes dense, making it possible to further suppress sintering and collapse of particle shape during reduction.

加熱処理温度が上記範囲より高きにすぎると、α−Fe
、03の段階で粒子内および粒子間焼結による針状性の
悪化や粗大化が生じて好ましくない。また、上記範囲よ
り低きにすぎると、粒子内に空孔が多く残り、そのもの
が緻密な結晶でないため、引き続く還元工程での形状劣
化が大きく、所望の効果が得られない。
If the heat treatment temperature is too high than the above range, α-Fe
, 03, deterioration of acicularity and coarsening occur due to intra-particle and inter-particle sintering, which is not preferable. On the other hand, if it is too low than the above range, many pores remain in the particles and the particles themselves are not dense crystals, resulting in significant shape deterioration in the subsequent reduction step, making it impossible to obtain the desired effect.

前記のアルミニウムの含水酸化物とホウ素化合物とを被
着したゲーサイトの加熱処理物を還元して本発明の目的
物が得られる。この還元は、よく知られている種々の方
法が採用できる。通常、還元性ガスとしてたとえば水素
を使用し350〜600°Cで処理して鉄酸化物の実質
的に全部を金属鉄に還元できる。このように還元して得
られた金属磁性粉末は大気に触れると、発火したり、α
−Fe20=化したりして飽和磁化が低下するために、
通常大気中への取り出しにあたっては種々の公知の方法
を用い安定化させる。たとえば、トルエン等の有機溶媒
中に浸漬後、ゆっくりトルエン等を蒸発させ安定化する
方法、トルエン等の液相または気相中に含酸素ガスを通
気して安定化する方法、さらには種々の化合物による酸
化抑制の被膜処理と上記方法を併用する方法などがある
The object of the present invention is obtained by reducing the heat-treated product of goethite coated with the hydrous oxide of aluminum and a boron compound. Various well-known methods can be used for this reduction. Generally, substantially all of the iron oxide can be reduced to metallic iron by treatment at 350 to 600°C using, for example, hydrogen as the reducing gas. When the metal magnetic powder obtained by reduction in this way comes into contact with the atmosphere, it may ignite or α
-Fe20 = and the saturation magnetization decreases,
Generally, various known methods are used to stabilize the material before it is taken out into the atmosphere. For example, methods include stabilizing by immersing the toluene in an organic solvent such as toluene and then slowly evaporating the toluene, stabilizing by passing an oxygen-containing gas into the liquid or gas phase of toluene, and various other methods. There is a method in which the above-mentioned method is used in combination with an oxidation-inhibiting film treatment.

なお、上記方法で、前記のアルミニウムの含水酸化物に
吸着したホウ素化合物で被着された基体粒子のゲーサイ
ト中のホウ素含有量が所望量より少ない場合は、上記被
着処理したゲーサイトの濾過、洗浄ケーキにホウ素化合
物を添加、混合処理することで、後記するように一層優
れた金属磁性粉末が得られる。
In addition, in the above method, if the boron content in the goethite of the base particles coated with the boron compound adsorbed on the hydrous oxide of aluminum is less than the desired amount, the goethite treated with the above coating may be filtered. By adding and mixing a boron compound to the washed cake, a more excellent metal magnetic powder can be obtained as described later.

アルミニウムの含水酸化物とホウ素化合物とを被着処理
後に上述のように加熱処理することが、通常、工業上お
よび効果の面から有利であるが、場合によっては含水酸
化鉄をたとえば500℃程度の比較的低温で酸化鉄(α
−Fe203)に転換後、この水系懸濁液を調製し、前
述の被着処理方法に準じて酸化鉄粒子の表面にアルミニ
ウムの含水酸化物とホウ素化合物とを被着してもよい。
It is usually advantageous from an industrial and effective point of view to heat-treat the hydrated oxide of aluminum and the boron compound as described above after the adhesion treatment, but in some cases, hydrated iron oxide may be heated to a temperature of about 500°C, for example. Iron oxide (α
-Fe203), this aqueous suspension may be prepared, and a hydrous oxide of aluminum and a boron compound may be deposited on the surface of the iron oxide particles according to the above-described deposition treatment method.

本発明は、前記方法の外に、これらの方法を更に改良し
た技術を提供するものである。すなわち、含水酸化鉄ま
たは酸化鉄の基体粒子の粒子表面に、アルミニウムの含
水酸化物とホウ素化合物とを被着処理した後、またはそ
の前に還元促進剤を、前記被着処理物または前記基体粒
子に含有させる前(1)〜(5)に記載の磁気記録用金
属磁性粉末の製造方法であって、この方法により、前記
の目的物への還元に要する時間を短縮することができ、
本発明を工業的に一層好ましいものとする。
In addition to the above methods, the present invention provides techniques that further improve these methods. That is, after or before coating the particle surface of hydrous iron oxide or iron oxide base particles with a hydrous oxide of aluminum and a boron compound, a reduction accelerator is applied to the surface of the coated product or the base particles. A method for producing a metal magnetic powder for magnetic recording according to items (1) to (5), in which the time required for reduction to the target product can be shortened,
This makes the present invention even more preferred industrially.

この還元促進剤としては、ニッケル、銅、コバルト、銀
、カルシウム化合物などがあり、ニッケル化合物が好ま
しいものの一つである。ニッケル化合物を使用する場合
を例にとり、その代表的な処理方法を説明する。ニッケ
ル化合物の処理方法としては、基体粒子をニッケル塩水
溶液等の溶液に浸漬処理する方法、硫酸ニッケル、塩化
ニッケル、硝酸ニッケル水溶液と接触後、苛性ソーダ等
のアルカリを添加し、水酸化ニッケルの沈澱として基体
粒子上に被着する方法、酢酸ニッケルの加熱加水分解等
により処理する公知方法が用いられルカ、ニッケル処理
量のコントロールなどが容易なことなどから工業的には
水系で硫酸ニッケル等の塩を中和処理する方法が有利で
ある。
Examples of the reduction accelerator include nickel, copper, cobalt, silver, and calcium compounds, with nickel compounds being one of the preferred ones. Taking as an example the case where a nickel compound is used, a typical treatment method will be explained. The nickel compound can be treated by immersing the base particles in a solution such as a nickel salt aqueous solution, or by adding an alkali such as caustic soda after contact with a nickel sulfate, nickel chloride, or nickel nitrate aqueous solution to precipitate nickel hydroxide. Known methods such as coating on substrate particles and heating and hydrolysis of nickel acetate are used.Industrially, salts such as nickel sulfate are used in aqueous systems because it is easy to control the amount of nickel treated. Preference is given to neutralizing methods.

前記の還元促進剤の被着量は、たとえばニッケル化合物
を被着する場合は、Nt/Fe重量%として、0.1〜
5重量%程度である。
For example, when depositing a nickel compound, the amount of the reduction accelerator to be deposited is 0.1 to 0.1% by weight of Nt/Fe.
It is about 5% by weight.

以下に実施例および比較例を挙げて本発明をさらに説明
する。
The present invention will be further explained below by giving Examples and Comparative Examples.

〔本発明の実施例〕[Example of the present invention]

水酸化アルミニウムに吸着したホウ素化合物の作成方法 A−1=塩化アルミニウム(AlCl2−6)120)
 72.04 g、ホウ酸57.56 gを脱イオン水
に溶解して1600mj!とし、撹拌しながら4Nのア
ンモニア水を約2゜5mj!/分の速度で2時間かけて
添加しpH7,5とし、30分間保持してホウ素化合物
を吸着した水酸化アルミニウム懸濁液を得た。
Method for creating a boron compound adsorbed on aluminum hydroxide A-1 = aluminum chloride (AlCl2-6) 120)
72.04 g, boric acid 57.56 g dissolved in deionized water to give 1600 mj! Then, while stirring, add 4N ammonia water to about 2°5mj! The pH was adjusted to 7.5 by adding at a rate of 1/min over 2 hours, and the aluminum hydroxide suspension was maintained for 30 minutes to obtain an aluminum hydroxide suspension adsorbing boron compounds.

Δ−2: A−1で得たホウ素化合物を吸着した水酸化
アルミニウム懸濁液の900−を用い、このものを濾過
、水洗し、ホウ素化合物を吸着した水酸化アルミニウム
の湿ケーキを得た(Affとして2重量%)。
Δ-2: Using 900- of the aluminum hydroxide suspension adsorbing boron compounds obtained in A-1, this was filtered and washed with water to obtain a wet cake of aluminum hydroxide adsorbing boron compounds ( 2% by weight as Aff).

八−3=アルミン酸ソーダ(NaA I Oz) 12
.15 gを、脱イオン水に900m1に溶解し、さら
にホウ酸28.78gを添加後、撹拌しながらINの塩
酸を約1m11分の速度で1時間にわたって添加しpH
7,5とした後、30分間保持してホウ素化合物を吸着
した水酸化アルミニウム懸濁液を得た。
8-3 = Sodium aluminate (NaA I Oz) 12
.. 15 g was dissolved in 900 ml of deionized water, 28.78 g of boric acid was added, and then IN hydrochloric acid was added over 1 hour at a rate of about 1 ml of boric acid with stirring to adjust the pH.
7.5 and then held for 30 minutes to obtain an aluminum hydroxide suspension adsorbing boron compounds.

実施例1 基体粒子として、比表面積(BET法)90m/g、平
均長軸径0.18μ、軸比9の針状α−Fe00111
20gを水1.5βに懸濁させ、撹拌しながら塩化ニッ
ケルにニッケルとして5重量%)15gを添加後、IN
のアンモニア水を約1m11分の速度で添加し、pH7
,5に中和した。この懸濁液に、前期A−1で作成した
ホウ素化合物を吸着した水酸化アルミニウム懸濁液88
0m1を添加し、次いで1時間保持後、濾過水洗した。
Example 1 As a base particle, acicular α-Fe00111 with a specific surface area (BET method) of 90 m/g, an average major axis diameter of 0.18 μ, and an axial ratio of 9
After suspending 20g in 1.5β water and adding 15g (5% by weight of nickel) to nickel chloride with stirring, IN
of ammonia water was added at a rate of about 1 ml and 11 minutes, and the pH was adjusted to 7.
, 5 was neutralized. To this suspension, aluminum hydroxide suspension 88 which adsorbed the boron compound prepared in the previous stage A-1 was added.
0 ml was added and then held for 1 hour, filtered and washed with water.

次いで、この湿ケーキをマツフル炉で大気中740℃で
2時間加熱処理した。
Next, this wet cake was heat-treated in a Matsufuru furnace at 740° C. for 2 hours in the atmosphere.

しかる後、前記α−Fezes 50gをステンレス製
竪型固定床式還元反応器(内径: 43mmφ、高さ:
500mm)に入れ、線速度約10cm/秒の水素気流
下、425℃で排出ガスの露点が一20℃になるまで還
元した。
After that, 50 g of the α-Fezes was placed in a stainless steel vertical fixed bed reduction reactor (inner diameter: 43 mmφ, height:
500 mm), and the exhaust gas was reduced at 425° C. under a hydrogen stream at a linear velocity of about 10 cm/sec until the dew point of the exhaust gas reached -20° C.

還元に要した時間は185分であった。得られた還元物
は窒素気流下で冷却後トルエン中に浸漬し、次いでトル
エンを室温で徐々に蒸発させ、金属磁性粉末(試料A)
を得た。
The time required for reduction was 185 minutes. The obtained reduced product was cooled under a nitrogen stream and then immersed in toluene, and then the toluene was gradually evaporated at room temperature to form a metal magnetic powder (sample A).
I got it.

実施例2 実施例1において、前記^−1の代りに前記A−2で作
成したホウ素化合物を吸着した水酸化アルミニウム湿式
ケーキ187.5gを用いたことのほかは、同例の場合
と全く同様に処理して、金属磁性粉末(試料B)を得た
Example 2 Completely the same as in Example 1 except that 187.5 g of the aluminum hydroxide wet cake adsorbed with the boron compound prepared in A-2 above was used instead of ^-1 above. A metal magnetic powder (sample B) was obtained.

実施例3 実施例1において、前記A−1の代りに前記^−3で作
成したホウ素化合物を吸着した水酸化アルミニウム懸濁
液を用いたことおよび加熱処理温度を720°Cとした
ことのほかは、同例の場合と全く同様に処理して、金属
磁性粉末(試料C)を得た。
Example 3 In Example 1, the aluminum hydroxide suspension adsorbing the boron compound prepared in ^-3 above was used instead of A-1, and the heat treatment temperature was 720°C. was treated in exactly the same manner as in the same example to obtain metal magnetic powder (sample C).

実施例4 実施例1において、塩化ニッケルを添加しなかったこと
のほかは、同例の場合と全く同様に処理して、金属磁性
粉末(試料D)を得た(なお還元に要した時間は345
分であった)。
Example 4 A metal magnetic powder (sample D) was obtained by processing in exactly the same manner as in Example 1, except that nickel chloride was not added (the time required for reduction was 345
).

実施例5 実施例1で得た湿ケーキ60g(α−FeOOHとして
24g)に、ホウ酸0.858gを添加後50℃に加温
しスパチュラで混合後、このものをマツフル炉で大気中
720℃で2時間焼成したことのほかは、同例の場合と
全く同様に処理して、金属磁性粉末(試料E)を得た。
Example 5 0.858 g of boric acid was added to 60 g of the wet cake obtained in Example 1 (24 g as α-FeOOH), heated to 50°C, mixed with a spatula, and heated in a Matsufuru furnace at 720°C in the atmosphere. A metal magnetic powder (sample E) was obtained by processing in exactly the same manner as in the same example, except that the powder was fired for 2 hours.

実施例6 実施例5において、ホウ酸0.858 gの代りに1.
716 gにしたことおよび加熱処理温度を690℃と
したことのほかは、同例の場合と全く同様に処理して、
金属磁性粉末(試料F)を得た。
Example 6 In Example 5, 1.85 g of boric acid was replaced with 0.858 g.
Except that the weight was 716 g and the heat treatment temperature was 690°C, the process was carried out in exactly the same manner as in the same example.
A metal magnetic powder (sample F) was obtained.

比較例1 実施例1において、A−1作成時にホウ酸を添加しない
で調製した水酸化アルミニウムを用いたことのほかは、
同例の場合と全く同様に処理して、金属磁性粉末(試料
X〉を得た。
Comparative Example 1 In Example 1, except that aluminum hydroxide prepared without adding boric acid was used when creating A-1,
A metal magnetic powder (Sample X) was obtained by processing in exactly the same manner as in the same example.

比較例2 実施例1において、マツフル炉での焼成温度を500℃
にしたことのほかは、同例の場合と全く同様に処理して
、金属磁性粉末(試料Y)を得た。
Comparative Example 2 In Example 1, the firing temperature in the Matsufuru furnace was changed to 500°C.
A metal magnetic powder (Sample Y) was obtained by processing in exactly the same manner as in the same example except that

比較例3 実施例5において、マツフル炉での焼成温度を500℃
にしたことのほかは、同例の場合と全く同様に処理して
、金属磁性粉末(試料Z)を得た。
Comparative Example 3 In Example 5, the firing temperature in the Matsufuru furnace was set to 500°C.
A metal magnetic powder (Sample Z) was obtained by processing in exactly the same manner as in the same example except that

前記の実施例および比較例で得られた各金属磁性粉末試
料について磁気特性を常法により測定した。また、これ
らの試料を用いて下記の配合組成物を混合分散させて磁
性塗料を調製し、次いで乾燥膜[10μmとなるように
塗布し、配向処理後乾燥し作成した磁気テープとについ
て、常法により磁気特性を測定した。
The magnetic properties of each of the metal magnetic powder samples obtained in the Examples and Comparative Examples described above were measured by a conventional method. In addition, using these samples, a magnetic paint was prepared by mixing and dispersing the following compounded composition, and then a dry film [10 μm thick was applied, and a magnetic tape prepared by drying after orientation treatment was prepared using a conventional method. The magnetic properties were measured by

磁性粉末          5  重量部分散剤  
         0.25  ・ポリウレタン樹JJ
R(30%:8?(I)         2.96 
   ”混合溶媒”          13.4  
 〃”)Xzン/MEK/シクnヘキサノン(4,5/
4.5/1)これらの磁気特性、すなわち、保磁力(I
lc : Oe)、飽和磁化(ty s : emu/
g)、飽和磁束密度(Bm :Gauss)、角形比(
RS、 5口)、配向比(Orり 、反転磁界分布(S
FD)を測定し、さらに酸化安定性を評価するために、
前記試料粉末を温度60℃、相対湿度80%環境下で、
 週間放置してσSについて促進経時変化を測定し、飽
和磁化の劣化率ΔσS(%〉を下記式によって求めた。
Magnetic powder 5 Weight part dispersant
0.25 ・Polyurethane tree JJ
R(30%:8?(I) 2.96
"Mixed solvent" 13.4
〃'')
4.5/1) These magnetic properties, namely coercive force (I
lc: Oe), saturation magnetization (tys: emu/
g), saturation magnetic flux density (Bm: Gauss), squareness ratio (
RS, 5 ports), orientation ratio (Or), reversal magnetic field distribution (S
FD) and further evaluate oxidative stability.
The sample powder was heated at a temperature of 60°C and a relative humidity of 80%,
After leaving it for a week, the accelerated change over time in σS was measured, and the deterioration rate ΔσS (%) of saturation magnetization was determined by the following formula.

(式中、σs0は経時前のσSであり、σSは経時後の
σSである) また前記の各磁気テープについて、光沢計で60°−6
0’光沢を測定した。これらの結果を表に示す。
(In the formula, σs0 is σS before aging, and σS is σS after aging.) Also, for each of the above magnetic tapes, 60°-6
0' gloss was measured. These results are shown in the table.

〔発明の効果〕〔Effect of the invention〕

含水酸化鉄または酸化鉄の粒子表面に、ホウ素化合物を
吸着したアルミニウムの含水酸化物を被覆処理後高温脱
水緻密化処理する本発明方法により、従来の被着処理に
みられるような加熱脱水処理や加熱還元処理における不
具合を惹起することなく、粒子内および相互の燃結や粒
子形状面れが抑制されるとともに、磁気記録体媒体にお
ける分散性が良好であり、角形比、配向比などの優れた
高密度記録用に好適な微細な金属磁性粉末を効率良く製
造することができ、甚だ工業的に有利な方法である。
The method of the present invention, in which the surface of hydrated iron oxide or iron oxide particles is coated with a hydrated oxide of aluminum that has adsorbed a boron compound, is then subjected to high-temperature dehydration and densification treatment, which eliminates the heat dehydration treatment and densification treatment seen in conventional adhesion treatments. Combustion within and between particles and particle shape deviation are suppressed without causing any problems during thermal reduction treatment, and the dispersibility in the magnetic recording medium is good, with excellent squareness ratio, orientation ratio, etc. It is possible to efficiently produce fine metal magnetic powder suitable for high-density recording, and is a very industrially advantageous method.

Claims (1)

【特許請求の範囲】 1).含水酸化鉄または酸化鉄の粒子表面に、アルミニ
ウムの含水酸化物とホウ素化合物とを被着し、次いで非
還元性雰囲気下550〜900℃で加熱処理し、しかる
後加熱還元処理することを特徴とする磁気記録用金属磁
性粉末の製造方法。 2).含水酸化鉄または酸化鉄の粒子表面に、アルミニ
ウムの含水酸化物とホウ素化合物とを被着し、さらに該
被着処理物にホウ素化合物を添加し、しかる後非還元性
雰囲気下で550〜900℃で加熱処理後、加熱還元処
理することを特徴とする磁気記録用金属磁性粉末の製造
方法。 3).前記請求項1または2において、含水酸化鉄また
は酸化鉄の懸濁液へ、ホウ素化合物をアルミニウムの含
水酸化物に吸着させたものを添加して該含水酸化鉄また
は酸化鉄の粒子表面にアルミニウムの含水酸化物とホウ
素化合物とを被着させることを特徴とする磁気記録用金
属磁性粉末の製造方法。 4).含水酸化鉄の比表面積が55m^2/g以上であ
ることを特徴とする請求項第1項から第3項のいづれか
に記載の磁気記録用金属磁性粉末の製造方法。 5).酸化鉄の比表面積が40m^2/g以上であるこ
とを特徴とする請求項第1項から第3項のいづれかに記
載の磁気記録用金属磁性粉末の製造方法。
[Claims] 1). A hydrous oxide of aluminum and a boron compound are deposited on the surface of hydrated iron oxide or iron oxide particles, then heat treated at 550 to 900°C in a non-reducing atmosphere, and then heated and reduced. A method for producing metal magnetic powder for magnetic recording. 2). A hydrous aluminum oxide and a boron compound are deposited on the surface of hydrous iron oxide or iron oxide particles, a boron compound is further added to the deposited product, and then heated at 550 to 900°C in a non-reducing atmosphere. 1. A method for producing a metal magnetic powder for magnetic recording, the method comprising heat treatment followed by a heat reduction treatment. 3). In claim 1 or 2, a boron compound adsorbed on a hydrous oxide of aluminum is added to the hydrous iron oxide or iron oxide suspension to form aluminum on the surface of the hydrous iron oxide or iron oxide particles. A method for producing metal magnetic powder for magnetic recording, which comprises depositing a hydrous oxide and a boron compound. 4). 4. The method for producing a metal magnetic powder for magnetic recording according to claim 1, wherein the specific surface area of the hydrated iron oxide is 55 m^2/g or more. 5). 4. The method for producing a metal magnetic powder for magnetic recording according to claim 1, wherein the iron oxide has a specific surface area of 40 m^2/g or more.
JP1194590A 1989-07-27 1989-07-27 Manufacture of metallic magnetic powder for magnetic recording Pending JPH0361307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1194590A JPH0361307A (en) 1989-07-27 1989-07-27 Manufacture of metallic magnetic powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1194590A JPH0361307A (en) 1989-07-27 1989-07-27 Manufacture of metallic magnetic powder for magnetic recording

Publications (1)

Publication Number Publication Date
JPH0361307A true JPH0361307A (en) 1991-03-18

Family

ID=16327075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1194590A Pending JPH0361307A (en) 1989-07-27 1989-07-27 Manufacture of metallic magnetic powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPH0361307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911663B2 (en) 2009-03-05 2014-12-16 Quebec Metal Powders, Ltd. Insulated iron-base powder for soft magnetic applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911663B2 (en) 2009-03-05 2014-12-16 Quebec Metal Powders, Ltd. Insulated iron-base powder for soft magnetic applications

Similar Documents

Publication Publication Date Title
EP0041257B1 (en) Process for preparing ferromagnetic particles comprising metallic iron
JPS6021307A (en) Production of ferromagnetic metallic powder
JPH0361307A (en) Manufacture of metallic magnetic powder for magnetic recording
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPS5915483B2 (en) Method for preparing high coercive force magnetic particles based on ferrimagnetic iron oxide and doped with cobalt
JP2805162B2 (en) Method for producing metal magnetic powder for magnetic recording
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JPS5919964B2 (en) Method for producing ferromagnetic metal powder
JPS6132259B2 (en)
JPH04278501A (en) Metal magnetic powder for magnetic recording and manufacture thereof
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JP2691782B2 (en) Manufacturing method of acicular magnetic iron oxide particles
JPH02254109A (en) Metallic magnetic powder for magnetic recording and its production
JP3049373B2 (en) Method for producing acicular cobalt-containing iron oxide magnetic powder
JPH06333711A (en) Manufacture of metallic magnetic powder
JPH03194905A (en) Manufacture of magnetic metal powder for magnetic recording
JPH0586407A (en) Production of magnetic metallic powder for magnetic recording
JPS62156209A (en) Ferromagnetic metallic powder
JP3405748B2 (en) Method for producing metal magnetic powder
JPS6350842B2 (en)
JPH0711310A (en) Magnetic metallic powder for magnetic recording and its production
JPS59128293A (en) Manufacture of needlelike crystal of alpha-iron oxyhydroxide
JPH0569048B2 (en)