JPH021085B2 - - Google Patents

Info

Publication number
JPH021085B2
JPH021085B2 JP57166185A JP16618582A JPH021085B2 JP H021085 B2 JPH021085 B2 JP H021085B2 JP 57166185 A JP57166185 A JP 57166185A JP 16618582 A JP16618582 A JP 16618582A JP H021085 B2 JPH021085 B2 JP H021085B2
Authority
JP
Japan
Prior art keywords
nitrided
plasma
nitride
powder
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57166185A
Other languages
Japanese (ja)
Other versions
JPS5884107A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16618582A priority Critical patent/JPS5884107A/en
Publication of JPS5884107A publication Critical patent/JPS5884107A/en
Publication of JPH021085B2 publication Critical patent/JPH021085B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、1〜500MHzの高周波エネルギま
たは1〜4GHzのマイクロ波エネルギ等の誘導エ
ネルギを用いて、窒素、アンモニアまたはヒドラ
ジンより選ばれた窒化物気体を化学的または物理
的に励起または電離させることによりプラズマ状
態の活性にし、かかる雰囲気に被窒化材である粉
末を浸すことにより、この被窒化材の表面を比較
的低い温度で窒化することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses induction energy such as radio frequency energy of 1 to 500 MHz or microwave energy of 1 to 4 GHz to chemically or physically transform a nitride gas selected from nitrogen, ammonia or hydrazine. The purpose is to nitridate the surface of the material to be nitrided at a relatively low temperature by activating it into a plasma state by exciting or ionizing it, and by immersing the powder, which is the material to be nitrided, in this atmosphere.

本発明は磁性体またはセラミツクスの粉末をこ
れまでそれらの溶融温度(M.P.MELTING
POINT)近くまで加熱することにより初めて可
能になつた窒化を、それよりもきわめて低い温度
でその表面を窒化することを目的としている。
The present invention is a method for preparing magnetic or ceramic powders at their melting temperatures (MPMELTING).
POINT) The aim is to nitridize the surface at a much lower temperature than that which was first possible by heating the surface to a temperature close to that of nitriding.

本発明は金属、酸化物金属及びフエライト、サ
マリユーム、コバルト、鉄等の反強磁性または強
磁性材料、またはセラミツクス例えばアルミナ、
ジルコニアまたはシリカ等の酸化物セラミツクス
または絶縁物を1100〜1300℃の高温でしか反応さ
せることができなかつたのに対し、これを室温〜
900℃の温度特に室温〜500℃または100〜700℃の
低い温度で窒化できるようになつたことを特徴と
する。
The present invention applies to antiferromagnetic or ferromagnetic materials such as metals, oxide metals and ferrites, samarium, cobalt, iron, or ceramics such as alumina,
Whereas it was only possible to react oxide ceramics or insulators such as zirconia or silica at high temperatures of 1,100 to 1,300°C, this can be reacted at room temperature to
It is characterized by being able to be nitrided at a temperature of 900°C, especially at a low temperature of room temperature to 500°C or 100 to 700°C.

本発明はかくの如く従来の単なる熱窒化法に比
べて300〜500℃も低い温度で窒化させようとした
ものである。
The present invention attempts to perform nitriding at a temperature 300 to 500° C. lower than that of the conventional simple thermal nitriding method.

本発明はかかる目的のため、減圧下に保たれた
反応系において、誘導エネルギにより窒化物気体
を活性化またはプラズマ化させる領域(ゾーン)
と、この領域の後方に被窒化物を加熱して窒化す
る領域とを分離設置することにより、プラズマ化
の強度と加熱温度とを分離制御することを目的と
している。
For this purpose, the present invention provides a region (zone) in which nitride gas is activated or turned into plasma by induction energy in a reaction system maintained under reduced pressure.
The purpose of this is to separately control the intensity of plasma formation and the heating temperature by separately installing a region in which the material to be nitrided is heated and nitrided behind this region.

従来被窒化物を直接窒化するには、窒化物がき
わめて安定かつち密な材料であるため、M.P.に
近い温度に加熱し、その雰囲気を窒素またはアン
モニアとすることにより、これらの表面を窒化し
ていた。しかしその窒化物がきわめて化学的に安
定な材料であるため、加熱温度がM.P.に近く、
極端ではM.Pに等しい程度にまで加熱しても、そ
の表面には30〜100Åの厚さの窒化物しかできな
かつた。
Conventionally, in order to directly nitride objects to be nitrided, since nitrides are extremely stable and dense materials, the surfaces of these objects are nitrided by heating to a temperature close to MP and using nitrogen or ammonia in the atmosphere. Ta. However, because the nitride is an extremely chemically stable material, the heating temperature is close to MP.
At the extreme, even when heated to a degree equal to MP, only a nitride with a thickness of 30 to 100 Å was formed on the surface.

本発明はかかる高温で窒化する熱窒化法の欠点
を除去するため、M.P.よりも400℃以上低い可能
ならば室温〜500℃の低温度にて被窒化材を窒化
する方法に関するもので、以下に図面に従つてそ
の詳細を説明する。
The present invention relates to a method of nitriding a material to be nitrided at a temperature as low as 400°C or more lower than MP, preferably between room temperature and 500°C, in order to eliminate the drawbacks of the thermal nitriding method in which nitriding is performed at such high temperatures. The details will be explained according to the drawings.

実施例 1 この実施例は、粉末または粉末状の被窒化物を
プラズマ化された窒化物気体雰囲気に浸すことに
より、窒化物の粉末または針状の基板等に比べて
形の大きな表面積を有する粉末状の材料の表面に
窒化物を作ることを目的としている。
Example 1 In this example, by immersing a powder or powder-like substance to be nitrided in a plasma-generated nitride gas atmosphere, a powder having a larger surface area than a nitride powder or a needle-shaped substrate, etc. The purpose is to create nitrides on the surface of shaped materials.

本実施例において、粉末状とは固体がボールミ
ル等により単純に微粉末化されたもの、いわゆる
粉末以外に基板に比較して大面積を有する針状形
状を有するものを意味する。
In this embodiment, the term "powder" refers to a solid that is simply pulverized by a ball mill or the like, or a material other than so-called powder that has an acicular shape with a larger area than the substrate.

第1図は本発明に使用される装置を示した図で
あり、以下に被窒化物として金属磁性粉末を用い
た場合を例として本発明のプラズマ窒化法を説明
する。
FIG. 1 is a diagram showing an apparatus used in the present invention, and the plasma nitriding method of the present invention will be explained below using an example in which a metal magnetic powder is used as the material to be nitrided.

液体窒素を3より導入し、またアンモニアまた
はアンモニアと不活性ガス特にヘリユームまたは
ネオンとの混合ガスを5より導入している。純化
装置2,4を通し酸素または水の含有量を1PPM
以下例えば好ましくは0.01PPM以下にした後、
コツク6を経て反応管7に導入される。本発明に
おいて、窒化物気体をかくの如くに高純度にする
ことは、窒化される被膜中に劣化の原因となる弱
干の酸化物が混入しないようにするため、きわめ
て重要である。
Liquid nitrogen is introduced from 3, and ammonia or a mixed gas of ammonia and an inert gas, particularly helium or neon, is introduced from 5. Oxygen or water content is reduced to 1PPM through purifiers 2 and 4.
For example, after reducing it to preferably 0.01PPM or less,
It is introduced into the reaction tube 7 via the tank 6. In the present invention, it is extremely important to make the nitride gas highly pure in order to prevent weak oxides that may cause deterioration from being mixed into the nitrided film.

反応系はSiCまたはSiCコーテイングをされた
グラフアイトの容器9に粉末状の被窒化物10が
もられている加熱窒化領域と該領域の前に、窒化
物気体をプラズマ化する領域を設けてある。これ
により、窒化物気体は安定なプラズマ状態で、加
熱室化領域に導入され、窒化速度は第2図からも
判るように、誘導エネルギ量と加熱温度によつて
制御することができる。誘導エネルギは1の領域
にて供給された窒化物気体をプラズマ化し、ここ
でプラズマ化した窒化物気体は容器9の加熱およ
びここでの再度の1′によるプラズマ化により、
被窒化物10は窒化される。この容器での混合を
よくするため、回転軸14にて容器9がゆつくり
1〜10回/分の速度で回転されている。この系の
排気は、ニードルバルブ11、ストツプバルブ1
2、真空ポンプ13をへてコツク17より外へ排
気される。また混合ガスがヘリユーム等の高価な
ガスの場合には16をへて再び純化装置4に入り
純化するいわゆる閉回路を構成させた。
The reaction system includes a heated nitriding region in which a powdered material to be nitrided 10 is held in a container 9 made of SiC or graphite coated with SiC, and a region in front of the heated nitriding region in which the nitride gas is turned into plasma. . As a result, the nitride gas is introduced into the heating chamber region in a stable plasma state, and the nitriding rate can be controlled by the amount of induction energy and the heating temperature, as can be seen from FIG. The induction energy turns the nitride gas supplied in the region 1 into plasma, and the nitride gas turned into plasma here is heated in the container 9 and turned into plasma again by 1' here.
The material to be nitrided 10 is nitrided. In order to improve mixing in this container, the container 9 is slowly rotated by a rotating shaft 14 at a speed of 1 to 10 times per minute. The exhaust of this system consists of a needle valve 11 and a stop valve 1.
2. The air is evacuated from the tank 17 through the vacuum pump 13. If the mixed gas is an expensive gas such as helium, it passes through 16 and enters the purifier 4 again to form a so-called closed circuit for purification.

反応炉内は0.01〜760torr、特に0.1〜30torrと
した。プラズマ化は760torrの常圧においても起
こすことができた。
The inside of the reactor was set at 0.01 to 760 torr, especially 0.1 to 30 torr. Plasma formation could occur even at normal pressure of 760 torr.

まず純化装置2,4を経た窒化物気体をコツク
6を介して反応管7に供給する。反応管内の圧力
は0.01〜760torr、特に0.1〜30torrとした。プラ
ズマ化は760torrの常圧においても起こすことが
できた。
First, the nitride gas that has passed through the purifiers 2 and 4 is supplied to the reaction tube 7 via the tank 6. The pressure inside the reaction tube was 0.01 to 760 torr, particularly 0.1 to 30 torr. Plasma formation could occur even at normal pressure of 760 torr.

次に、誘導エネルギ1として例えば2.45GHz電
力100〜500Wのマイクロ波を発振させ、反応管内
に導入された前記窒化物気体をプラズマ化させ
た。そして生じたプラズマは容器9に設けてある
導入口から容器に入り、ここで再び誘導エネルギ
1′によりプラズマ化され、このプラズマが容器
9の中の被窒化物である粉体10と接触して、粉
体を窒化する。このとき容器9を回転させ粉体が
よく混合するようにして粉体に対して均一にかつ
効率よく窒化処理を行なうようにした。
Next, microwaves with a power of 100 to 500 W at 2.45 GHz, for example, were oscillated as induction energy 1, and the nitride gas introduced into the reaction tube was turned into plasma. The generated plasma then enters the container from the inlet provided in the container 9, where it is turned into plasma again by the induction energy 1', and this plasma comes into contact with the powder 10, which is the material to be nitrided, in the container 9. , nitriding the powder. At this time, the container 9 was rotated to mix the powder well, so that the powder was uniformly and efficiently nitrided.

被窒化物が金属磁性粉末の場合の結果を第2図
に示す。これは100gの金属磁性粉末で粒粒が
0.5μ(0.05〜0.5μ)の材料を用いた。プラズマ窒化
温度は室温が曲線40とほとんど平であるが、被
窒化物を300〜500℃に加熱すると曲線41をプラ
ズマ電力が100Wにおいて得た。これを500Wにす
ると42のように約30分でほとんど窒化反応は終了
した。
FIG. 2 shows the results when the material to be nitrided was metal magnetic powder. This is 100g of metal magnetic powder with granules.
A material with a thickness of 0.5μ (0.05-0.5μ) was used. The plasma nitriding temperature was almost flat as curve 40 at room temperature, but when the material to be nitrided was heated to 300 to 500°C, curve 41 was obtained at plasma power of 100W. When this was increased to 500W, the nitriding reaction was almost completed in about 30 minutes as shown in 42.

本発明の応用として、かかる窒化物粉末例えば
金属磁性粉末を再度焼結して成形してもよい。
As an application of the present invention, such nitride powder, such as metal magnetic powder, may be re-sintered and shaped.

この被窒化物は鉄、ニツケル、コバルトばかり
でなく、フエライト等の酸化物磁性材料等のすべ
てに適用できることはいうまでもない。
It goes without saying that the material to be nitrided can be applied not only to iron, nickel, and cobalt, but also to all oxide magnetic materials such as ferrite.

さらに本発明は、フエライト、サマリユーム、
コバルト、ニツケル、鉄等の磁性材料、反強磁性
材料にも応用できる。その結果これまでの酸化物
磁性体ではなく、窒化物磁性体または酸化、窒化
物磁性体を作ることができる。
Further, the present invention provides ferrite, samarium,
It can also be applied to magnetic and antiferromagnetic materials such as cobalt, nickel, and iron. As a result, it is possible to create a nitride magnetic material or an oxide/nitride magnetic material instead of the conventional oxide magnetic material.

また本発明は、アルミナ、ジルコニア、シリカ
等のセラミツクスまたは絶縁物に対してもその構
成物の一部または未反応物の窒化をこれらをプラ
ズマ化した窒化物気体中に浸すことにより可能と
なつた。
The present invention also makes it possible to nitride parts of the components or unreacted materials of ceramics or insulators such as alumina, zirconia, and silica by immersing them in a nitride gas that has been turned into plasma. .

以上の説明より明らかな如く、本発明はこれま
で不可能とされていた粉末または粉末状の物質を
プラズマ化された化学的に活性化した窒化物気体
中で加熱窒化することにより、その窒化温度を単
なる熱窒化に比べて300〜500℃も低い温度にて作
ることができた。
As is clear from the above description, the present invention is capable of heating and nitriding powder or powder-like substances in plasma-generated chemically activated nitride gas, which has been considered impossible until now, to achieve a temperature of nitriding temperature. could be produced at temperatures 300 to 500°C lower than by simple thermal nitriding.

さらにこの窒化物は窒素のみであつてもよい
が、アンモニアまたはヒドラジンを不活性ガスに
混入させる方法または窒素とアンモニアとの混合
ガスをプラズマ化した方法によるNxHyなる気
体、即ち活性窒素と活性水素との混合気体に浸す
ことにより、さらに容易に均一に作ることができ
た。
Furthermore, this nitride may be only nitrogen, but it can be made by mixing ammonia or hydrazine into an inert gas, or by turning a mixed gas of nitrogen and ammonia into plasma to form a gas called NxHy, that is, active nitrogen and active hydrogen. By immersing it in a mixed gas of

この活性窒素は、水素の混合ガスプラズマ法は
その気体中の酸素、水の量を0.01PPM以内超高
純度にすることができ、きわめて重要であつた。
This activated nitrogen was extremely important because the hydrogen mixed gas plasma method was able to reduce the amount of oxygen and water in the gas to ultra-high purity within 0.01 PPM.

また金属磁性体においては、この金属を選択的
にその表面のみを窒化して、金属の一部を窒化物
保護膜または窒化物抵抗体とすることができるよ
うになつた。さらに粉末または粉末状の物質にお
いては、そのバルクまで窒化の際の温度を制御す
ることにより、実質的に窒化でき、いわゆる窒化
物をこれまで熱窒化物に比べて300〜500℃も低く
作ることができるようになつた。
Furthermore, in the case of metal magnetic materials, it has become possible to selectively nitride only the surface of the metal, thereby forming a part of the metal into a nitride protective film or a nitride resistor. Furthermore, powder or powder-like substances can be substantially nitrided by controlling the temperature during nitriding down to the bulk, making so-called nitrides 300 to 500 degrees Celsius lower than conventional thermal nitrides. Now I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の粉末または粉末状物質を窒化
するための装置を示す。第2図は金属例えば金属
磁性体を窒化した時の体積増加率を示す。
FIG. 1 shows an apparatus for nitriding powders or powder-like substances according to the invention. FIG. 2 shows the volume increase rate when a metal, such as a metal magnetic material, is nitrided.

Claims (1)

【特許請求の範囲】 1 窒素、アンモニアまたはヒドラジンより選ば
れた窒化物気体または該窒化物気体と不活性気体
との混合窒化物気体が、誘導エネルギにより励起
または電離されたプラズマ雰囲気に粉末または粉
末状の被窒化物を収容した容器を前記被窒化物を
混合させつつ浸すことにより該被窒化物の表面を
窒化することを特徴とするプラズマ窒化法。 2 特許請求の範囲第1項において、粉末または
粉末状の被窒化物は磁性材料またはセラミツク材
料、絶縁材料よりなることを特徴とするプラズマ
窒化法。
[Scope of Claims] 1. A nitride gas selected from nitrogen, ammonia, or hydrazine, or a mixed nitride gas of the nitride gas and an inert gas, is powdered or powdered into a plasma atmosphere excited or ionized by induction energy. A plasma nitriding method characterized in that the surface of the object to be nitrided is nitrided by immersing a container containing the object to be nitrided in the form of a container while mixing the object to be nitrided. 2. The plasma nitriding method according to claim 1, characterized in that the powder or powdery substance to be nitrided is made of a magnetic material, a ceramic material, or an insulating material.
JP16618582A 1982-09-24 1982-09-24 Plasma nitriding method Granted JPS5884107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16618582A JPS5884107A (en) 1982-09-24 1982-09-24 Plasma nitriding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16618582A JPS5884107A (en) 1982-09-24 1982-09-24 Plasma nitriding method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15992179A Division JPS5684462A (en) 1979-12-10 1979-12-10 Plasma nitriding method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22666589A Division JPH02139032A (en) 1989-08-31 1989-08-31 Plasma nitrification

Publications (2)

Publication Number Publication Date
JPS5884107A JPS5884107A (en) 1983-05-20
JPH021085B2 true JPH021085B2 (en) 1990-01-10

Family

ID=15826646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16618582A Granted JPS5884107A (en) 1982-09-24 1982-09-24 Plasma nitriding method

Country Status (1)

Country Link
JP (1) JPS5884107A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148044U (en) * 1984-09-04 1986-03-31 関西ペイント株式会社 High frequency plasma powder processing equipment
JPS6331536A (en) * 1986-07-25 1988-02-10 Natl Res Inst For Metals Plasma gaseous phase reaction apparatus
JP2619888B2 (en) * 1987-12-11 1997-06-11 東芝セラミックス株式会社 Manufacturing method of aluminum nitride
JP2751136B2 (en) * 1993-07-21 1998-05-18 科学技術庁無機材質研究所長 Method for producing self-grading composite particles
LU90986B1 (en) * 2002-11-07 2004-05-10 Plasma Metal S A Process for nitriding articles in bulk.
US8377234B2 (en) 2010-04-26 2013-02-19 King Fahd University Of Petroleum And Minerals Method of nitriding nickel-chromium-based superalloys
CN112872348B (en) * 2020-12-31 2021-11-30 广东省科学院稀有金属研究所 Method for improving nitriding efficiency of rare earth-iron alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684462A (en) * 1979-12-10 1981-07-09 Shunpei Yamazaki Plasma nitriding method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684462A (en) * 1979-12-10 1981-07-09 Shunpei Yamazaki Plasma nitriding method

Also Published As

Publication number Publication date
JPS5884107A (en) 1983-05-20

Similar Documents

Publication Publication Date Title
US4501717A (en) Sintering method using a plasma gas atmosphere
US6207587B1 (en) Method for forming a dielectric
JPH021085B2 (en)
JP7388150B2 (en) Particle coating method
JPH03193681A (en) Surface reforming method and device and surface reformed base material
JPH02139032A (en) Plasma nitrification
JP2000103608A (en) Production of titanium nitride
Okubo et al. Plasma nitriding of titanium particles in a fluidized bed reactor at a reduced pressure
JPS62282635A (en) Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder
JP2005524249A (en) Method and apparatus for making a product of ferrite material and product produced thereby
JP2569423B2 (en) Gas phase synthesis of boron nitride
JPH02102110A (en) Surface-treatment of ultrafine particle of aluminum nitride
US3615168A (en) Growth of crystalline rare earth iron garnets and orthoferrites by vapor transport
TWI813182B (en) Microstructure control of conducting materials through surface coating of powders
JPS62171902A (en) Synthesis of fine aluminum nitride powder
JPS5825404A (en) Sintering method for sintered hard alloy
JPS6311314B2 (en)
JPH0525581A (en) Manufacture of iron nitride base high density sintered body
JPH058271B2 (en)
JPS5998504A (en) Manufacture of magnetic recording body
JPH0316905A (en) Production of crystalline silicon nitride powder
JPS62264427A (en) Magnetic recording medium
JPS6121188B2 (en)
JPH07242404A (en) Production of iron nitride magnetic substance and device therefor
JPS57130405A (en) Magnetic recording medium