JPS5921921B2 - Metal magnetic powder and its manufacturing method - Google Patents

Metal magnetic powder and its manufacturing method

Info

Publication number
JPS5921921B2
JPS5921921B2 JP51153840A JP15384076A JPS5921921B2 JP S5921921 B2 JPS5921921 B2 JP S5921921B2 JP 51153840 A JP51153840 A JP 51153840A JP 15384076 A JP15384076 A JP 15384076A JP S5921921 B2 JPS5921921 B2 JP S5921921B2
Authority
JP
Japan
Prior art keywords
powder
magnetic powder
metal magnetic
coupling agent
silane coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51153840A
Other languages
Japanese (ja)
Other versions
JPS5376958A (en
Inventor
成之 細尾
修 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP51153840A priority Critical patent/JPS5921921B2/en
Publication of JPS5376958A publication Critical patent/JPS5376958A/en
Publication of JPS5921921B2 publication Critical patent/JPS5921921B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は磁気記録用金属磁性粉末およびその製造法に関
し、その目的とするところは、酸化安定性に優れる金属
磁性粉末を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal magnetic powder for magnetic recording and a method for producing the same, and an object thereof is to provide a metal magnetic powder with excellent oxidation stability.

鉄、コバルトなどの金属磁性粉末は、磁気特性が従来の
酸化物系磁性粉末より優れていることb一知られて(・
るれ−、磁気記録用として要求される通常約1μ以下の
粒子径のものでは、空気中で酸化を受けやすく飽和磁化
量(以下σs と(・う)b’、経時的に低下し、貯蔵
安定性に欠けると(・う問題がある。・ ゝ4nl■l
時JΠ、階一ト1級3スIr8杢、口赤でP種の提案が
なされており、例えば還元により製造した直後の金属磁
性粉末を有機溶剤に浸漬した後、空気中に取り出して上
記溶剤を揮散させながら徐徐に酸化させることにより粒
子表面に薄い酸化物被膜を形成する方法、金属磁性粉末
と高級脂肪酸粉末とを有機溶剤中で攪拌混合することに
より粒子表面に高級脂肪酸基膜を形成する方法などがあ
る。
It is well known that metal magnetic powders such as iron and cobalt have better magnetic properties than conventional oxide-based magnetic powders.
However, particles with a diameter of about 1 μm or less, which are required for magnetic recording, are susceptible to oxidation in the air, and the saturation magnetization (hereinafter referred to as σs and b') decreases over time, causing storage problems. If it lacks stability, there is a problem.・ ゝ4nl■l
At the time of JΠ, Grade 1 grade 3 grade Ir8 heather, P type has been proposed for redness, for example, metal magnetic powder immediately after being produced by reduction is immersed in an organic solvent, then taken out into the air and then immersed in the above solvent. A method of forming a thin oxide film on the particle surface by gradually oxidizing it while volatilizing it, and a method of forming a higher fatty acid base film on the particle surface by stirring and mixing metal magnetic powder and higher fatty acid powder in an organic solvent. There are methods.

本発明者らは、アミンおよび鉱物油を金属粉末表面に付
着させることにより金属粉末の耐酸化性が改善されるこ
とを見出したが、これに更にシランカップリング剤を併
用すればその効果が一層高められることが判り、本発明
を完成したものである。
The present inventors have discovered that the oxidation resistance of metal powder can be improved by attaching amine and mineral oil to the surface of the metal powder, but this effect can be further enhanced by using a silane coupling agent in combination. It has been found that this can be improved, and the present invention has been completed.

図面は、金属磁性鉄粉末を60℃、90%RHの条件下
で空気中に放置したときのσs の経時変化を示したも
ので、曲線−1は本発明の実施例で得られた金属鉄粉末
、曲線−■はアミンおよび鉱物油で処理した金属鉄粉末
、曲線−■は未処理の)金属鉄粉末のものである。
The drawing shows the change in σs over time when metallic magnetic iron powder is left in the air at 60°C and 90% RH.Curve 1 shows the change in σs over time when metallic magnetic iron powder is left in the air at 60°C and 90% RH. Powder, curve-■ is for metallic iron powder treated with amine and mineral oil, curve-■ is for metallic iron powder untreated).

同図から明らかな如く、アミン、鉱物油およびシランカ
ップリング剤を付着させた場合には、アミンおよび鉱物
油で処理したものに比べてσs の経時変化が小さくな
つていることが判る。
As is clear from the figure, when amine, mineral oil and silane coupling agent were attached, the change in σs over time was smaller than when treated with amine and mineral oil.

5 この理由は明らかではな(゛が、アミンおよび鉱物
油b゛表面吸着力により粒子表面に付着して(・るのに
比べ、シランカップリング剤を併用した場合には、その
分子中に含まれて(・る反応性基のために被着強度がよ
り大きくなるためであろうと考え■0 られる。
5 The reason for this is not clear (compared to the fact that amines and mineral oils are attached to the particle surface due to their surface adsorption power), when a silane coupling agent is used together, the particles contained in the molecules are It is thought that this is because the adhesion strength becomes stronger due to the reactive group (.).

このような効果は、金属磁性粉末として金属コバルト、
金属ニッケルその他の金属粉末もしくはこれら金属(金
属鉄を含む)の各種合金粉末またはこれら粉末に非磁性
金属が一部含まれた合金粉35末を使用する場合にも同
様に認められる。
Such an effect is caused by the use of metallic cobalt as a metallic magnetic powder,
The same applies when using metallic nickel or other metal powders, various alloy powders of these metals (including metallic iron), or alloy powder 35 in which non-magnetic metals are partially included in these powders.

金属粉末の表面にアミン、鉱物油およびシランカップリ
ング剤を付着させるには、たとえばまず金属粉末をアミ
ン、鉱物油およびシランカツプリング剤を含む何機溶剤
で湿潤処理する。ここに使用するアミンには、脂肪族ア
ミン、脂環式アミン、芳香族アミンなど種々のアミンが
含まれ、具体的にはトリエタノールアミン、ナフチルア
ミン、ヘキサデシルアミン、メチルジフエニルアミン、
ジエタノールアミン、トリブチルアミン、トリエタノー
ルアミン、トリデシルアミン、トリヘキシルアミン、シ
ンクロヘキシルアミンの如きモノアミン類;エチレンジ
アミン、プロピレンジアミン、テトラメチレンジアミン
、m−アミノベンジルアミン、キシレンジアミン、へキ
サメチレンジアミン、パラフエニレンジアミン、N●N
仁ジ一β−ナフチルパラフエニレンジアミン、NIN仁
ジイソオクチルパラフエニレンジアミンの如きジアミン
類;1・2・3−トリアミノプロパン、ジエチレントリ
アミン、1●3●5−トリアミノベンゼンの如きトリア
ミン類;トリエチレンテトラミン、ヘキサメチレンテト
ラミンの如きポリアミン類などが挙げられるが、中でも
好ましいものは比較的沸点の高いトリエタノールアミン
、トリデシルアミン、ナフチルアミン、トリブチルアミ
ンなどである。
To attach the amine, mineral oil, and silane coupling agent to the surface of the metal powder, for example, the metal powder is first wet-treated with a solvent containing the amine, mineral oil, and silane coupling agent. The amines used here include various amines such as aliphatic amines, alicyclic amines, and aromatic amines, and specifically include triethanolamine, naphthylamine, hexadecylamine, methyldiphenylamine,
Monoamines such as diethanolamine, tributylamine, triethanolamine, tridecylamine, trihexylamine, synchlohexylamine; ethylenediamine, propylenediamine, tetramethylenediamine, m-aminobenzylamine, xylenediamine, hexamethylenediamine, paraphenylenediamine Rangeamine, N●N
Diamines such as NIN-β-naphthylparaphenylenediamine, NIN-diisooctylparaphenylenediamine; triamines such as 1,2,3-triaminopropane, diethylenetriamine, 1●3●5-triaminobenzene Examples include polyamines such as triethylenetetramine and hexamethylenetetramine, among which preferred are triethanolamine, tridecylamine, naphthylamine, tributylamine, etc., which have relatively high boiling points.

またこれらアミンには必要に応じて酸性ガスまたは亜硫
酸ガスに対しての防錆の目的でカルボン酸たとえばクエ
ン酸、フタール酸、安息香酸などを添加することもでき
る。アミンの使用量は、粉末表面に最終的に付着する量
が磁性粉末100重量部に対して通常0.001〜5重
量部、好ましくは0.1〜2.0重量部となるような割
合とするのがよい。本発明で使用する鉱物油の具体例と
しては、スピンドル油、ダイナモ油、タービン油、マシ
ン油などが挙げられる。
Furthermore, carboxylic acids such as citric acid, phthalic acid, benzoic acid, etc. can be added to these amines, if necessary, for the purpose of rust prevention against acid gas or sulfur dioxide gas. The amount of amine used is such that the amount that ultimately adheres to the powder surface is usually 0.001 to 5 parts by weight, preferably 0.1 to 2.0 parts by weight, per 100 parts by weight of the magnetic powder. It is better to do so. Specific examples of the mineral oil used in the present invention include spindle oil, dynamo oil, turbine oil, machine oil, and the like.

鉱物油の使用量は、粉末表面に最終的に付着する量が磁
性粉末100重量部に対し通常0.001〜5.0重量
部好ましくは0.2〜 .′1.5重量部となるような
割合にするのがよい。また本発明で用いるシランカツプ
リング剤は、下記一般式で表わされる分子内にハロゲン
、アルコキシ基な小珈水分解基とビニル基、エポキシ基
、アミノ基などの反応性基を有するものである。クX−
Si(Y1)n(Y2)3−n〔式中、Y,はCt.B
rなどの・・ロゲン原子、0R,または0R20R3(
RtおよびR,はアルキル基、R2はアルキレン基乃至
ポリメチレZ船フで表わされるアルコキシ基または0C
0R4(R4はアルキル基)で表わされるアシルオキシ
基であり、Y2は上記ハロゲン原子、アルコキシ基もし
くはアシルオキシ基の他水素原子、アルキル基である場
合があり、nは1乃至3の整数を、またXはメタルアク
リル基、アミノ基もしくはエポキシ基を末端に有する有
機基またはビニル基を示す。
The amount of mineral oil used is usually 0.001 to 5.0 parts by weight, preferably 0.2 to 5.0 parts by weight, and preferably 0.2 to 5.0 parts by weight, per 100 parts by weight of the magnetic powder. It is preferable to set the proportion to 1.5 parts by weight. The silane coupling agent used in the present invention has a small hydrolyzable group such as a halogen or alkoxy group and a reactive group such as a vinyl group, an epoxy group, or an amino group in the molecule represented by the general formula below. Ku X-
Si(Y1)n(Y2)3-n [wherein, Y is Ct. B
such as r...rogen atom, 0R, or 0R20R3 (
Rt and R are an alkyl group, R2 is an alkylene group or an alkoxy group represented by polymethylene Z carrier, or 0C
0R4 (R4 is an alkyl group) is an acyloxy group, Y2 may be a hydrogen atom or an alkyl group in addition to the above halogen atom, alkoxy group or acyloxy group, n is an integer from 1 to 3, and represents an organic group or a vinyl group having a metal acrylic group, an amino group, or an epoxy group at the end.

〕上記一般式で表わされるシランカツプリング剤の具体
例としては、ビニルトリクロロシラン、ビニルトリエト
キシシラヘビニルトリ(β−メトキシエトキシ)シラへ
β一(3●4−エボキシシクロヘキシル)エチルトリメ
トキシシラン、γ−グリシドオキシプロピルトリメトキ
シシラン、γ−メタアクリルオキシプロピルトリメトキ
シシラン、N−β−アミノエチルγ−アミノプロピルメ
チルジメトキシシラン、N−β−アミノエチルγ−アミ
ノプロピルトリメトキシシラジなどが挙げられる。シラ
ンカツプリング剤の使用割合は、その付着量が磁性粉末
100重量部に対し、通常0.1〜5好ましくは0.5
〜2.0重量部となるようにする。有機溶剤としては、
アミン、鉱物油およびシランカツプリング剤を溶解する
もので、磁性粉末と反応性がなくしかも容易に揮散しう
るものが好ましく、例えばアルコール、ベンゼンなどが
挙げられる。
] Specific examples of the silane coupling agent represented by the above general formula include vinyltrichlorosilane, vinyltriethoxysilafenyltri(β-methoxyethoxy)silaneβ-(3●4-epoxycyclohexyl)ethyltrimethoxysilane , γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-β-aminoethyl γ-aminopropylmethyldimethoxysilane, N-β-aminoethyl γ-aminopropyltrimethoxysilane, etc. can be mentioned. The proportion of the silane coupling agent to be used is usually 0.1 to 5, preferably 0.5 to 100 parts by weight of the magnetic powder.
~2.0 parts by weight. As an organic solvent,
It is preferable to use something that dissolves the amine, mineral oil, and silane coupling agent, has no reactivity with the magnetic powder, and can be easily volatilized, such as alcohol, benzene, and the like.

アミン、鉱物油およびシランカツプリング剤は同一の溶
剤に溶解させてもよいし、或いは同種もしくは異種の溶
剤にそれぞれを溶解させた後混合して用いてもよL・。
湿潤は、通常アミン、鉱物油およびシランカツプリング
剤を含む有機溶剤中に金属磁性粉末を浸漬した後、非酸
化性ガスでバブリングするかまたは機械的攪拌などを行
なつてアミン、鉱物油およびシランカツプリング剤と金
属磁性粉末とを充分に接触させれば,よい。
The amine, mineral oil, and silane coupling agent may be dissolved in the same solvent, or they may be dissolved in the same or different solvents and then mixed.
Wetting is usually done by immersing the metal magnetic powder in an organic solvent containing an amine, mineral oil, and silane coupling agent, and then bubbling with a non-oxidizing gas or mechanically stirring to dissolve the amine, mineral oil, and silane. It is sufficient if the coupling agent and the metal magnetic powder are brought into sufficient contact with each other.

湿潤金属磁性粉末は、次いで有機溶剤中から取り出した
後、もしくはそのままの状態で非酸化性ガスを導通し、
加熱乾燥する。
The wet metal magnetic powder is then taken out from the organic solvent or is passed through a non-oxidizing gas as it is,
Heat and dry.

湿潤工程でバブリング法が採用されているときは、その
まま継続すればよい。非酸化性ガス雰囲気中で乾燥させ
る理由は、金属磁性粉末の酸化を防止するためであり、
通常窒素ガス、アルゴンガス、水素ガスなどが用(゛ら
れる。
If a bubbling method is used in the wetting process, it may be continued as is. The reason for drying in a non-oxidizing gas atmosphere is to prevent the metal magnetic powder from oxidizing.
Usually nitrogen gas, argon gas, hydrogen gas, etc. are used.

溶剤の揮散工程における乾燥温度は、使用する溶剤に応
じて適宜選択すればよ℃・が、あまり高温ではアミンの
揮散や金属磁性粉末の焼結を招くおそれがあるので、通
常300℃より低し・温度、好ましくは100〜200
℃の範囲にするのがよL・。
The drying temperature in the solvent volatilization process should be selected appropriately depending on the solvent used, but if it is too high, it may cause volatilization of the amine and sintering of the metal magnetic powder, so it is usually lower than 300°C.・Temperature, preferably 100-200
It is best to keep it within the range of ℃.

以上の如くして粒子表面にアミン、鉱物油およびシラン
カツプリング剤を付着させると、耐酸化性が改善されて
長期安定性に優れる金属磁性粉末が得られる。次に実施
例により本発明を具体的に説明する。
When the amine, mineral oil, and silane coupling agent are attached to the particle surface as described above, a metal magnetic powder with improved oxidation resistance and excellent long-term stability can be obtained. Next, the present invention will be specifically explained with reference to Examples.

なお、以下にお(・て部とあるは重量部を意味する。実
施例スピンドル油0.5部、ヘキサメチレンテトラミン
1部、γ−グリシドオキシプロピルトリメトキシシラン
1部、ベンゼン100部からなる溶液200meに粒径
0.3μ、長軸/短軸比7、σSl6Oemu/7、保
磁力1080エルステツドの金属鉄粉末507を分散さ
せ、次いで窒素ガス雰囲気中150℃で4時間加熱した
In addition, below (* parts means parts by weight. Example 0.5 part of spindle oil, 1 part of hexamethylenetetramine, 1 part of γ-glycidoxypropyltrimethoxysilane, and 100 parts of benzene. Metallic iron powder 507 having a particle size of 0.3 μ, a major axis/minor axis ratio of 7, σSl6Oemu/7, and a coercive force of 1080 oersted was dispersed in a solution of 200 me, and then heated at 150° C. for 4 hours in a nitrogen gas atmosphere.

この加熱中ベンゼンは蒸発除去され、加熱後、同雰囲気
中で放冷すると、スピンドル油、ヘキサメチレンテトラ
ミンおよびγ−グリシドオキシプロピルトリメトキシシ
ランの付着した金属鉄粉末が得られた。比較例実施例に
おいてr−グリシドオキシプロピルトリメトキシシラン
を使用しなかつた以外は実施例と同様に行なつてスピン
ドル油およびヘキサメチレンテトラミンの付着した金属
鉄粉末を得た。
During this heating, benzene was evaporated and removed, and after heating, the mixture was allowed to cool in the same atmosphere to obtain metal iron powder to which spindle oil, hexamethylenetetramine, and γ-glycidoxypropyltrimethoxysilane were attached. Comparative Example The same procedure as in Example was repeated except that r-glycidoxypropyltrimethoxysilane was not used in Example to obtain metallic iron powder to which spindle oil and hexamethylenetetramine were attached.

上記実施例および比較例で得られた金属鉄粉末および実
施例で使用したと同じ未処理の金属鉄粉末を60℃、9
0%RHの条件下で空気中に放置し、σsの経時変化を
調べたところ、図面中曲線1〜に示される通りであつた
The metallic iron powders obtained in the above Examples and Comparative Examples and the same untreated metallic iron powders used in the Examples were heated at 60°C for 90 minutes.
When the sample was left in the air under the condition of 0% RH and the change in σs over time was examined, it was as shown in curves 1 to 1 in the figure.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は種々の金属鉄粉末に関する飽和磁化量の経時変化
を示す特性図であり、図中、曲線1は本発明実施例で得
られた金属鉄粉末、曲線は比較例の金属鉄粉末、曲線は
未処理の金属鉄粉末のものである。
The drawing is a characteristic diagram showing changes over time in saturation magnetization of various metallic iron powders. In the drawing, curve 1 is the metallic iron powder obtained in the example of the present invention, the curve is the metallic iron powder of the comparative example, and the curve is the curve 1 for the metallic iron powder obtained in the example of the present invention. It is of untreated metallic iron powder.

Claims (1)

【特許請求の範囲】 1 粉末表面にアミン、鉱物油およびシランカップリン
グ剤を付着させてなる金属磁性粉末。 2 金属磁性粉末を、アミン、鉱物油およびシランカッ
プリング剤を含む有機溶剤で湿潤し、次いで非酸化性ガ
ス雰囲気中で加熱して上記溶剤を揮散させることにより
、金属粉末の表面にアミン、鉱物油およびシランカップ
リング剤を付着させることを特徴とする金属磁性粉末の
製造法。
[Claims] 1. A metal magnetic powder having an amine, mineral oil, and a silane coupling agent adhered to the powder surface. 2 Metal magnetic powder is wetted with an organic solvent containing an amine, mineral oil, and a silane coupling agent, and then heated in a non-oxidizing gas atmosphere to volatilize the solvent, thereby coating the surface of the metal powder with amines and minerals. A method for producing metal magnetic powder, characterized by attaching oil and a silane coupling agent.
JP51153840A 1976-12-20 1976-12-20 Metal magnetic powder and its manufacturing method Expired JPS5921921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51153840A JPS5921921B2 (en) 1976-12-20 1976-12-20 Metal magnetic powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51153840A JPS5921921B2 (en) 1976-12-20 1976-12-20 Metal magnetic powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5376958A JPS5376958A (en) 1978-07-07
JPS5921921B2 true JPS5921921B2 (en) 1984-05-23

Family

ID=15571238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51153840A Expired JPS5921921B2 (en) 1976-12-20 1976-12-20 Metal magnetic powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5921921B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579802A (en) * 1980-06-20 1982-01-19 Dainippon Ink & Chem Inc Metallic magnetic powder and its manufacture
JPS57186302A (en) * 1981-05-13 1982-11-16 Toshiba Corp Magnetic unit and magnetic recording medium
JPS58102504A (en) * 1981-12-14 1983-06-18 Fuji Photo Film Co Ltd Surface treatment for ferromagnetic fine powder
JPS59224102A (en) * 1983-06-03 1984-12-17 Ricoh Co Ltd Surface treating method of magnetic powder
JP5191844B2 (en) * 2008-09-10 2013-05-08 国立大学法人東北大学 Method for producing aqueous solvent-dispersible silver fine powder

Also Published As

Publication number Publication date
JPS5376958A (en) 1978-07-07

Similar Documents

Publication Publication Date Title
JPH07272913A (en) Permanent magnet material, and its manufacture and permanent magnet
JPS5921921B2 (en) Metal magnetic powder and its manufacturing method
JPS5920402A (en) Ferromagnetic metallic powder
JPS6214601B2 (en)
JPS5840322B2 (en) Metal magnetic powder for magnetic recording with excellent oxidation stability and its manufacturing method
CN115699227A (en) Anisotropic iron nitride permanent magnet
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPS625962B2 (en)
KR890002666B1 (en) Acicular particulate material containing iron carbide
JPS5925905A (en) Production of acicular ferrous ferromagnetic metallic powder
RU2041026C1 (en) Method of producing ultradispersed powder of metallic iron
JPH04202602A (en) Manufacture of metal magnetic powder
JP3957176B2 (en) Method for producing multi-component alloy nanoparticles
JPH0283219A (en) Production of cobalt-containing ferromagnetic iron oxide powder
JPS61124502A (en) Stable magnetic metallic powder and its production
JPS5848611A (en) Production of ferromagnetic iron powder
JPS59107504A (en) Treating method of ferromagnetic metal powder
JPH0557321B2 (en)
JPS6045681B2 (en) Method for producing ferromagnetic metal powder
JPH0450724B2 (en)
JPS6163921A (en) Magnetic powder and its production
JPS5854485B2 (en) Metal magnetic powder and processing method
TW213492B (en) A stabilizing method on maganetic metal powder
JPS63299202A (en) Surface treatment of magnetic metal powder
JP2007239078A (en) Method for producing metal magnetic particle