JPH0270003A - Method for treating ferromagnetic iron powder - Google Patents

Method for treating ferromagnetic iron powder

Info

Publication number
JPH0270003A
JPH0270003A JP63162557A JP16255788A JPH0270003A JP H0270003 A JPH0270003 A JP H0270003A JP 63162557 A JP63162557 A JP 63162557A JP 16255788 A JP16255788 A JP 16255788A JP H0270003 A JPH0270003 A JP H0270003A
Authority
JP
Japan
Prior art keywords
iron powder
ferromagnetic iron
phosphoric acid
compound
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63162557A
Other languages
Japanese (ja)
Inventor
Michiji Okai
理治 大貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP63162557A priority Critical patent/JPH0270003A/en
Publication of JPH0270003A publication Critical patent/JPH0270003A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture ferromagnetic iron powder having excellent dispersibility and stability by sticking compound of phosphoric acid and the specific metal on surface of the ferromagnetic iron powder after oxidizing the surface at the time of manufactur ing the ferromagnetic iron powder as magnetic recording medium. CONSTITUTION:After treating the surface of alpha-oxy iron hydrooxide with sinter- preventing agent, dehydration and burning are executed to make Fe2O3, and the ferro magnetic iron powder obtaining it with dry type reduction by using hydrogen gas as reducing agent having < 1mum length and > 3 acicular ratio is surface-oxidized under oxygen-containing atmosphere, to give corrosion resistance and weather resis tance. This surface-oxidized ferromagnetic iron powder is suspended into water, and in this suspended water, the phosphoric acid compound of hydroxy ethane disulfonic acid, etc., and salt kind of sulfate, hydrochloride, nitrate, acetate, etc., of at least one kind metal among Zn, Co, Ni, Cr, Cu, Fe, Al, etc., are added at each 0.1 - 20wt.% ratio to stick the compound of the phosphoric acid, and the above metal is stuck on surface of the ferromagnetic iron powder. As this has high ignition point, this is easily treated and has excellente dispersibility and the magnetic recording medium using this has excellent orientatability and stability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気記録媒体用磁性粉として用いられる強磁性
鉄粉の表面処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for surface treatment of ferromagnetic iron powder used as magnetic powder for magnetic recording media.

(従来の技術) 塗布型磁気記録媒体は通常、磁性粉、バインダ研磨剤、
測滑剤および有機溶剤からなる磁性塗料をポリエステル
フィルムなどの基体に塗布したものである。
(Prior art) Coated magnetic recording media usually contain magnetic powder, binder abrasive,
A magnetic coating consisting of a lubricant and an organic solvent is applied to a substrate such as a polyester film.

また強磁性鉄粉は、保磁力、飽和磁化か高いことから高
密度磁気記録媒体用の磁性粉として用途か広かりつつあ
り、更に高密度化の方向として磁性粉の微細化、高比表
面積が要求されている。
In addition, ferromagnetic iron powder has high coercive force and saturation magnetization, so its use as magnetic powder for high-density magnetic recording media is expanding. requested.

しかし、強磁性鉄粉を微細、高比表面積とする場合、磁
性塗料調製時の鉄粉の分散性および記録媒体中での安定
性の点で問題が生じる。
However, when the ferromagnetic iron powder is fine and has a high specific surface area, problems arise in terms of the dispersibility of the iron powder when preparing a magnetic coating material and its stability in a recording medium.

そこで、この問題点を解決するひとつの方法として、強
磁性鉄粉の表面処理が考えられるでおり、界面活性剤、
カップリング剤、高分子などを有機溶剤に溶解した溶液
中で強磁性鉄粉を処理する方法か知られている。しかし
ながら、有機溶剤を用いる方法は、作業性、廃溶剤の処
理なと、取り扱いが困難であり、コストも高くなる。
Therefore, one way to solve this problem is to treat the surface of ferromagnetic iron powder.
A method is known in which ferromagnetic iron powder is treated in a solution containing a coupling agent, polymer, etc. dissolved in an organic solvent. However, methods using organic solvents are difficult to handle in terms of workability and disposal of waste solvents, and are also expensive.

一方、有機溶剤を用いず水溶液あるいは気相てlJ’!
:接処Pノ1する方法も多数開示されている。例えは、
特開昭51.−42990号公報には強磁性鉄粉とリン
酸・rオンを含む溶液とを接触させて処理する方θ、か
開示されている。しかしなからこの様な方法においても
安定化した磁性粉末の分散性、安定性は不十分であり、
特に強磁性鉄粉を乾燥した状態で取り扱う際に問題とな
る発火性の指標となる発火点の敗訴効果か小さい。
On the other hand, lJ'! in aqueous solution or gas phase without using organic solvent!
:Many methods for contacting P-1 have also been disclosed. For example,
Japanese Patent Application Publication No. 1983. Japanese Patent No. 42990-42990 discloses a treatment method θ in which ferromagnetic iron powder is brought into contact with a solution containing phosphoric acid/r-ion. However, even with this method, the dispersibility and stability of the stabilized magnetic powder are insufficient.
In particular, the effect of the ignition point, which is an indicator of flammability, which is a problem when handling ferromagnetic iron powder in a dry state, is small.

(発明が解決しようとする課題) 本発明の[1的は、粉末の発火点か高く、磁性塗料中て
の分散性が良く、磁気記録媒体の配向性に優れた強磁性
鉄粉を得るための表面処理方法を提供することにある。
(Problems to be Solved by the Invention) The first object of the present invention is to obtain ferromagnetic iron powder that has a high powder ignition point, good dispersibility in magnetic paint, and excellent orientation for magnetic recording media. The object of the present invention is to provide a surface treatment method.

(課題を解決するための手段) 本発明者らは上記問題点を解決するために鋭意検討を行
った結果、表面酸化した後の強磁性鉄粉表面にリン酸と
金属の化合物を付右さゼることにより、分散性および安
定性に優れた強磁性鉄粉がtllられることを見出し、
本発明を完成するに至った。ずなわぢ本発明は、乾式還
元法で製造1〜だ鉄を主成分とする強磁性鉄粉を、酸素
を含む雰囲気中で表面酸化した後、水に懸濁し、得られ
た懸濁液にリン酸化合物とZn、 Go、旧、 Cr、
 Cu、 FeおよびAlからなる群から選ばれた1挿
置」二の金属の塩を添加し、強磁性鉄粉にリン酸と金属
の化合物をイ・I”iEfさけることを特徴とする強磁
性鉄粉の処理方法である。以下、その詳細について説明
する。
(Means for Solving the Problems) The present inventors conducted intensive studies to solve the above problems, and found that a compound of phosphoric acid and metal was attached to the surface of ferromagnetic iron powder after surface oxidation. discovered that ferromagnetic iron powder with excellent dispersibility and stability could be produced by
The present invention has now been completed. Zunawaji The present invention is manufactured using a dry reduction method. After oxidizing the surface of ferromagnetic iron powder mainly composed of iron in an oxygen-containing atmosphere, it is suspended in water, and the resulting suspension is Phosphoric acid compounds and Zn, Go, old, Cr,
Ferromagnetic iron powder characterized by adding a salt of one metal selected from the group consisting of Cu, Fe and Al, and avoiding a compound of phosphoric acid and metal to the ferromagnetic iron powder. This is a method for processing iron powder.The details will be explained below.

通常、強磁性鉄粉は平均長さ1μm以下、針状比3以上
の微粒子の集合物であり、粉末、造粒物。
Usually, ferromagnetic iron powder is an aggregate of fine particles with an average length of 1 μm or less and an acicular ratio of 3 or more, and is a powder or granulated product.

破砕物なと種々の形状を有している。この強磁性鉄粉は
鉄を主成分とするものであるが、その他の成分として、
コバルト、ニッケル、クロム、リンアルミニウム、チタ
ン、シリコン、ジルコニウム。
Crushed materials come in a variety of shapes. This ferromagnetic iron powder has iron as its main component, but other components include:
Cobalt, nickel, chromium, phosphorus aluminum, titanium, silicon, zirconium.

カルシウム、マグネシウム、亜鉛などを適宜添加し7た
ものも用いることか−Cきる。
Calcium, magnesium, zinc, etc. may be added as appropriate and used.

また、この強磁性V、粉は含水酸化鉄、酸化鉄なとを乾
式還元することによって1!7ることかできるが、特に
α−オキシ水酸化鉄の表向を焼結防止剤′3 などで処理したのち、脱水・焼成し、酸化第二V、とし
、次いで水素ガスを用い乾式還元して得たものを用いる
ことか好ましい。
In addition, this ferromagnetic V powder can be made by dry reduction of hydrated iron oxide, iron oxide, etc., but in particular, the surface of α-iron oxyhydroxide can be treated with an anti-sintering agent. It is preferable to use a product obtained by treating with water, dehydrating and calcining to obtain a second V oxide, and then dry reducing it using hydrogen gas.

更にこの還元直後の強磁性鉄粉は、空気中に取り出すと
発火するおそれかあるので不活性ガス雰囲気ドで取り扱
うことか好ましい。
Furthermore, since the ferromagnetic iron powder immediately after reduction may catch fire if taken out into the air, it is preferable to handle it in an inert gas atmosphere.

次に寄られた強磁性鉄粉を酸素を含む雰囲気中で表面酸
化し、耐蝕性、 1fli、I磁性をイiI”Uする。
Next, the surface of the collected ferromagnetic iron powder is oxidized in an oxygen-containing atmosphere to improve its corrosion resistance, I, and magnetism.

この気相中での表面酸化としては従来法か採用できるが
、温度200℃以下、酸素濃度0.05容量%以上人気
絹成以下、水蒸気濃度5000 ppm以下の不活性ガ
ス雰囲気中で、強磁性鉄粉1.0kgあたり02として
50〜150gの酸化量の酸化を杓うことか好ましい。
Conventional methods can be used for surface oxidation in the gas phase, but ferromagnetic It is preferable to oxidize in an amount of 50 to 150 g as 0.02 per 1.0 kg of iron powder.

また、このとき温度を4段階に変化させて酸化反応を行
えばより優れた耐蝕性、耐候性をイζI”j、すること
ができるので更に好まし2い。温度を4段階に々化させ
て反応を行う場合、1段]二1の反応は50〜150℃
、2段「1の反応は0〜40°C,3段「1の反応は4
5〜70°C史に4段「Jの反応は0〜40℃の温度下
で行い、雰囲気中の酸素濃度は1段L1から3段目の反
応においては(’、) 、  05容量%以」二大気組
成以下、4段目の反応においては]、0容量%以」二大
気組成以下とし、このときの1段lソtの反応における
酸化量は強磁性鉄粉]、Okgあたり として50〜1
00 gとし、2段1Iの反応は酸化が停止トするか一
定の酸化速度となったところで反応を終了しく通常2〜
8時間)3段[jの反応における酸化量はコ段1」の反
応の5〜30%量とし、更に強磁性鉄粉の発火性を抑制
するために行う4段に1の反応は1〜5時間としてiう
うことか好ましい。
Further, it is more preferable to carry out the oxidation reaction while changing the temperature in four steps, since better corrosion resistance and weather resistance can be achieved. When the reaction is carried out at 50 to 150°C, the reaction in step 1]
, 2nd stage "1 reaction is 0-40°C, 3rd stage "1 reaction is 4
5 to 70 °C, the reaction in 4 stages is carried out at a temperature of 0 to 40 °C, and the oxygen concentration in the atmosphere is (',) 05% by volume or less in the reactions from the first stage L1 to the third stage. The oxidation amount in the 1st stage reaction is 50% per kg of ferromagnetic iron powder. ~1
00 g, and the reaction in the second stage 1I ends when the oxidation stops or reaches a certain oxidation rate.
8 hours) The amount of oxidation in the 3rd stage [j reaction is 5 to 30% of the reaction in stage 1], and the oxidation amount in the 4th stage reaction to further suppress the ignitability of the ferromagnetic iron powder is 1 to 30%. It is preferable to use it for 5 hours.

このように温度を特定化し、順次変化させて酸化物を形
成させることで耐候性に優れ、高飽和磁化の強磁性鉄粉
を得ることかできる。
By specifying and sequentially changing the temperature in this way to form oxides, it is possible to obtain ferromagnetic iron powder with excellent weather resistance and high saturation magnetization.

また、表面酸化に用いる酸素ガスを含む雰囲気としては
、酸素と不活性ガスの混合雰囲気、大気を不活性カスで
希釈した雰囲気なとを挙げることかでき、表面酸化で用
いる装置としては固定床方式、流動床方式1回転型キル
ン方式など種々のものか採用できる。
In addition, examples of the atmosphere containing oxygen gas used for surface oxidation include a mixed atmosphere of oxygen and inert gas, and an atmosphere in which the atmosphere is diluted with inert gas. , a fluidized bed system, a single rotation kiln system, and various other methods can be adopted.

表面酸化後の強磁性鉄粉は水に懸濁し、?11られた懸
濁液にリン酸化合物と金属塩を加えることにより強磁性
鉄粉表面にリン酸と金属の化合物を付合させ表面処理を
行なうが、懸濁液を得る際に、予め表面酸化後の強磁性
鉄粉を水蒸気を含む雰囲気中で処理しておけば、懸濁時
に生ずる強磁性鉄粉の発熱を抑制することができ、これ
により強磁性鉄粉の磁性劣化を防ぐことができるので好
ましい。
Ferromagnetic iron powder after surface oxidation is suspended in water? By adding a phosphoric acid compound and a metal salt to the suspension, the ferromagnetic iron powder surface is treated with a phosphoric acid and metal compound. If the ferromagnetic iron powder is subsequently treated in an atmosphere containing water vapor, it is possible to suppress the heat generation of the ferromagnetic iron powder that occurs during suspension, thereby preventing magnetic deterioration of the ferromagnetic iron powder. Therefore, it is preferable.

懸濁液に添加するリン酸化合物としては、ヒドロキシエ
タンジホスホン酸、、ヒドロキシプロパンジホスホン酸
、ヒドロキシブタンジホスホン酸リン酸、リン酸すトリ
ウム、リン酸二水素すトリウム、リン酸アンモニウムな
どが挙げられ、一方金属塩としては、Zn、 Go、 
Ni、 Cr、 Cu、 PcおよびAlからなる群か
ら選ばれた1種以上の金属の硫酸塩、塩酸塩、硝酸塩、
酢酸塩などが挙げられる。
Examples of phosphoric acid compounds to be added to the suspension include hydroxyethane diphosphonic acid, hydroxypropane diphosphonic acid, hydroxybutane diphosphonic acid phosphoric acid, sterium phosphate, sterium dihydrogen phosphate, and ammonium phosphate. On the other hand, the metal salts include Zn, Go,
sulfate, hydrochloride, nitrate of one or more metals selected from the group consisting of Ni, Cr, Cu, Pc and Al;
Examples include acetate.

これらは各々、単独であるいは2種以上を混合して用い
ることかできる。またその添加量は各々懸濁した鉄粉に
対して、リン酸化合物は0.1〜20重量%、金属塩は
0.1〜20重間%であることが好ましく、これより添
加量が多い場合、鉄粉の表面を均一に処理することが困
難となるおそれかあり、少ない場合、充分な表面処理効
果が得られないことがある。
Each of these can be used alone or in combination of two or more. In addition, the amounts added are preferably 0.1 to 20% by weight for the phosphoric acid compound and 0.1 to 20% by weight for the metal salt, with the amount added being larger than these. If there is a small amount, it may be difficult to uniformly treat the surface of the iron powder, and if there is a small amount, a sufficient surface treatment effect may not be obtained.

また、上記リン酸化合物および金属塩を添加する際に懸
濁液は温度O〜80°C,pH4,0〜10.0とする
ことか好ましく、温度が80°Cを越える場合またはp
Hが上記範囲外の場合は強磁性鉄粉の磁気特性、安定性
が低下するおそれかある。
In addition, when adding the above-mentioned phosphoric acid compound and metal salt, it is preferable that the suspension has a temperature of 0 to 80°C and a pH of 4.0 to 10.0; if the temperature exceeds 80°C or
If H is outside the above range, the magnetic properties and stability of the ferromagnetic iron powder may deteriorate.

更に、リン酸と金属の化合物の付着量は強磁性鉄粉に対
し、0.1〜5重量%とすることが好ましく、この(=
1着量はリン酸化合物と金属塩の添加量あるいは添加時
の!V濁液のpH,温度などを変えることにより適宜調
整することができる。付着量が0.1重量%に満だない
場合は、処理効果が現われないおそれがあり、5重量%
を越えると強磁性vく粉の飽和磁化か小さくなる傾向が
ある。
Further, the amount of the phosphoric acid and metal compound attached is preferably 0.1 to 5% by weight based on the ferromagnetic iron powder, and this (=
The amount per coat is the amount or time of addition of phosphoric acid compound and metal salt! It can be adjusted as appropriate by changing the pH, temperature, etc. of the V suspension. If the amount of adhesion is less than 0.1% by weight, there is a risk that the treatment effect will not appear, and 5% by weight.
If the value exceeds 1, the saturation magnetization of the ferromagnetic powder tends to decrease.

表面処理後の強磁性鉄粉は、濾過、洗浄後乾燥を行なう
が、このときの乾燥は不活性ガス又は酸素濃度2容量%
以下の不活性ガス雰囲気下で行ない、乾燥後酸素濃度を
次第に大気組成まで上げてゆくことにより、耐候性に優
れた強磁性鉄粉か得られるので好ましい。
The ferromagnetic iron powder after surface treatment is filtered, washed, and then dried.Drying at this time is done using an inert gas or an oxygen concentration of 2% by volume.
It is preferable to carry out the drying process in the following inert gas atmosphere and gradually increase the oxygen concentration to atmospheric composition after drying, since this yields ferromagnetic iron powder with excellent weather resistance.

(実施例) 以下、実施例により本発明を、更に詳細に説明するが本
発明は何らこれらに限定されるものではない。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these in any way.

実施例1 針状酸化第2鉄を水素気流中で還元して得た強磁性鉄粉
を窒素ガス気流中で90℃まで冷却した後、表面酸化を
行った。また、表面酸化は温度を4段階に変化させて流
動反応炉内で行った。
Example 1 Ferromagnetic iron powder obtained by reducing acicular ferric oxide in a hydrogen stream was cooled to 90°C in a nitrogen gas stream, and then surface oxidized. Moreover, the surface oxidation was performed in a fluidized reactor while changing the temperature in four stages.

1段目の反応は、酸素0.2容量%含む窒素ガスを反応
炉内に供給し強磁性鉄粉1.0kgあたり酸化量が02
として7CJgとなったところで止めた。次いで、窒素
ガス気流中で20℃まで冷却した後酸素0,2容量%含
む窒素ガスを供給し、酸素消費量がほぼ一定となるまで
2段目の反応を行った。
In the first stage reaction, nitrogen gas containing 0.2% by volume of oxygen was supplied into the reactor, and the amount of oxidation was 0.2% per 1.0kg of ferromagnetic iron powder.
I stopped when it reached 7CJg. Next, after cooling to 20° C. in a nitrogen gas stream, nitrogen gas containing 0.2% by volume of oxygen was supplied, and the second stage reaction was carried out until the amount of oxygen consumption became almost constant.

2段1」の反応終了後、引続き酸素0.2容量%含む窒
素ガスを反応炉内に供給しながら温度を20°C/時の
割合で50°Cまて上げ、3段目の反応を行った。この
時の酸化量は強磁性鉄粉1.、Okgあたり1− Og
とした。
After the completion of the second stage 1 reaction, the temperature was increased to 50°C at a rate of 20°C/hour while continuing to supply nitrogen gas containing 0.2% oxygen by volume into the reactor, and the third stage reaction was started. went. The amount of oxidation at this time is 1. , 1-Og per Okg
And so.

3段目の反応終了後、酸素の供給を停止し窒素気流中で
20°Cまて冷却し、再び酸素0.2容量%含む窒素ガ
スの供給を行い4段目の反応を行った。
After the third stage reaction was completed, the supply of oxygen was stopped, the mixture was cooled to 20°C in a nitrogen stream, and nitrogen gas containing 0.2% by volume of oxygen was supplied again to carry out the fourth stage reaction.

4段1]の反応において酸素を含む窒素ガス中の酸素濃
度を次第に上げてゆき、1時間後に酸素濃度を2容量%
とじ、更にそのまま1時間反応を続けた後、終了した。
In the reaction of Step 4 1], the oxygen concentration in the nitrogen gas containing oxygen is gradually increased, and after 1 hour, the oxygen concentration is increased to 2% by volume.
After closing, the reaction was continued for 1 hour and then terminated.

表面酸化後の強磁性鉄粉を不活性ガス雰囲気下で水に1
PJi45して得られた懸濁液に、苛性ソーダでpH7
に調整した1−ヒドロキシ−1,1−ジホスホン酸水溶
液と硫酸亜鉛水溶液の混合水溶液を] 0 撹拌しながら添加し、その後懸濁液を20°Cて]時間
放置した。
Ferromagnetic iron powder after surface oxidation is dissolved in water under an inert gas atmosphere.
The suspension obtained by PJi45 was adjusted to pH 7 with caustic soda.
A mixed aqueous solution of a 1-hydroxy-1,1-diphosphonic acid aqueous solution and a zinc sulfate aqueous solution adjusted to 0 was added with stirring, and the suspension was then left at 20°C for an hour.

濾過水洗後、40℃で真空乾燥した強磁性鉄粉には、リ
ン酸とZnの化合物が強磁性鉄粉に対しZnとして1.
5重塁%含有されていた。
After filtering and washing with water, the ferromagnetic iron powder was vacuum-dried at 40°C, and a compound of phosphoric acid and Zn was added to the ferromagnetic iron powder in a ratio of 1.
It contained 5% double bases.

得られた強磁性鉄粉の磁気特性は振動試料型磁力計(7
1+11定磁場10KOe)を用いて1(III定し、
耐候性は温度60℃、相対湿度90%の条件で1週間放
置後の飽和磁化(as)を71111定して求めた。
The magnetic properties of the obtained ferromagnetic iron powder were measured using a vibrating sample magnetometer (7
1(III) using 1+11 constant magnetic field 10KOe),
Weather resistance was determined by determining the saturation magnetization (as) of 71111 after being left for one week at a temperature of 60° C. and a relative humidity of 90%.

また、発火点は示唆熱分析装置(’DTA)を用い、空
気中、昇温速度10℃/分で1ll11定した。
Further, the ignition point was determined at 11111 using a suggestive thermal analyzer ('DTA) in air at a heating rate of 10° C./min.

更に、得られた磁性粉末100重量部、塩ビ酢ピコポリ
マー25重量部、レシチン1.5重量部、メチルエチル
ケトン160m1.  シクロへキサノン160 ml
をガラスピーズを入れたサンドグラインダーで6時間混
合2分散して磁性塗料を調製し、これより配向シートを
作製し、得られた配向シーi・の角形比(Rs)を振動
試料型磁力計を用いて測定した。
Furthermore, 100 parts by weight of the obtained magnetic powder, 25 parts by weight of vinyl chloride vinegar picopolymer, 1.5 parts by weight of lecithin, and 160 ml of methyl ethyl ketone were added. Cyclohexanone 160 ml
A magnetic paint was prepared by mixing and dispersing for 6 hours with a sand grinder containing glass beads, from which an oriented sheet was made, and the squareness ratio (Rs) of the obtained oriented sheet i was measured using a vibrating sample magnetometer. It was measured using

その結果、強磁性鉄粉の保磁力は1485’Oe飽和磁
化は133emu/g、比表面積53イ/g発火点は]
36℃であった。
As a result, the coercive force of the ferromagnetic iron powder was 1485'Oe, the saturation magnetization was 133 emu/g, and the specific surface area was 53 I/g, and the ignition point was]
The temperature was 36°C.

また、耐候性はas −118emu /gと良好であ
り、配向シートはRs  0184と配向性に優れたも
のであった。
Furthermore, the weather resistance was as-118 emu/g, which was good, and the oriented sheet had an excellent orientation of Rs 0184.

実施例2 表面処理をヘキサメタリン酸ソーダ、塩化アルミニウム
を用いて行った以外は実施例1と同様の方法で、リン酸
とアルミニウムの化合物を付着させた強磁性鉄粉を得た
Example 2 Ferromagnetic iron powder to which a compound of phosphoric acid and aluminum was attached was obtained in the same manner as in Example 1, except that the surface treatment was performed using sodium hexametaphosphate and aluminum chloride.

11、iられた強磁性鉄粉にはリン酸とアルミニウムの
化合物が八Ωとして1.2重量%含有されており、磁気
特性は保磁力14800e、飽和磁化134emu/g
で、比表面積53rd/g、発火点は138℃であった
11. The prepared ferromagnetic iron powder contains 1.2% by weight of a compound of phosphoric acid and aluminum as 8Ω, and has magnetic properties such as a coercive force of 14,800e and a saturation magnetization of 134emu/g.
The specific surface area was 53rd/g and the ignition point was 138°C.

また、耐候性はas = 120emu /g、配向シ
トのRsは0.85であった。
Further, the weather resistance was as=120 emu/g, and the Rs of the oriented sheet was 0.85.

] ] 実施例3 表面処理をヘキサメタリン酸ソーダと塩化アルミニウム
、硫酸亜鉛を用いて行った以外は実施例]と同様の方法
でリン酸とアルミニウム、亜鉛の化合物を(1着させた
強磁性鉄粉を得た。
] ] Example 3 A compound of phosphoric acid, aluminum, and zinc was coated with ferromagnetic iron powder (coated with I got it.

得られた強磁性鉄粉にはリン酸とアルミニウム亜鉛の化
合物がΔgとして1.0重量% Znとして1.2重量
%含有されていたおり、磁気特性は保磁力1.4800
 e 、飽和磁化132emu/gで、比表面積53n
f/g、発火点は143℃であった。
The obtained ferromagnetic iron powder contained a compound of phosphoric acid and aluminum zinc at 1.0% by weight as Δg and 1.2% by weight as Zn, and its magnetic properties were as follows: coercive force 1.4800
e, saturation magnetization 132 emu/g, specific surface area 53 n
f/g, and the ignition point was 143°C.

また、耐候性はas −122emu / g、配向シ
ートはRso、86であった。
Further, the weather resistance was as -122emu/g, and the orientation sheet Rso was 86.

比較例1 リン酸と亜鉛の化合物を(=1着させる処理を行わなか
った以外は、実施例1と同様の方法で強磁性鉄粉を製造
した。
Comparative Example 1 Ferromagnetic iron powder was produced in the same manner as in Example 1, except that the treatment of depositing a compound of phosphoric acid and zinc (=1) was not performed.

得られた強磁性鉄粉の磁気特性は、保磁力14900e
、飽和磁化]、35emu/gで、比表面積54 nf
/ gであり、発火点は110℃であった。
The magnetic properties of the obtained ferromagnetic iron powder have a coercive force of 14900e
, saturation magnetization], 35 emu/g, specific surface area 54 nf
/g, and the ignition point was 110°C.

また、耐候性はas −11,2emu / g+配向
シトはRs  0480であった。
Moreover, the weather resistance was Rs 0480 for the as-11,2emu/g+ oriented sheet.

比較例2 硫酸亜鉛水溶液を用いずに1−ヒドロキシ−1゜1−ジ
ホスホン酸水溶液のみで処理した以外は実施例]と同様
の方法で強磁性鉄粉を製造した。
Comparative Example 2 Ferromagnetic iron powder was produced in the same manner as in Example except that the treatment was performed only with an aqueous 1-hydroxy-1°1-diphosphonic acid solution without using an aqueous zinc sulfate solution.

得られた強磁性鉄粉の磁気特性は、保磁力1、4800
 e 、飽和磁化132emu/gで、比表面積53r
r?/gであり、発火点は113°Cであった。
The magnetic properties of the obtained ferromagnetic iron powder are as follows: coercive force 1,4800
e, saturation magnetization 132 emu/g, specific surface area 53 r
r? /g, and the ignition point was 113°C.

また、耐候性はas −115emu /g、配向シト
はRso、81であった。
Moreover, the weather resistance was as -115 emu/g, and the orientation site Rso was 81.

比較例3 実施例1において、]−]ヒドロキシー1,1ジホスホ
ンを用いず、硫酸亜鉛水溶液のみで処理した以外は実施
例1と同様にして強磁性鉄粉を製造した。
Comparative Example 3 Ferromagnetic iron powder was produced in the same manner as in Example 1, except that the treatment was performed only with an aqueous zinc sulfate solution without using ]-]hydroxy-1,1 diphosphone.

] 4 得られた強磁性鉄粉の磁気特性は、保磁力1.4800
 e 、飽和磁化]、30emu/gで、比表面積53
 rrr / gであり、発火点は110°Cであった
] 4 The magnetic properties of the obtained ferromagnetic iron powder are as follows: coercive force 1.4800
e, saturation magnetization], 30 emu/g, specific surface area 53
rrr/g, and the ignition point was 110 °C.

また、耐候性はσs −110cmu /g、配向ント
はRsO,78であった。
Further, the weather resistance was σs -110 cmu/g, and the orientation was RsO, 78.

(発明の効果) 以上述べたとおり、本発明の処理方法を施した強磁性鉄
粉は発火点か高いものとなり、その取扱いは容品なもの
となる。また、得られる強磁性鉄粉は分散性が良好であ
り、これより得られる磁気記録媒体は配向性、安定性な
どの点で優れたものとなる。
(Effects of the Invention) As described above, the ferromagnetic iron powder subjected to the treatment method of the present invention has a high ignition point and must be handled with care. Furthermore, the obtained ferromagnetic iron powder has good dispersibility, and the magnetic recording medium obtained therefrom is excellent in terms of orientation, stability, etc.

Claims (1)

【特許請求の範囲】[Claims] (1)乾式還元法で製造した鉄を主成分とする強磁性鉄
粉を、酸素を含む雰囲気中で表面酸化した後、水に懸濁
し、得られた懸濁液にリン酸化合物とZn,Co,Ni
,Cr,Cu,FeおよびAlからなる群から選ばれた
1種以上の金属の塩を添加し、強磁性鉄粉にリン酸と金
属の化合物を付着させることを特徴とする強磁性鉄粉の
処理方法。
(1) After oxidizing the surface of ferromagnetic iron powder whose main component is iron produced by a dry reduction method in an oxygen-containing atmosphere, it is suspended in water, and the resulting suspension contains a phosphoric acid compound, Zn, Co,Ni
, Cr, Cu, Fe, and Al, and a compound of phosphoric acid and metal is attached to the ferromagnetic iron powder. Processing method.
JP63162557A 1988-07-01 1988-07-01 Method for treating ferromagnetic iron powder Pending JPH0270003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63162557A JPH0270003A (en) 1988-07-01 1988-07-01 Method for treating ferromagnetic iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63162557A JPH0270003A (en) 1988-07-01 1988-07-01 Method for treating ferromagnetic iron powder

Publications (1)

Publication Number Publication Date
JPH0270003A true JPH0270003A (en) 1990-03-08

Family

ID=15756853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63162557A Pending JPH0270003A (en) 1988-07-01 1988-07-01 Method for treating ferromagnetic iron powder

Country Status (1)

Country Link
JP (1) JPH0270003A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421702A (en) * 1990-05-16 1992-01-24 Michitoshi Hirata Metal fine powder and manufacture thereof
US5484545A (en) * 1992-11-11 1996-01-16 Toda Kogyo Corporation Magnetic particles for magnetic recording medium and process for producing the same
WO1997047416A1 (en) * 1996-06-10 1997-12-18 Nittetsu Mining Co., Ltd. Powder coated with multilayer coating
KR100618122B1 (en) * 2005-06-01 2006-08-30 한국과학기술연구원 Surface oxidation of fe based amorphous metal by wet process
WO2012173239A1 (en) * 2011-06-17 2012-12-20 株式会社神戸製鋼所 Iron-base soft magnetic powder for dust cores, manufacturing method thereof, and dust core
US20140047932A1 (en) * 2011-02-25 2014-02-20 Global Scientific Services Pty Ltd Method, system and apparatus for use in locating subsurface ore bodies

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421702A (en) * 1990-05-16 1992-01-24 Michitoshi Hirata Metal fine powder and manufacture thereof
US5484545A (en) * 1992-11-11 1996-01-16 Toda Kogyo Corporation Magnetic particles for magnetic recording medium and process for producing the same
US5543069A (en) * 1992-11-11 1996-08-06 Toda Kogyo Corporation Magnetic particles for magnetic recording medium and process for producing the same
WO1997047416A1 (en) * 1996-06-10 1997-12-18 Nittetsu Mining Co., Ltd. Powder coated with multilayer coating
EA000820B1 (en) * 1996-06-10 2000-04-24 Ниттецу Майнинг Ко., Лтд. Powder coated with multilayer coating
KR100618122B1 (en) * 2005-06-01 2006-08-30 한국과학기술연구원 Surface oxidation of fe based amorphous metal by wet process
US20140047932A1 (en) * 2011-02-25 2014-02-20 Global Scientific Services Pty Ltd Method, system and apparatus for use in locating subsurface ore bodies
US9823170B2 (en) * 2011-02-25 2017-11-21 Global Scientific Services Pty Ltd Method, system and apparatus for use in locating subsurface ore bodies
WO2012173239A1 (en) * 2011-06-17 2012-12-20 株式会社神戸製鋼所 Iron-base soft magnetic powder for dust cores, manufacturing method thereof, and dust core
JP5189691B1 (en) * 2011-06-17 2013-04-24 株式会社神戸製鋼所 Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
US9472328B2 (en) 2011-06-17 2016-10-18 Kobe Steel, Ltd. Iron-based soft magnetic powder for dust core use, manufacturing method thereof, and dust core

Similar Documents

Publication Publication Date Title
JPS608606B2 (en) Manufacturing method of ferromagnetic powder
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPS59107924A (en) Manufacture of magnetic iron oxide powder containing cobalt
JPS5923505A (en) Magnetic powder
JPS62108738A (en) Production of ferromagnetic iron oxide powder
JPH0283219A (en) Production of cobalt-containing ferromagnetic iron oxide powder
JPS6132259B2 (en)
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JPH0125211B2 (en)
JPH01230702A (en) Surface treatment method for ferromagnetic iron powder
JPH01246302A (en) Method for treating surface of ferromagnetic iron powder
JPS6349722B2 (en)
JPS63142607A (en) Manufacture of magnetic iron powder
JPH0230625A (en) Cobalt-containing ferromagnetic iron oxide powder and production thereof
JPH01298106A (en) Manufacture of ferromagnetic iron powder
JPH01309903A (en) Method for stabilizing ferromagnetic iron powder
JPS5939730A (en) Manufacture of ferromagnetic iron oxide
JPS61132521A (en) Magnetic iron oxide particle powder for magnetic recording medium and production thereof
JPH02156001A (en) Manufacture of ferromagnetic iron powder
JPH01147003A (en) Method for stabilizing ferromagnetic iron powder
JPH01247502A (en) Surface treatment of ferromagnetic iron powder
JPH01241801A (en) Manufacture of ferromagnetic iron powder
JPH01168801A (en) Manufacture of metal magnetic powder
JPS63143203A (en) Production of magnetic iron powder
JPH0425686B2 (en)