JPH0450724B2 - - Google Patents

Info

Publication number
JPH0450724B2
JPH0450724B2 JP57042375A JP4237582A JPH0450724B2 JP H0450724 B2 JPH0450724 B2 JP H0450724B2 JP 57042375 A JP57042375 A JP 57042375A JP 4237582 A JP4237582 A JP 4237582A JP H0450724 B2 JPH0450724 B2 JP H0450724B2
Authority
JP
Japan
Prior art keywords
oxide film
metal
iron
magnetic powder
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57042375A
Other languages
Japanese (ja)
Other versions
JPS58159308A (en
Inventor
Toshinobu Sueyoshi
Shigeo Hirai
Katsunori Tashimo
Akinari Hayashi
Masahiro Amamya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP57042375A priority Critical patent/JPS58159308A/en
Publication of JPS58159308A publication Critical patent/JPS58159308A/en
Publication of JPH0450724B2 publication Critical patent/JPH0450724B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は鉄を主体とする金属磁性粉末の製造
方法に関し、その目的とすところは酸化安定性に
優れる前記の金属磁性粉末の製造方法を提供する
ことにある。 鉄を主体とする金属磁性粉末は従来の酸化物系
磁性粉末に比較して優れた磁気特性を有している
が、反面空気中で非常に酸化を受け易く、飽和磁
化量が経時的に低下し、貯蔵安定性に欠けるとい
う問題がある。 このため、この種の金属磁性粉末を有機溶剤中
あるいは窒素雰囲気中で微量の溶存酸素あるいは
低濃度の酸素含有ガスなどにより酸化して粒子表
面に酸化物被膜を形成したり、あるいはこの被膜
上にさらに酸化ケイ素等からなる酸化物被膜を形
成するなどの方法で酸化安定性の改善が図られて
いるが、このようにして形成された酸化物被膜は
未だ充分に安定したものでなくまたそれほど緻密
なものでもないため未だ充分に満足できる結果は
得られていない。 この発明者らはかかる現状に鑑み種々検討を行
なつた結果、既に酸化物被膜を形成した鉄を主体
とする金属磁性粉末を、銅、亜鉛、アルミニウム
から選ばれる少なくとも一種を含む金属塩を含む
多価アルコール中に分散し、次いでこれを加熱す
ると既に前記磁性粉末の粒子表面に形成された酸
化物被膜中に銅、亜鉛、アルミニウムから選ばれ
る少なくとも一種の金属が含有されて酸化物被覆
が安定化すると同時に緻密化され、その結果酸化
安定性が充分に向上されることを見いだし、この
発明をなすに至つた。 この発明において使用する多価アルコールとし
ては、沸点が150℃以上の、たとえばエチレング
リコール、ポリエチレングリコール、プロピレン
グリコール、グリセリンなどが好適なものとして
使用され、これら高沸点の多価アルコール中に銅
塩または亜鉛塩もしくはアルミニウム塩等を溶解
してできたアルコラート溶液中に、既に酸化物被
膜を形成した鉄を主体とする金属磁性粉末を分散
した後、150℃以上の温度で加熱すると、多価ア
ルコールの作用で既に前記金属磁性粉末の粒子表
面に形成されたα−Fe2O3などの酸化鉄からなる
酸化物被膜が還元されると同時にSiO2および酸
化鉄からなる酸化物被膜中に銅、亜鉛、アルミニ
ウムなどの金属が良好に導入拡散され、これらの
金属を含有した安定で緻密なマグネタイト被膜な
どの酸化物被膜が形成されて酸化安定性が向上す
る。このような酸化物被膜中への金属の導入拡散
は、150℃以下の加熱処理ではおこりにくく、高
温になるほど促進されて酸化安定性が向上する
が、300℃の温度になると被膜中への金属の拡散
が充分に行なわれるため300℃以上の温度で加熱
する必要はない。 多価アルコール中に溶解する金属塩としては、
銅または亜鉛もしくはアルミニウムのハロゲン化
物、水酸化物、炭酸塩、硫酸塩などの無機塩の
他、これらの金属の無機金属塩等が好適なものと
して使用され、これらの金属塩が多価アルコール
中に溶解されると多価アルコールと反応して金属
アルコラートが生成される。 粒子表面に酸化物被膜を形成する前の鉄を主体
とする金属磁性粉末としては、金属鉄粉末の他、
鉄にCo,Ni,Al,Cr,Mn,Si,Znなどを含有
させた金属磁性粉末が広く包含され、液中還元
法、気相還元法、電解法のいかんを問わずあらゆ
る方法で製造された従来の鉄を主体とする金属磁
性粉末がいずれも用いられる。 次に、この発明の実施例について説明する。 実施例 1 粒径0.3μ、軸比(長軸/短軸)10/1、飽和磁化
量σs165emu/g、保磁力1450エルステツドの金
属鉄粉末1Kgをトルエン約10中に分散させ、流
速5/分の空気を分散液中にバブリングさせな
がら5時間攪拌処理して酸化鉄からなる酸化物被
膜で覆われた粒径0.3μ、軸比(長軸/短軸)10/
1、飽和磁化量σs130emu/g、保磁力1470エルス
テツドの金属鉄粉末を得た。次いでこの酸化物被
膜で覆われた金属磁性粉末100重量部をポリエチ
レングリコール(平均分子量600)200重量部に塩
化銅(CuCl2・2H2O)8重量部を溶かしてでき
たアルコラート溶液中に分散させ、常圧下250℃
で4時間反応させた。これを水洗、乾燥し、銅を
含有する酸化物からなる被膜に覆われた金属鉄粉
末を得た。得られた金属鉄粉末は粒径が0.3μ、軸
比(長軸/短軸)が10/1、飽和磁化量σsが
129emu/gで、保磁力は1460エルステツドであ
つた。 実施例 2 実施例1において塩化銅に代えて塩化亜鉛
(ZnCl2)を同量使用した以外は実施例1と同様
にして亜鉛を含有する酸化物からなる被膜で覆わ
れた粒径0.3μ、軸比(長軸/短軸)10/1、飽和磁
化量σs130emu/g、保磁力1390エルステツドの
金属鉄粉末を得た。 実施例 3 実施例1において塩化銅に代えて硫酸アルミニ
ウム(Al2(SO43・16H2O)を同量使用した以外
は実施例1と同様にしてアルミニウムを含有する
酸化物被膜で覆われた粒径0.3μ、軸比(長軸/短
軸)10/1、飽和磁化量σs128emu/g、保磁力
1410エルステツドの金属鉄粉末を得た。 各実施例で得られた金属鉄粉末および実施例1
における金属鉄粉末の銅を含有させる前の酸化物
被膜で覆われた金属鉄粉末(比較例1)をそれぞ
れ60℃、90%RHの条件下で24時間空気中に放置
し、放置後の飽和磁化量を測定して放置前の飽和
磁化量からの低下率を調べた。 下表はその結果である。
The present invention relates to a method for manufacturing metal magnetic powder containing iron as a main component, and an object thereof is to provide a method for manufacturing the metal magnetic powder described above that has excellent oxidation stability. Metallic magnetic powders mainly made of iron have superior magnetic properties compared to conventional oxide-based magnetic powders, but on the other hand, they are highly susceptible to oxidation in the air, and their saturation magnetization decreases over time. However, there is a problem that it lacks storage stability. For this reason, this type of metal magnetic powder is oxidized with a trace amount of dissolved oxygen or a low concentration oxygen-containing gas in an organic solvent or nitrogen atmosphere to form an oxide film on the particle surface, or to form an oxide film on the particle surface. Furthermore, attempts have been made to improve oxidation stability by forming oxide films made of silicon oxide, etc., but the oxide films formed in this way are still not sufficiently stable and are not very dense. Therefore, fully satisfactory results have not yet been obtained. The inventors conducted various studies in view of the current situation, and found that a metal magnetic powder mainly composed of iron, which has already formed an oxide film, contains a metal salt containing at least one selected from copper, zinc, and aluminum. When dispersed in polyhydric alcohol and then heated, at least one metal selected from copper, zinc, and aluminum is contained in the oxide film already formed on the particle surface of the magnetic powder, making the oxide coating stable. The present inventors have discovered that the oxidation stability can be sufficiently improved as a result of the oxidation stability being sufficiently improved. The polyhydric alcohol used in this invention preferably has a boiling point of 150°C or higher, such as ethylene glycol, polyethylene glycol, propylene glycol, or glycerin. After dispersing iron-based magnetic metal powder that has already formed an oxide film into an alcoholate solution made by dissolving zinc salt or aluminum salt, heating it at a temperature of 150°C or higher will cause the formation of polyhydric alcohol. The action reduces the oxide film made of iron oxide such as α-Fe 2 O 3 that has already been formed on the particle surface of the metal magnetic powder, and at the same time copper and zinc are added to the oxide film made of SiO 2 and iron oxide. Metals such as aluminum and the like are introduced and diffused well, and a stable and dense oxide film such as a magnetite film containing these metals is formed, improving oxidation stability. Such introduction and diffusion of metal into the oxide film is difficult to occur with heat treatment below 150°C, and increases as the temperature increases, improving oxidation stability.However, at a temperature of 300°C, metal introduction into the film is There is no need to heat at temperatures above 300°C because the diffusion of Metal salts that dissolve in polyhydric alcohol include:
In addition to inorganic salts such as halides, hydroxides, carbonates, and sulfates of copper, zinc, or aluminum, inorganic metal salts of these metals are preferably used, and these metal salts are dissolved in polyhydric alcohols. When dissolved in , it reacts with polyhydric alcohol to produce metal alcoholate. In addition to metallic iron powder, as metallic magnetic powder mainly composed of iron before forming an oxide film on the particle surface,
It includes a wide range of metal magnetic powders made of iron containing Co, Ni, Al, Cr, Mn, Si, Zn, etc., and can be produced by any method, including liquid reduction, gas phase reduction, and electrolytic methods. Any of the conventional metal magnetic powders mainly composed of iron can be used. Next, embodiments of the invention will be described. Example 1 1 kg of metallic iron powder with a particle size of 0.3μ, an axial ratio (major axis/minor axis) of 10/1, a saturation magnetization amount of σs of 165 emu/g, and a coercive force of 1450 oersted is dispersed in toluene of about 10%, and the flow rate is 5/min. The particles are coated with an oxide film made of iron oxide, with a diameter of 0.3μ and an axial ratio (major axis/minor axis) of 10/
1. Metallic iron powder with a saturation magnetization σs of 130 emu/g and a coercive force of 1470 oersted was obtained. Next, 100 parts by weight of the metal magnetic powder covered with this oxide film was dispersed in an alcoholate solution prepared by dissolving 8 parts by weight of copper chloride (CuCl 2.2H 2 O) in 200 parts by weight of polyethylene glycol (average molecular weight 600). 250℃ under normal pressure
The mixture was allowed to react for 4 hours. This was washed with water and dried to obtain metallic iron powder covered with a film made of an oxide containing copper. The obtained metallic iron powder has a particle size of 0.3μ, an axial ratio (major axis/minor axis) of 10/1, and a saturation magnetization amount σs.
It was 129 emu/g and the coercive force was 1460 oersted. Example 2 Particles with a diameter of 0.3μ covered with a film made of an oxide containing zinc were prepared in the same manner as in Example 1 except that the same amount of zinc chloride (ZnCl 2 ) was used instead of copper chloride in Example 1. Metallic iron powder was obtained with an axial ratio (major axis/minor axis) of 10/1, a saturation magnetization σs of 130 emu/g, and a coercive force of 1390 oersted. Example 3 Covering with an oxide film containing aluminum was performed in the same manner as in Example 1 except that the same amount of aluminum sulfate (Al 2 (SO 4 ) 3.16H 2 O) was used in place of copper chloride in Example 1. grain size 0.3μ, axial ratio (major axis/minor axis) 10/1, saturation magnetization σs128emu/g, coercive force
1410 Oersted metallic iron powder was obtained. Metallic iron powder obtained in each example and Example 1
The metallic iron powder covered with an oxide film before containing copper (Comparative Example 1) was left in the air for 24 hours at 60°C and 90% RH, and the saturation after standing was The amount of magnetization was measured and the rate of decrease from the saturated magnetization amount before being left was examined. The table below shows the results.

【表】 上表から明らかなように、この発明で得られた
金属鉄粉末(実施例1〜3)はいずれも従来の酸
化物被膜を有する金属鉄粉末(比較例1)に比
し、飽和磁化量σsの低下率が小さく、このことか
らこの発明の製造方法によれば、酸化安定性に優
れた鉄を主体とする金属磁性粉末が得られること
がわかる。
[Table] As is clear from the above table, all of the metallic iron powders obtained by this invention (Examples 1 to 3) have higher saturation than the conventional metallic iron powder having an oxide coating (Comparative Example 1). The rate of decrease in the amount of magnetization σs was small, which indicates that according to the production method of the present invention, a metal magnetic powder mainly composed of iron with excellent oxidation stability can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 粉末粒子の表面に酸化物被膜を形成した鉄を
主体とする金属磁性粉末を、銅、亜鉛、アルミニ
ウムから選ばれる少なくとも一種を含む金属塩を
溶解した多価アルコール中に分散し、これを加熱
して鉄を主体とする金属磁性粉末の粒子表面に、
銅、亜鉛、アルミニウムから選ばれる少なくとも
一種の金属を含有した酸化物被膜を形成すること
を特徴とする金属磁性粉末の製造方法。
1 Metal magnetic powder mainly composed of iron with an oxide film formed on the surface of the powder particles is dispersed in polyhydric alcohol in which a metal salt containing at least one selected from copper, zinc, and aluminum is dissolved, and this is heated. on the particle surface of metal magnetic powder mainly composed of iron.
A method for producing metal magnetic powder, comprising forming an oxide film containing at least one metal selected from copper, zinc, and aluminum.
JP57042375A 1982-03-17 1982-03-17 Manfaucture of metallic magnetic powder Granted JPS58159308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57042375A JPS58159308A (en) 1982-03-17 1982-03-17 Manfaucture of metallic magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57042375A JPS58159308A (en) 1982-03-17 1982-03-17 Manfaucture of metallic magnetic powder

Publications (2)

Publication Number Publication Date
JPS58159308A JPS58159308A (en) 1983-09-21
JPH0450724B2 true JPH0450724B2 (en) 1992-08-17

Family

ID=12634298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57042375A Granted JPS58159308A (en) 1982-03-17 1982-03-17 Manfaucture of metallic magnetic powder

Country Status (1)

Country Link
JP (1) JPS58159308A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628106B2 (en) * 1984-02-15 1994-04-13 日立マクセル株式会社 Magnetic disk
WO2015098895A1 (en) * 2013-12-26 2015-07-02 株式会社 Mtg Skin care agent
JP6504289B1 (en) * 2018-03-09 2019-04-24 Tdk株式会社 Soft magnetic metal powder, dust core and magnetic parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390151A (en) * 1977-01-21 1978-08-08 Hitachi Maxell Magnetic powder manufacturing process
JPS5521146A (en) * 1978-08-01 1980-02-15 Tdk Corp Manufacturing method of magnetic powder
JPS58120704A (en) * 1982-01-14 1983-07-18 Dainippon Ink & Chem Inc Production of ferromagnetic metallic powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390151A (en) * 1977-01-21 1978-08-08 Hitachi Maxell Magnetic powder manufacturing process
JPS5521146A (en) * 1978-08-01 1980-02-15 Tdk Corp Manufacturing method of magnetic powder
JPS58120704A (en) * 1982-01-14 1983-07-18 Dainippon Ink & Chem Inc Production of ferromagnetic metallic powder

Also Published As

Publication number Publication date
JPS58159308A (en) 1983-09-21

Similar Documents

Publication Publication Date Title
GB1585419A (en) Process of producing cobalt-containing feromagnetic iron oxide powder
JPH0544162B2 (en)
US4262037A (en) Method of producing ferromagnetic metal powder
JP3268830B2 (en) Metal magnetic powder and method for producing the same
JPH0450724B2 (en)
JPS5840322B2 (en) Metal magnetic powder for magnetic recording with excellent oxidation stability and its manufacturing method
JPS5923505A (en) Magnetic powder
JPH0447962B2 (en)
JPH0420241B2 (en)
JP2000302445A (en) Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JPS6242858B2 (en)
JPS622002B2 (en)
JPH0598321A (en) Production of magnetic metal powder
JPS6350842B2 (en)
JPS63120404A (en) Manufacture of magnetic iron powder
JPS58161704A (en) Production of magnetic metallic powder
JPS60159102A (en) Manufacture of ferromagnetic iron powder
JPS63143802A (en) Manufacture of magnetic iron powder
JPS6034244B2 (en) Manufacturing method of ferromagnetic powder
JPH0312125B2 (en)
JPS63143205A (en) Production of magnetic iron powder
JPS58159311A (en) Manufacture of metallic magnetic powder
JPS59172209A (en) Metal magnetic powder and manufacture thereof
JPS6244842B2 (en)
JPS62155503A (en) Manufacture of ferromagnetic powder