JPH04202602A - Manufacture of metal magnetic powder - Google Patents

Manufacture of metal magnetic powder

Info

Publication number
JPH04202602A
JPH04202602A JP2334118A JP33411890A JPH04202602A JP H04202602 A JPH04202602 A JP H04202602A JP 2334118 A JP2334118 A JP 2334118A JP 33411890 A JP33411890 A JP 33411890A JP H04202602 A JPH04202602 A JP H04202602A
Authority
JP
Japan
Prior art keywords
metal
reaction
powder
gas
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2334118A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sawada
善秋 沢田
Yoshiteru Kageyama
景山 芳輝
Tadashi Teramoto
正 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP2334118A priority Critical patent/JPH04202602A/en
Publication of JPH04202602A publication Critical patent/JPH04202602A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal

Abstract

PURPOSE:To stably manufacture magnetic metal powder excellent in magnetic deterioration resistance and weatherability by bringing a mixed gas of a carbonyl compound of transition metal and a diluted gas into reaction with in a reaction tube in a magnetic field into the powder of magnetic metal and thereafter forming an oxidized film on its surface. CONSTITUTION:A carbonyl compound 2 of transition metal and an inert gas 3 such as H2, CO and Ar are mixed in a mixer 4 into a mixed gas of <=200 deg.C, which is introduced from a nozzle outlet 6 of an introducing tube 5 into a reaction tube 7 in which a magnetic field is formed by a permanent magnet, an electromagnet or the like 8; a diluted gas of >=400 deg.C is fed from an introducing tube 1; and they are brought into reaction with to form the fine powder of transition metal. This metal fine powder is fed into a reaction tube 10 via a conduit 9; a mixture of the chlorides of Ti, Si, Sn or the like, water and oxygen is fed from an introducing tube 12 therein; and they are brought into reaction with at >=60 deg.C. The oxide film of the above metal is formed on the surface of the fine powder of transition metal, by which the magnetic metal powder as a magnetic recording medium having excellent properties is manufactured.

Description

【発明の詳細な説明】 〔発明の背景〕 (産業上の利用分野) 本発明は、金属磁性粉の製造方法に関する。更に詳しく
は、本発明は、磁気的劣化に対する抵抗力か強く、発火
点の高い、耐候性に優れた金属磁性粉末の簡便かつ経済
的な製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Background of the Invention] (Field of Industrial Application) The present invention relates to a method for producing metal magnetic powder. More specifically, the present invention relates to a simple and economical method for producing metal magnetic powder that has strong resistance to magnetic deterioration, a high ignition point, and excellent weather resistance.

(従来の技術) 近年、磁気記録媒体の磁性材料として、鉄を主成分とす
る強磁性金属粉末か注目され用いられるようになった。
(Prior Art) In recent years, ferromagnetic metal powder containing iron as a main component has been attracting attention and being used as a magnetic material for magnetic recording media.

この強磁性金属粉末は、従来の酸化鉄系磁性材料と比較
して、保磁力、飽和磁化量に優れており、高密度記録の
達成か可能であるか、他方、耐酸化性が劣るという最大
の欠点を有している。
This ferromagnetic metal powder has superior coercive force and saturation magnetization compared to conventional iron oxide magnetic materials, making it possible to achieve high-density recording.On the other hand, it has poor oxidation resistance. It has the following disadvantages.

磁気記録媒体に用いられる強磁性金属粉末は、比表面積
が大きく化学的に極めて活性であり、大気中に取り出す
と急激な酸化反応による発熱や発火が起こってしまう。
Ferromagnetic metal powder used in magnetic recording media has a large specific surface area and is extremely chemically active, and if taken out into the atmosphere, heat generation and ignition will occur due to rapid oxidation reactions.

このため、強磁性金属粉末を安定化させる方法として、
金属粉末表面に酸化被膜を形成する方法が提案されてい
て、具体的には金属粉末を有機溶剤中に浸漬して酸素含
有不活性ガスを通して溶液中で酸化被膜を形成する方法
(特開昭52−85054号他)や、気相中で酸素含有
不活性ガスを接触し酸化被膜を形成する方法(特開昭4
8−79153号他)等がある。
For this reason, as a method to stabilize ferromagnetic metal powder,
A method of forming an oxide film on the surface of a metal powder has been proposed. Specifically, a method of immersing the metal powder in an organic solvent and passing an oxygen-containing inert gas to form an oxide film in the solution has been proposed (Japanese Patent Application Laid-Open No. 1983-52). -85054, etc.), and a method of forming an oxide film by contacting oxygen-containing inert gas in the gas phase (Japanese Patent Application Laid-open No. 4
No. 8-79153, etc.).

また、本発明者等は、遷移金属カルボニル化合物を不活
性ガス中に希釈して気相熱分解を行うことによる強磁性
粉末の製造方法を先に提案しく特開昭63−27040
570405号他た強磁性粉末について上記の徐酸化法
により強磁性粉末の安定化を試みている。
In addition, the present inventors have previously proposed a method for producing ferromagnetic powder by diluting a transition metal carbonyl compound in an inert gas and performing gas phase thermal decomposition.
No. 570,405 and others attempted to stabilize the ferromagnetic powder by the above-mentioned slow oxidation method.

しかしながら、これらの徐酸化方法では磁気的に強く凝
集した状態で酸化反応を行うため、酸素の金属粒子表面
層への拡散が不充分で酸化反応が不均一に起こるという
不都合が生し、酸化被膜の形成反応が不充分で実用的な
使用条件では経時劣化が起こるという問題を残していた
However, in these slow oxidation methods, the oxidation reaction is carried out in a strongly magnetically agglomerated state, resulting in the inconvenience that the oxidation reaction occurs unevenly due to insufficient diffusion of oxygen into the surface layer of the metal particles. However, the problem remains that the formation reaction is insufficient and deterioration occurs over time under practical usage conditions.

〔発明の概要〕[Summary of the invention]

(要 旨) 本発明者等は、以上の状況に鑑み、耐酸化性が向上した
金属磁性粉の製造方法について鋭意検討の結果、本発明
をなし得た。
(Summary) In view of the above circumstances, the inventors of the present invention have made the present invention as a result of intensive studies on a method for producing metal magnetic powder with improved oxidation resistance.

すなわち、本発明による金属磁性粉の製造法は、水素、
一酸化炭素、不活性ガス、またはこれらの混合物からな
る希釈ガスで希釈された遷移金属カルボニル化合物を気
相熱分解して該金属の磁性粉末を生成させ、次に該磁性
粉末の生成する反応部から捕集部の間で、前記生成磁性
粉末を金属塩化物、水および酸素と60℃以上の温度で
気相にて反応させることにより該生成磁性粉末の表面に
異種金属酸化物被膜を形成させることを特徴とするもの
である。
That is, the method for producing metal magnetic powder according to the present invention uses hydrogen,
A transition metal carbonyl compound diluted with a diluent gas consisting of carbon monoxide, an inert gas, or a mixture thereof is subjected to vapor phase pyrolysis to produce a magnetic powder of the metal, and then a reaction section where the magnetic powder is produced is produced. and a collection section, the generated magnetic powder is reacted with metal chloride, water, and oxygen in the gas phase at a temperature of 60° C. or higher to form a dissimilar metal oxide film on the surface of the generated magnetic powder. It is characterized by this.

(効 果) 本発明によれば、金属磁性粉上に極めて安定で均一な金
属酸化物被膜を形成することができ、磁気特性(飽和磁
化)の経時変化か小さく、発火点の高い安定な金属磁性
粉末を複雑な操作なしに、容易に得ることができる。
(Effects) According to the present invention, it is possible to form an extremely stable and uniform metal oxide film on metal magnetic powder, and it is possible to form a stable metal oxide film with a small change in magnetic properties (saturation magnetization) over time and a high ignition point. Magnetic powder can be easily obtained without complicated operations.

本発明の方法においては、金属磁性粉への酸化被膜の形
成反応が金属粉の生成直後、希釈ガスに分散された状態
で行われるため、また、水分が粒子間に介在して凝集を
防止するために、捕集後金属磁性粉同志か凝集した状態
で酸化被膜の形成か行われる場合に比較して、金属塩化
物等の金属粒子表面層への拡散か充分に行われ、均一な
酸化被膜の形成か行われるため、極めて安定な金属磁性
粉末が得られる。
In the method of the present invention, the formation reaction of an oxide film on the metal magnetic powder is performed immediately after the metal powder is generated, while the metal powder is dispersed in a diluent gas, and moisture is interposed between the particles to prevent agglomeration. Therefore, compared to the case where an oxide film is formed when metal magnetic particles are aggregated together after collection, metal chlorides etc. are sufficiently diffused into the surface layer of metal particles, resulting in a uniform oxide film. Since the formation of the metal magnetic powder is carried out, an extremely stable metal magnetic powder can be obtained.

また、本発明の方法によれば、金属磁性粉の金属酸化物
被膜形成が金属粉の移送工程で行われるため、徐酸化の
ための特別な反応器を必要とせず、また気相熱分解で用
いた稀釈ガスを流用できるので、希釈ガス量も軽減でき
ることより経済的にも有利である。
Furthermore, according to the method of the present invention, since the formation of a metal oxide film on the metal magnetic powder is carried out in the metal powder transfer process, there is no need for a special reactor for slow oxidation, and gas phase pyrolysis is not required. Since the used dilution gas can be reused, the amount of dilution gas can be reduced, which is also economically advantageous.

〔発明の詳細な説明〕[Detailed description of the invention]

〈金属磁性粉の生成〉 本発明により表面に酸素被膜を形成すべき金属磁性粉は
、例えば、既に本発明者等が出願した特開昭63−27
0405号、同64−83605号、特願昭63−22
1952号、同63−284760号、特願平1−65
724号他に基づいて製造することかできる。
<Production of Metal Magnetic Powder> The metal magnetic powder on which an oxygen film is to be formed on the surface according to the present invention is, for example, disclosed in Japanese Patent Laid-Open No. 63-27 filed by the present inventors.
No. 0405, No. 64-83605, Patent Application No. 1983-22
No. 1952, No. 63-284760, Patent Application No. 1-65
No. 724 and others.

具体的には、例えば、遷移金属カルボニル化合物を水素
、一酸化炭素、または不活性ガスで希釈してその濃度を
3体積%以下とした混合気体を、100ガウス以上の磁
場を印加した反応系内に300℃以上で5秒以下滞留さ
せて気相熱分解反応を行うことにより生成させることか
できる。
Specifically, for example, a gas mixture in which a transition metal carbonyl compound is diluted with hydrogen, carbon monoxide, or an inert gas to a concentration of 3% by volume or less is placed in a reaction system in which a magnetic field of 100 Gauss or more is applied. It can be produced by performing a gas phase thermal decomposition reaction by retaining at 300° C. or higher for 5 seconds or less.

この方法により得られる金属磁性粉は、針状の超微粒子
てあり、たとえば長軸径0.5ミクロン以下、短軸径0
.05ミクロン以下、比表面積30rd/g以上の金属
磁性粉末である。
The metal magnetic powder obtained by this method is in the form of needle-shaped ultrafine particles, for example, the major axis diameter is 0.5 microns or less, and the minor axis diameter is 0.
.. It is a metal magnetic powder with a specific surface area of 0.05 microns or less and a specific surface area of 30rd/g or more.

第1図は、本発明を実施するための装置の一例を示すも
のである。
FIG. 1 shows an example of an apparatus for implementing the present invention.

第1図において、導入管1より高温の希釈ガスを、また
、導入管5より低温の金属カルボニルと希釈ガスの混合
気体を導入し、両者を磁場の印加されているノズル出口
6の位置で接触させることにより、金属カルボニルの分
解に必要な300℃以上、好ましくは400〜800℃
の範囲、の熱を高温希釈ガスより瞬時に供給することが
できる。
In Fig. 1, a high-temperature diluent gas is introduced through the introduction tube 1, and a mixed gas of metal carbonyl and dilution gas at a low temperature is introduced through the introduction tube 5, and the two are brought into contact at the nozzle outlet 6 where a magnetic field is applied. By heating, the temperature is 300°C or higher, preferably 400 to 800°C, which is necessary for the decomposition of metal carbonyl.
Heat in the range of 100 to 100% can be instantaneously supplied from high-temperature diluent gas.

この際、導入管5内での低温の金属カルボニルの分解反
応による閉塞を防止する為に、導入管11より低温の希
釈ガスを導入し保護する。
At this time, in order to prevent blockage due to the decomposition reaction of low-temperature metal carbonyl in the introduction pipe 5, low-temperature diluent gas is introduced from the introduction pipe 11 for protection.

導入管5より導入される混合気体は、金属カルボニル化
合物(導入管2より導入)と希釈ガス(導入管3より導
入)とを混合室4において混合して、所定の濃度の金属
カルボニル化合物混合気体として得られる。この導入管
5より導入される混合気体中の遷移金属カルボニル化合
物の濃度は、0.1〜30体積%、好ましくは0,5〜
25体積%、の範囲である。この濃度が高過ぎると得ら
れる金属粒子の粒径か大きく成長するので、本発明か目
的とする高保磁力を有する磁性超微粉は得られず、一方
、濃度が低過ぎると生産性が劣る。
The mixed gas introduced through the introduction pipe 5 is produced by mixing a metal carbonyl compound (introduced through the introduction pipe 2) and a diluent gas (introduced through the introduction pipe 3) in the mixing chamber 4 to produce a metal carbonyl compound mixed gas having a predetermined concentration. obtained as. The concentration of the transition metal carbonyl compound in the gas mixture introduced through the introduction pipe 5 is 0.1 to 30% by volume, preferably 0.5 to 30% by volume.
The range is 25% by volume. If this concentration is too high, the particle size of the obtained metal particles will grow large, making it impossible to obtain the magnetic ultrafine powder having a high coercive force, which is the object of the present invention.On the other hand, if the concentration is too low, productivity will be poor.

この導入管5より導入される混合気体は、200℃以下
、好ましくは180〜30℃、の温度範囲であって、そ
の導入量は導入管1と導入管5および導入管コ1との総
供給量に対して1〜30体積%、好ましくは3〜20体
積%、である。
The mixed gas introduced through the introduction pipe 5 has a temperature range of 200°C or less, preferably 180 to 30°C, and the amount introduced is the total supply of the introduction pipe 1, the introduction pipe 5, and the introduction pipe 1. The amount is 1 to 30% by volume, preferably 3 to 20% by volume.

導入量が少な過ぎると生産性が劣り、一方、多過ぎると
十分な反応熱が得られないので反応速度か低下し、生成
金属粒子が大きく成長して超微粒子が得られない。また
、この混合ガスの温度か高すぎると、所望の超微粒子は
得られない。
If the amount introduced is too small, the productivity will be poor, while if it is too large, sufficient reaction heat will not be obtained, so the reaction rate will be reduced, and the produced metal particles will grow large, making it impossible to obtain ultrafine particles. Furthermore, if the temperature of this mixed gas is too high, desired ultrafine particles cannot be obtained.

また、導入管1より導入される高温の希釈ガスは、40
0℃以上、好ましくは450℃以上(上限は1000℃
程度)であって、その導入量は導入管1と導入管5およ
び導入管11との総供給量に対して96〜55体積%、
好ましくは92〜70体積%、である。このガスの温度
か低すぎたり、導入量が少ないと、十分な反応熱か得ら
れないので反応速度が著しく低下し、金属粒子形成時の
核発生量も減少するので粒径が大きく成長して本発明が
目的とする超微粒子は得られない。
In addition, the high temperature diluent gas introduced from the introduction pipe 1 is
0°C or higher, preferably 450°C or higher (upper limit is 1000°C)
degree), and the amount introduced is 96 to 55% by volume with respect to the total supply amount of introduction tube 1, introduction tube 5, and introduction tube 11,
Preferably it is 92 to 70% by volume. If the temperature of this gas is too low or the amount introduced is small, sufficient reaction heat will not be obtained and the reaction rate will drop significantly, and the amount of nuclei generated during metal particle formation will also decrease, causing the particle size to grow large. The ultrafine particles targeted by the present invention cannot be obtained.

また導入管11より導入される低温の希釈ガスは、20
0℃以下、好ましくは100℃以下であって、その導入
量は総供給量の3〜15体積%、好ましくは5〜10体
積%である。このガス導入量が少ないと、原料金属カル
ボニル化合物導入管5内での分解反応による閉塞、ある
いは導入管5先端での付着を防止することができず、長
時間の安定運転が継続できない。一方、多すぎると反応
温度か充分保てず、目的とする超微粒子か得られない。
In addition, the low temperature diluent gas introduced from the introduction pipe 11 is
The temperature is 0°C or lower, preferably 100°C or lower, and the amount introduced is 3 to 15% by volume, preferably 5 to 10% by volume of the total amount supplied. If the amount of gas introduced is small, it will not be possible to prevent blockage due to decomposition reaction within the raw material metal carbonyl compound introduction pipe 5 or adhesion at the tip of the introduction pipe 5, making it impossible to continue stable operation for a long time. On the other hand, if it is too large, the reaction temperature cannot be maintained sufficiently and the desired ultrafine particles cannot be obtained.

ノズル出口6の位置で接触混合されたガスは、7の反応
管内で5秒以下、好ましくは2秒以下、滞留して気相分
解反応を行う。
The gases catalytically mixed at the nozzle outlet 6 remain in the reaction tube 7 for 5 seconds or less, preferably 2 seconds or less, to perform a gas phase decomposition reaction.

反応系への磁場の印加は、永久磁石、電磁石、ソレノイ
ドコイル等の装置8のいずれも使用可能である。印加す
る磁場は、300ガウス以上、好ましくは400〜15
00ガウスの範囲である。
Any device 8 such as a permanent magnet, an electromagnet, or a solenoid coil can be used to apply the magnetic field to the reaction system. The applied magnetic field is 300 Gauss or more, preferably 400 to 15
00 Gauss range.

磁場を印加することて、生成する金属超微粒子の針状性
を制御して、保磁力を大きくすることができる。
By applying a magnetic field, the acicularity of the produced ultrafine metal particles can be controlled and the coercive force can be increased.

く金属塩化物〉 本発明に用いる金属塩化物は、■族及び■族の金属の塩
化物であり、好ましくは沸点か300℃以下の金属塩化
物である。
Metal chloride> The metal chloride used in the present invention is a chloride of a group (1) or (2) group metal, preferably a metal chloride having a boiling point of 300° C. or lower.

例えば、塩化チタン(■)、塩化ケイ素(IV)、塩化
錫(■)、塩化アルミニウム(m)及び塩化ゲルマニウ
ム(IV)等である。
Examples include titanium chloride (■), silicon chloride (IV), tin chloride (■), aluminum chloride (m), and germanium chloride (IV).

く異種金属酸化物被膜の形成〉 本発明による金属磁性粉の異種金属酸化物被膜の形成は
、前記熱分解によって生成した金属磁性粉末を管路9を
経て金属酸化物膜形成反応管10へ導入し、金属塩化物
導入管12より導入する金属塩化物及び水または不活性
ガスで希釈された金属塩化物及び水と気相で接触させる
ことによりなされる。また、この際、酸素を同時に導入
することもできる。不活性ガスとしては、窒素、ヘリウ
ム、アルゴン等が通常使用されるが、好ましくは、安価
な窒素か使用される。
Formation of a dissimilar metal oxide film> Formation of a dissimilar metal oxide film on metal magnetic powder according to the present invention involves introducing the metal magnetic powder produced by the thermal decomposition into the metal oxide film forming reaction tube 10 through the pipe 9. This is carried out by contacting the metal chloride and water introduced through the metal chloride inlet pipe 12 or the metal chloride and water diluted with an inert gas in the gas phase. Moreover, at this time, oxygen can also be introduced at the same time. Nitrogen, helium, argon, etc. are commonly used as the inert gas, but nitrogen, which is inexpensive, is preferably used.

反応管10へ導入される金属磁性粉はガス中に充分に希
釈された状態にあり、また、更に水分の介在によって凝
集しにくくなっており、捕集器に捕集された磁性粉のよ
うに粒子間が強く凝集していない。そのため、金属塩化
物等の金属粒子表面層への拡散が充分になされるので比
較的高温、短時間の反応条件で安定な異種金属酸化物被
膜を形成することができる。
The metal magnetic powder introduced into the reaction tube 10 is sufficiently diluted in the gas, and furthermore, due to the presence of moisture, it is difficult to aggregate, and it does not form like the magnetic powder collected in the collector. Particles are not strongly aggregated. Therefore, the metal chloride or the like is sufficiently diffused into the surface layer of the metal particles, so that a stable dissimilar metal oxide film can be formed under relatively high temperature and short reaction conditions.

反応管10での反応温度は60℃以上、好ましくは80
℃以上300℃以下、滞留時間は1秒以上、好ましくは
10秒以上100秒以下である。
The reaction temperature in the reaction tube 10 is 60°C or higher, preferably 80°C.
℃ or more and 300°C or less, and the residence time is 1 second or more, preferably 10 seconds or more and 100 seconds or less.

また、金属塩化物、水及び酸素、または不活性ガスで希
釈した金属塩化物、水及び酸素の導入量は、金属塩化物
量は生成磁性粉に対して1〜40重量%、好ましくは5
〜lO重量%てあり、酸素は導入された水の分解による
酸素量も含めて、反応器10内で管路9よりの稀釈ガス
並びに金属塩化物導入管12よりの不活性ガスにより希
釈された酸素濃度で0.01〜5体積%、好ましくは0
.05〜2体積%となるような量であり、また水は水分
濃度で1〜40体積%、好ましくは5〜20体積%とな
るような量である。
In addition, the amount of metal chloride, water and oxygen, or metal chloride diluted with inert gas, water and oxygen introduced is 1 to 40% by weight, preferably 5% by weight based on the generated magnetic powder.
~10% by weight, and the oxygen, including the amount of oxygen due to the decomposition of the introduced water, was diluted in the reactor 10 by the dilution gas from the pipe 9 and the inert gas from the metal chloride introduction pipe 12. Oxygen concentration of 0.01 to 5% by volume, preferably 0
.. The amount of water is such that the water concentration is 1 to 40% by volume, preferably 5 to 20% by volume.

反応温度は60℃以下では酸化速度が遅く所望の金属酸
化物被膜を形成させるのに不適であり、300℃を越え
ると酸化反応が急激に促進されるためにその制御が困難
となり、金属酸化物被膜のむらを生じ易くなり品質上好
ましくない。また、滞留時間が100秒以上では反応器
容積が大きくなり過ぎて経済的でなく、1秒以下では金
属酸化物被膜を形成する上で不充分である。
If the reaction temperature is below 60°C, the oxidation rate is slow and it is not suitable for forming the desired metal oxide film.If the reaction temperature exceeds 300°C, the oxidation reaction is rapidly accelerated, making it difficult to control. This is unfavorable in terms of quality because it tends to cause uneven coating. Further, if the residence time is 100 seconds or more, the reactor volume becomes too large and it is not economical, and if the residence time is 1 second or less, it is insufficient to form a metal oxide film.

金属酸化物被膜を形成した金属粉は、捕集室13へ送っ
て回収する。捕集した後、従来法に従い更に徐酸化を行
って酸化被膜の形成を完全なものとすることもてきる。
The metal powder on which the metal oxide film has been formed is sent to the collection chamber 13 and collected. After collection, gradual oxidation may be further performed according to conventional methods to complete the formation of an oxide film.

実施例1 第1図に示すような反応装置において、内径27rII
11.長さ1mの反応管・7に600ガウスの磁場を印
加し、下記の(イ)〜(ホ)の反応条件てF e (C
O) 5の気相熱分解反応を行って鉄超微粒子を生成さ
せ、次いで内径1021011%長さ2mの反応管10
内で(へ)〜(チ)の条件下に金属酸化物被膜の形成を
行った。得られた金属粉は捕集部13で捕集され、60
℃、4時間(へ)の酸素濃度で保持した後、大気中に取
り出した。
Example 1 In a reactor as shown in FIG.
11. A magnetic field of 600 Gauss was applied to reaction tube 7 with a length of 1 m, and F e (C
O) Perform the gas phase pyrolysis reaction in step 5 to generate ultrafine iron particles, then prepare a reaction tube 10 with an inner diameter of 1021011% and a length of 2 m.
A metal oxide film was formed under the conditions (f) to (h). The obtained metal powder is collected in the collecting section 13 and collected at 60
℃ and maintained at an oxygen concentration for 4 hours, then taken out into the atmosphere.

(イ) 管路1からの窒素導入量 窒素: 500℃、反応管7への流入ガス総量の855
体積 (ロ) 管路5からの混合気体導入量 窒素、60℃、反応管7への流入ガス総量の885体積
% Fe(CO)   +60℃、反応管7への流人ガス総
量の1.5体積% (ハ) 管路11からの希釈ガス導入量窒素二60℃、
反応管7への流入ガス総量のら体積% (ニ) 滞留時間  0.1秒 (ホ) 反応管(7)平均温度  495℃(へ) 管
路12からの窒素、四塩化チタン、酸素及び水蒸気導入
量(反応管7への流入ガス総量100体積部に対して) 窒素、120℃、4体積部 四塩化チタンニ120℃、生成磁性粉末の5重量% 酸    素、120℃、1体積部 水 蒸 気:120℃、5体積部 (ト)  滞留時間  3.2秒 (チ) 反応管(]0)平均温度  180℃得られた
磁性鉄粉は、透過電子顕微鏡写真の観察により、短軸径
0.02ミクロン、長軸径020ミクロンの針状形を呈
し、磁気特性は、飽和磁化(6s): 135emu/
g、保磁力。
(a) Amount of nitrogen introduced from pipe 1 Nitrogen: 500°C, 855% of the total amount of gas flowing into reaction tube 7
Volume (b) Amount of mixed gas introduced from pipe 5 Nitrogen, 60°C, 885% by volume of the total amount of gas flowing into reaction tube 7 Fe(CO) +60°C, 1.5 of the total amount of gas flowing into reaction tube 7 Volume % (c) Amount of dilution gas introduced from pipe 11 Nitrogen 260℃,
Volume % of the total amount of gas flowing into reaction tube 7 (d) Residence time 0.1 seconds (e) Reaction tube (7) average temperature 495°C (f) Nitrogen, titanium tetrachloride, oxygen and water vapor from pipe 12 Amount introduced (relative to 100 parts by volume of gas flowing into the reaction tube 7) Nitrogen, 120°C, 4 parts by volume Titanium tetrachloride, 120°C, 5% by weight of the generated magnetic powder Oxygen, 120°C, 1 part by volume Steam Temperature: 120°C, 5 parts by volume (T) Residence time: 3.2 seconds (H) Reaction tube (]0) Average temperature: 180°C The obtained magnetic iron powder was found to have a minor axis diameter of 0 by observation of transmission electron micrographs. It exhibits a needle-like shape with a diameter of 0.02 microns and a long axis diameter of 020 microns, and its magnetic properties are saturation magnetization (6s): 135 emu/
g, coercive force.

1.550(Oe)、角形比 0.51であった。The squareness ratio was 1.550 (Oe) and 0.51.

また、この粉末の耐酸化安定性は、空気中60℃、90
%RHの条件下で3日間放置後の65の低下率(Δ6s
)で評価し、1.0%であった。
In addition, the oxidation stability of this powder is 60°C and 90°C in air.
Decrease rate of 65 after standing for 3 days under the condition of %RH (Δ6s
) and was 1.0%.

また、示差熱分析計で発火点を測定したところ、140
℃であった。
In addition, when the ignition point was measured using a differential thermal analyzer, it was found to be 140
It was ℃.

比較例1 実施例1において(へ)〜(チ)の条件下の金属酸化物
被膜形成工程を経ないで捕集した他は、実施例1と全く
同様の操作を行った。
Comparative Example 1 The same operation as in Example 1 was performed except that the sample was collected without going through the metal oxide film forming step under the conditions (f) to (h) in Example 1.

得られた磁性鉄粉の磁気特性は、飽和磁化(5s):1
35emu/g、保磁カニ1550(Oe)、角形比:
0.51であった。
The magnetic properties of the obtained magnetic iron powder are as follows: saturation magnetization (5s): 1
35emu/g, coercivity crab 1550 (Oe), squareness ratio:
It was 0.51.

また、この粉末の耐酸化安定性は6sの低下率(△5s
)で評価し、5.2%であった。
In addition, the oxidation resistance stability of this powder has a decreasing rate of 6s (△5s
) and it was 5.2%.

また、示差熱分析計で発火点を測定したところ、105
℃であった。
In addition, when the ignition point was measured using a differential thermal analyzer, it was found to be 105
It was ℃.

【図面の簡単な説明】 第1図は、本発明方法を実施するための装置の一例を示
す概略構成図である。 1・・高温の稀釈ガス導入管、2・・遷移金属カルボニ
ル化合物導入管、3・・・稀釈ガス導入管、4・・混合
槽、5・・混合ガス導入管、6・・ノズル出口、7・・
・反応管、8・・・磁界印加装置、9・・・管路、10
・・・反応管、11・・低温の稀釈ガス導入管、12・
・・金属塩化物導入管、13・・・捕集室。 出願人代理人  佐  藤  −雄 第 1 図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention. 1. High temperature dilution gas introduction pipe, 2. Transition metal carbonyl compound introduction pipe, 3. Dilution gas introduction pipe, 4. Mixing tank, 5. Mixed gas introduction pipe, 6. Nozzle outlet, 7・・・
・Reaction tube, 8... Magnetic field application device, 9... Pipe line, 10
...Reaction tube, 11..Low temperature dilution gas introduction tube, 12.
...Metal chloride introduction pipe, 13...Collection chamber. Applicant's agent Mr. Sato Figure 1

Claims (1)

【特許請求の範囲】[Claims] 水素、一酸化炭素、不活性ガス、またはこれらの混合物
からなる希釈ガスで希釈された遷移金属カルボニル化合
物を気相熱分解して該金属の磁性粉末を生成させ、次に
該磁性粉末の生成する反応部から捕集部の間で、前記生
成磁性粉末を金属塩化物、水および酸素と60℃以上の
温度で気相にて反応させることにより該生成磁性粉末の
表面に異種金属酸化物被膜を形成させることを特徴とす
る、金属磁性粉の製造法。
vapor phase pyrolysis of a transition metal carbonyl compound diluted with a diluent gas consisting of hydrogen, carbon monoxide, an inert gas, or a mixture thereof to produce a magnetic powder of the metal; A dissimilar metal oxide coating is formed on the surface of the generated magnetic powder by reacting the generated magnetic powder with metal chloride, water, and oxygen at a temperature of 60° C. or higher in the gas phase between the reaction section and the collection section. A method for producing metal magnetic powder, characterized by forming a metal magnetic powder.
JP2334118A 1990-11-30 1990-11-30 Manufacture of metal magnetic powder Pending JPH04202602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2334118A JPH04202602A (en) 1990-11-30 1990-11-30 Manufacture of metal magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2334118A JPH04202602A (en) 1990-11-30 1990-11-30 Manufacture of metal magnetic powder

Publications (1)

Publication Number Publication Date
JPH04202602A true JPH04202602A (en) 1992-07-23

Family

ID=18273725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2334118A Pending JPH04202602A (en) 1990-11-30 1990-11-30 Manufacture of metal magnetic powder

Country Status (1)

Country Link
JP (1) JPH04202602A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834369A1 (en) * 1996-09-25 1998-04-08 Shoei Chemical Inc. Process for preparing metal powder
US5964918A (en) * 1996-09-25 1999-10-12 Shoei Chemical Inc. Process for preparing metal powder
US6060165A (en) * 1997-06-02 2000-05-09 Shoei Chemical Inc. Metal powder and process for preparing the same
KR100572245B1 (en) * 2003-11-05 2006-04-19 한국기계연구원 Manufacturing method of nano iron powder with polymer coating layer
CN102389971A (en) * 2011-11-04 2012-03-28 合肥工业大学 Preparation method of La-doped W-Cu composite powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834369A1 (en) * 1996-09-25 1998-04-08 Shoei Chemical Inc. Process for preparing metal powder
EP0834370A1 (en) * 1996-09-25 1998-04-08 Shoei Chemical Inc. Coated metal powder and process for preparing the same by decomposition
US5964918A (en) * 1996-09-25 1999-10-12 Shoei Chemical Inc. Process for preparing metal powder
CN1119215C (en) * 1996-09-25 2003-08-27 昭荣化学工业株式会社 Process for preparing metal powder
US6060165A (en) * 1997-06-02 2000-05-09 Shoei Chemical Inc. Metal powder and process for preparing the same
KR100572245B1 (en) * 2003-11-05 2006-04-19 한국기계연구원 Manufacturing method of nano iron powder with polymer coating layer
CN102389971A (en) * 2011-11-04 2012-03-28 合肥工业大学 Preparation method of La-doped W-Cu composite powder

Similar Documents

Publication Publication Date Title
US5064464A (en) Process for producing ultrafine metal particles
JPS61106408A (en) Preparation of acicular particle containing iron carbide
EP0290177B1 (en) Process for producing ultrafine metal powder
JPH02167810A (en) Superfine magnetic particles of epsilon&#39; iron carbide and its production
Van Wonterghem et al. An investigation of the chemical reactions leading to the formation of ultrafine amorphous fe100− xcx alloy particles
David et al. Preparation of iron/graphite core–shell structured nanoparticles
JPH04202602A (en) Manufacture of metal magnetic powder
JPH0313511A (en) Manufacture of metal magnetic powder
JPH04183806A (en) Manufacture of metallic magnetic powder
JPH04183807A (en) Manufacture of metallic magnetic powder
KR910009759B1 (en) Process for producing ultra-fine magnetic metal power
JP2005139556A (en) Method of producing nanoiron powder formed with high polymer coating layer
JPH02243707A (en) Manufacture of metal super fine particle
JPH02133503A (en) Manufacture of super fine metal particles
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPS61111921A (en) Production of acicular particle containing iron carbide
JPH032303A (en) Manufacture of super fine metal powder
JPH01172501A (en) Manufacture of metal magnetic powder
JPH02111804A (en) Manufacture of magnetic metal powder
JPS63270406A (en) Production of metal hyperfine powder
JPH08153613A (en) Stabilizing method for metal magnetic powder
JP2735910B2 (en) Method for producing metal magnetic powder for magnetic recording
JPS61106410A (en) Particles containing iron carbide, its preparation and use
JPS62128911A (en) Particles containing cobalt carbide
JPS5848611A (en) Production of ferromagnetic iron powder