JPS58192359A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58192359A
JPS58192359A JP57075334A JP7533482A JPS58192359A JP S58192359 A JPS58192359 A JP S58192359A JP 57075334 A JP57075334 A JP 57075334A JP 7533482 A JP7533482 A JP 7533482A JP S58192359 A JPS58192359 A JP S58192359A
Authority
JP
Japan
Prior art keywords
type
well
layer
region
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57075334A
Other languages
Japanese (ja)
Other versions
JPH0410227B2 (en
Inventor
Shinji Shimizu
真二 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57075334A priority Critical patent/JPS58192359A/en
Publication of JPS58192359A publication Critical patent/JPS58192359A/en
Publication of JPH0410227B2 publication Critical patent/JPH0410227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0925Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising an N-well only in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To make the reduction of junction capacitance and short channelling compatible by surrounding the side sections and bottoms of each P type and N type well by a semiconductor region of a conduction type reverse to a substrate or a well region. CONSTITUTION:A P type epitaxial layer 4 is grown on one main surface of the P<+> type Si substrate 1 through N<+> type buried layers 2, 3, and the N type well 5 is formed to the layer 4. The well 5 is separated sufficiently from the regions 4, 1 owing to regions 6, 2 because the well 5 is formed while being in contact with the layer 2 and an N<+> type region unified with the layer 2 is formed to the side section. A memory cell is formed in the layer 4, and the side section and bottom of its element region are surrounded by an N<+> type region 13 and the layer 3. Consequently, substrate bias voltage can be applied to the wells apart from other wells because each P type well and N type well is formed as severally independent well. Accordingly, junction capacitance can be reduced while short channelling can also be attained.

Description

【発明の詳細な説明】 本発明は半導体装置、%KCMO8に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, %KCMO8.

0MO8は−BK、例えばNgエピタキシ考ル層自体に
設けたPチャネルM I S F E T(Metal
Insulator  Sem1conductor 
 Field  EffectTransistor 
)と、同エピタキシ今ル層に形成されたP〜ルウエル設
けたヘチャネルMISFETとからなっている。このよ
うなCMO8Y高速化するには、各MISFETのソー
ス又はドレイン領域の接合容量を減らすことが会費であ
るが、このために基板バイアス電圧(vBB)′lk:
印加することがある。ところが他方では、高集積化に伴
なう微細化の豊水によりMISFETのシ■−トチャネ
ル化を図ろうとする場合には、■□の印加はしきい値電
圧(Vth)の変動ン大きくしてしまう。
0MO8 is -BK, for example, a P channel MISFET (Metal) provided in the Ng epitaxial layer itself.
Insulator Sem1conductor
Field Effect Transistor
) and a he-channel MISFET provided with a P~ruwell formed in the same epitaxial layer. To increase the speed of such a CMO8Y, it is necessary to reduce the junction capacitance of the source or drain region of each MISFET, but for this purpose, the substrate bias voltage (vBB)'lk:
may be applied. However, on the other hand, when trying to make a MISFET a sheet channel due to the abundance of miniaturization accompanying high integration, the application of ■□ will increase the fluctuation of the threshold voltage (Vth). Put it away.

このため、接合容量の低減とシ冒−トチャネル化との双
方を両立させることは不可能である。
Therefore, it is impossible to achieve both reduction of junction capacitance and formation of a blank channel.

本発明はこうした状況において、上記の両立を可能とな
し、高速化・を効果的に実現することン目的とし、この
ためKPMPェル及びNmウェルを共K11l囲から分
離して形成している。
Under such circumstances, the present invention aims to achieve both of the above requirements and to effectively achieve high speed. For this purpose, both the KPMP well and the Nm well are formed separately from the K11l surroundings.

以下、本発明+l−CMO8MIダイナミックランダム
アクセスメモリに関する実施例について詳細に説明する
Hereinafter, embodiments relating to the +l-CMO8MI dynamic random access memory of the present invention will be described in detail.

図面に示した如く、本例によれば、P+型シリコン基板
lの一生面忙、通常の半導体技術によってN+諧棚込み
層2,3v弁しP型エピタキシ々ル層4が成長せしめら
れ、このエピタキシ今ル層4KNffiウェル5が拡散
法で形成されている。N諧つェル5はN+ tIi寝込
み層2に接して形成され、かつその側部には場込み層2
と一体の高湯度N+型半導体領域6が形成されており、
これによってN型ウェル5はその側部及び底部に存在す
るN+型領領域62のために、@部及び抵Sを包囲する
P型餉竣4,1から光分く分離されている。このN型ウ
ェル5には、周辺回路のCMO8Y構成するP?ヤネル
MISFETのソースヌはドレイン領域とじ℃のP+型
半導体餉領域、8が形成され、これら両領埴間のゲート
酸化膜9上にはゲート電極lOが設けられている。一方
、0MO8のへチャネルMISFETは、エピタキシキ
ル層4に形成されたN+淑半導体慎域11.12(ソー
ス又はドレイン領域)と、ゲート酸化膜9上のゲート電
極lOとによって構成されている。
As shown in the drawing, according to this example, during the entire life of a P+ type silicon substrate 1, a P type epitaxial layer 4 is grown using normal semiconductor technology, and a P type epitaxial layer 4 is grown thereon. An epitaxial well layer 4KNffi well 5 is formed by a diffusion method. The N well 5 is formed in contact with the N+ tIi bed layer 2, and the field layer 2 is formed on the side thereof.
A high-temperature N+ type semiconductor region 6 is formed integrally with the
As a result, the N-type well 5 is optically separated from the P-type well 4,1 surrounding the @ part and the resistor S due to the N+ type region 62 present on its side and bottom. This N-type well 5 contains P? which constitutes CMO8Y of the peripheral circuit. In the source of the Yanel MISFET, a drain region and a P+ type semiconductor layer 8 are formed, and a gate electrode 10 is provided on a gate oxide film 9 between these two regions. On the other hand, the 0MO8 he channel MISFET is constituted by N+ semiconductor regions 11 and 12 (source or drain regions) formed in the epitaxy layer 4 and a gate electrode lO on the gate oxide film 9.

また、メモリセル(図面には簡略化のために1つのNf
ヤネルMISFETのみt示している。)はエピタキシ
セル層4に設けられるが、その素子領域の側部及び底部
は高一度N+型拡散領域13及びN++埋込み層3によ
って包囲されている。
In addition, a memory cell (one Nf is shown in the drawing for simplicity)
Only the Yarnel MISFET is shown. ) is provided in the epitaxial cell layer 4, and the sides and bottom of the device region are surrounded by a high-temperature N+ type diffusion region 13 and an N++ buried layer 3.

従って、その素子慣塚は周囲が浚導電型領域で囲まれた
PfMウェル4として用いられる。このウェル内にはソ
ース又はドレイン領域としてのNmm線域1112が形
成され、ゲート電極10と共にメモリセルのFET)l
構成している。なお、図中、14はフィールドS iQ
、膜、15はリンガラス膜、16.17はアルミニウム
配線である。なお、上記の各N+型領11I6.13は
共通の拡散工程で形成可能であるが、一方のN 島’I
I域6は必すしも形成すること)k’llない。
Therefore, the element cavity is used as a PfM well 4 surrounded by a conductive type region. In this well, an Nmm line region 1112 is formed as a source or drain region, and together with the gate electrode 10, the FET of the memory cell is formed.
It consists of In addition, in the figure, 14 is the field S iQ
, 15 is a phosphor glass film, and 16.17 is an aluminum wiring. Note that each of the above N+ type regions 11I6.13 can be formed by a common diffusion process, but one of the N+ type regions 11I6.13
I area 6 is not necessarily formed).

上記の如く、各Pal!ウェル及びN型ウェルが夫々独
立したウェルとして形成されているので、各ウェルに作
成する個々のトランジスタに対し、必要に応じて他のウ
ェルのものとは別個に基板バイアス電圧(V、、 )’
t−ウ゛エルに印加することかできる。即ち、互いに独
立した各ウェルには選択的に■BBt印加できるから、
その印加されたウェル内では接合容量が減少し、高速化
ン効果的Kl!3nできることになる。他方、VBBY
印加した(ないウェルでは、基板バイアスケしないよう
にできるか      (ら、シ、−)チャネル化ン遍
成でき、上記した接合容量の減少と両立させた構造とな
る。具体的には、メモリセルでは上記Palウェル4の
基板ノ(イアスによる接合@量の減少でその高速化Y図
れ、。
As mentioned above, each Pal! Since the well and the N-type well are each formed as independent wells, the substrate bias voltage (V, , )' is applied to each transistor formed in each well separately from that of other wells as necessary.
It can also be applied to the t-well. That is, since ■BBt can be selectively applied to each well independently of each other,
In the applied well, the junction capacitance decreases and the effective Kl! You will be able to do 3n. On the other hand, VBBY
In wells where voltage is not applied, it is possible to avoid substrate bias. By reducing the amount of bonding due to the substrate of the Pal well 4, the speed can be increased.

かつ周辺回路ではN型ウェル5ttむ基板)(イアスt
なくしてしきい値電圧(Vth)の変1thyt少なく
し、シ1−トチ々ネル化又は高速化ン図れることになる
。加えて、N型ウェル5はIn2囲の卜 層領域6,2
によってより低抵抗化することができるので、ノイズ、
電位変li!lY:抑えることかできる。
In addition, in the peripheral circuit, a substrate with an N-type well 5tt) (Iast
By eliminating this, the variation in threshold voltage (Vth) can be reduced by 1 th, and it is possible to increase the channel speed or increase the speed. In addition, the N-type well 5 is surrounded by In2 layer regions 6, 2.
Since the resistance can be lowered by
Potential change li! lY: Can be suppressed.

なお、上記の例において、エピタキシ々ル層4tN製と
し、これにPmウェルを拡散法で形成してよい。この場
合には、N”!!S!m込み層はP“湯濶込み層に変更
する必要がある。
In the above example, the epitaxial layer may be made of 4tN, and the Pm well may be formed thereon by a diffusion method. In this case, the N''!!S!m layer needs to be changed to the P'' layer.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例によるCMO8型ダイ型ダイグミ
ツクランダムアクセスメモリの断面図である。 2.3・・・場込み層、4,5・・・ウェル、6,13
・・・高濃度領域。
The drawing is a cross-sectional view of a CMO 8 die type digital random access memory according to an embodiment of the present invention. 2.3...field layer, 4,5...well, 6,13
...High concentration area.

Claims (1)

【特許請求の範囲】[Claims] 1、所定の半導体層KP型ツウエルN型ウェルとが分離
して形成され、これらの各ウェルの側部及び底部が半導
体基板に対して、もしくは、ウェル領域に対し1逆導電
型の中導体慎域によって包囲されていることV*徴とす
る半導体装置。
1. A predetermined semiconductor layer KP-type well and N-type well are formed separately, and the sides and bottom of each of these wells are connected to the semiconductor substrate or to the well region with a middle conductor of opposite conductivity type. A semiconductor device characterized by V* being surrounded by a region.
JP57075334A 1982-05-07 1982-05-07 Semiconductor device Granted JPS58192359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57075334A JPS58192359A (en) 1982-05-07 1982-05-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57075334A JPS58192359A (en) 1982-05-07 1982-05-07 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS58192359A true JPS58192359A (en) 1983-11-09
JPH0410227B2 JPH0410227B2 (en) 1992-02-24

Family

ID=13573248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57075334A Granted JPS58192359A (en) 1982-05-07 1982-05-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58192359A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050953A (en) * 1983-08-31 1985-03-22 Toshiba Corp Radiation resistant semiconductor element
JPS629665A (en) * 1985-07-05 1987-01-17 Matsushita Electric Ind Co Ltd Semiconductor device
EP0319047A2 (en) * 1987-12-04 1989-06-07 Nissan Motor Co., Ltd. Power integrated circuit
US4928157A (en) * 1988-04-08 1990-05-22 Kabushiki Kaisha Toshiba Protection diode structure
EP0384396A2 (en) * 1989-02-20 1990-08-29 Kabushiki Kaisha Toshiba Bi-CMOS semiconductor device having memory cells formed in isolated wells
EP0493659A2 (en) * 1991-01-02 1992-07-08 International Business Machines Corporation PMOS wordline boost circuit for dram
EP0498251A2 (en) * 1991-02-05 1992-08-12 International Business Machines Corporation Word line driver circuit for dynamic random access memories
WO2006127751A3 (en) * 2005-05-23 2009-04-16 Amalfi Semiconductor Inc Electrically isolated cmos device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098791A (en) * 1973-12-27 1975-08-06
JPS5211883A (en) * 1975-07-18 1977-01-29 Toshiba Corp Semiconductor integrated circuit device
JPS5211881A (en) * 1975-07-18 1977-01-29 Toshiba Corp Semiconductor integrated circuit device
JPS5575265A (en) * 1978-12-01 1980-06-06 Fujitsu Ltd Complementary type field-effect metal-insulator- semiconductor device
JPS5582461A (en) * 1978-12-18 1980-06-21 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device
JPS55111171A (en) * 1979-02-20 1980-08-27 Mitsubishi Electric Corp Field-effect semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098791A (en) * 1973-12-27 1975-08-06
JPS5211883A (en) * 1975-07-18 1977-01-29 Toshiba Corp Semiconductor integrated circuit device
JPS5211881A (en) * 1975-07-18 1977-01-29 Toshiba Corp Semiconductor integrated circuit device
JPS5575265A (en) * 1978-12-01 1980-06-06 Fujitsu Ltd Complementary type field-effect metal-insulator- semiconductor device
JPS5582461A (en) * 1978-12-18 1980-06-21 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device
JPS55111171A (en) * 1979-02-20 1980-08-27 Mitsubishi Electric Corp Field-effect semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050953A (en) * 1983-08-31 1985-03-22 Toshiba Corp Radiation resistant semiconductor element
JPS629665A (en) * 1985-07-05 1987-01-17 Matsushita Electric Ind Co Ltd Semiconductor device
EP0319047A2 (en) * 1987-12-04 1989-06-07 Nissan Motor Co., Ltd. Power integrated circuit
US4928157A (en) * 1988-04-08 1990-05-22 Kabushiki Kaisha Toshiba Protection diode structure
EP0384396A2 (en) * 1989-02-20 1990-08-29 Kabushiki Kaisha Toshiba Bi-CMOS semiconductor device having memory cells formed in isolated wells
EP0493659A2 (en) * 1991-01-02 1992-07-08 International Business Machines Corporation PMOS wordline boost circuit for dram
EP0498251A2 (en) * 1991-02-05 1992-08-12 International Business Machines Corporation Word line driver circuit for dynamic random access memories
WO2006127751A3 (en) * 2005-05-23 2009-04-16 Amalfi Semiconductor Inc Electrically isolated cmos device

Also Published As

Publication number Publication date
JPH0410227B2 (en) 1992-02-24

Similar Documents

Publication Publication Date Title
JPS6252469B2 (en)
JPS58192359A (en) Semiconductor device
JPS6119164A (en) Supplementary integrated circuit and method of producing same
JPH08274321A (en) Semiconductor device
JP2690242B2 (en) Semiconductor fixed storage device
JPH05343686A (en) Semiconductor device and manufacture thereof
JP2825038B2 (en) Semiconductor device
JPS618969A (en) Semiconductor integrated circuit device
JP2956181B2 (en) Semiconductor device having resistance element
JPS61232676A (en) Semiconductor device
JPH04370978A (en) Quantum-effect type field-effect transistor
JPH04370977A (en) Quantized field-effect transistor
JP2647855B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2642000B2 (en) MOS integrated circuit device
JPS6231505B2 (en)
JPS6014512B2 (en) Insulated gate field effect transistor
JPS6146042A (en) Semiconductor device
JPS5834949B2 (en) semiconductor memory device
JPH05129425A (en) Semiconductor device and manufacture thereof
JP3063179B2 (en) Semiconductor memory device
JPS6149479A (en) Semiconductor device
JPS62286268A (en) Semiconductor integrated circuit device
JPH0550140B2 (en)
JPH02164060A (en) Semiconductor integrated circuit
JPH0669433A (en) Semiconductor device