JPH11287523A - Composite type refrigerant circuit equipment - Google Patents

Composite type refrigerant circuit equipment

Info

Publication number
JPH11287523A
JPH11287523A JP10242018A JP24201898A JPH11287523A JP H11287523 A JPH11287523 A JP H11287523A JP 10242018 A JP10242018 A JP 10242018A JP 24201898 A JP24201898 A JP 24201898A JP H11287523 A JPH11287523 A JP H11287523A
Authority
JP
Japan
Prior art keywords
refrigeration
air
conditioning
heat
refrigerant circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10242018A
Other languages
Japanese (ja)
Other versions
JP4188461B2 (en
Inventor
Toshiaki Yamaguchi
敏明 山口
Hiroshi Nakada
浩 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24201898A priority Critical patent/JP4188461B2/en
Publication of JPH11287523A publication Critical patent/JPH11287523A/en
Application granted granted Critical
Publication of JP4188461B2 publication Critical patent/JP4188461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite type refrigerant circuit equipment to high/ efficiently utilize a cold heat stored at a heat storage tank by surplus capacity of a refrigerant circuit on the refrigeration side even when capacity of a refrigerant circuit on the cold storage side is low and be runnable at a low cost. SOLUTION: A refrigerant circuit 6 is provided to consist of an evaporator 15 on the refrigeration side and cool cooling environment on the refrigeration side and a refrigerating circuit 10 for heat storage on the cold storage consisting of a heat-exchanger 7 for heat storage on the cold storage side is arranged on parallel to the refrigerant circuit 6 on the cold storage side. Further, a heat storage tank 18 is provided to store a cold hat corresponding to a difference between maximum refrigeration capacity of the refrigerant circuit 6 on the cold storage side and given refrigeration capacity of cooling environment on the cold storage side. Further, a refrigerant circuit 25 on the air-conditioning side is provided to have an evaporator 24 on the air-conditioning side to cool cooling environment on the air-conditioning side. Moreover, a cold heat from a heat storage tank 18 is supplied to the refrigerant circuit 25 on the air- conditioning side by a heat-exchanger 27 for supplying a cold heat of a cold heat supply circuit 26.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、大規模小売店等
に設置される冷媒回路設備であって、冷凍装置、冷蔵装
置、空気調和装置及び冷熱を蓄熱する蓄熱槽とによって
構成される複合型冷媒回路設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant circuit equipment installed in a large-scale retail store or the like, and is a composite type comprising a refrigerator, a refrigerator, an air conditioner, and a heat storage tank for storing cold heat. It relates to refrigerant circuit equipment.

【0002】[0002]

【従来の技術】図11は、例えば特開平6−24159
1号公報に示された従来の複合型冷媒回路設備を示す冷
媒回路図である。図において、1は冷蔵側圧縮機、2は
冷蔵側凝縮器、3は後述する冷蔵側蒸発器へ供給する冷
媒を制御する冷蔵側電磁弁、4は膨張弁からなる冷蔵側
絞り装置、5は冷蔵側蒸発器、6は環状をなし冷蔵側圧
縮機1、冷蔵側凝縮器2、冷蔵側電磁弁3、冷蔵側絞り
装置4及び冷蔵側蒸発器5を管路により順次接続した冷
蔵側冷媒回路である。
2. Description of the Related Art FIG.
FIG. 1 is a refrigerant circuit diagram illustrating a conventional combined refrigerant circuit facility disclosed in Japanese Patent Application Publication No. 1 (JP-A) No. 1-2003. In the figure, 1 is a refrigeration compressor, 2 is a refrigeration condenser, 3 is a refrigeration solenoid valve for controlling the refrigerant to be supplied to a refrigeration evaporator described later, 4 is a refrigeration throttle device composed of an expansion valve, 5 is The refrigeration-side evaporator 6 has an annular shape, and is a refrigeration-side refrigerant circuit in which the refrigeration-side compressor 1, the refrigeration-side condenser 2, the refrigeration-side solenoid valve 3, the refrigeration-side expansion device 4, and the refrigeration-side evaporator 5 are sequentially connected by a pipe. It is.

【0003】7は冷蔵側蓄熱用蒸発器からなる冷蔵側蓄
熱用熱交換器、8は冷蔵側蓄熱用熱交換器7へ供給する
冷媒を制御する冷蔵側蓄熱用電磁弁、9は冷蔵側蓄熱用
膨張弁からなる冷蔵側蓄熱用絞り装置、10は冷蔵側冷
媒回路6に接続されて並列に配置され、冷蔵側蓄熱用熱
交換器7へ冷媒を送る冷媒管路である。
Reference numeral 7 denotes a refrigeration-side heat storage heat exchanger comprising a refrigeration-side heat storage evaporator, 8 denotes a refrigeration-side heat storage electromagnetic valve for controlling a refrigerant supplied to the refrigeration-side heat storage heat exchanger 7, and 9 denotes a refrigeration-side heat storage. The refrigeration-side heat storage expansion device 10 comprising a cooling expansion valve is connected to the refrigeration-side refrigerant circuit 6 and arranged in parallel, and is a refrigerant pipe for sending refrigerant to the refrigeration-side heat storage heat exchanger 7.

【0004】11は冷凍側圧縮機、12は冷凍側凝縮
器、13は後述する冷凍側蒸発器へ供給する冷媒を制御
する冷凍側電磁弁、14は冷凍側膨張弁からなる冷凍側
絞り装置、15は冷凍側蒸発器、16は冷凍側圧縮機1
1、冷凍側凝縮器12、冷凍側電磁弁13、冷凍側絞り
装置14及び冷凍側蒸発器15を管路により接続した冷
凍側冷媒回路である。
[0004] 11 is a refrigerating compressor, 12 is a refrigerating condenser, 13 is a refrigerating solenoid valve for controlling the refrigerant supplied to a refrigerating evaporator described later, 14 is a refrigerating throttle device comprising a refrigerating expansion valve, 15 is a freezing side evaporator, 16 is a freezing side compressor 1
1, a refrigeration-side refrigerant circuit in which a refrigeration-side condenser 12, a refrigeration-side solenoid valve 13, a refrigeration-side expansion device 14, and a refrigeration-side evaporator 15 are connected by a pipeline.

【0005】17は冷凍側過冷却用熱交換器からなる冷
凍側冷熱供給用熱交換器、18は水などの蓄熱剤を収容
した蓄熱槽、19は冷媒管路で、冷凍側冷媒回路16の
一部をなし冷凍側凝縮器12と冷凍側電磁弁13との間
に、蓄熱槽18内に配置された冷凍側冷熱供給用熱交換
器17を直列に接続する。
[0005] Reference numeral 17 denotes a refrigerating-side cold heat supply heat exchanger comprising a refrigerating-side subcooling heat exchanger, 18 denotes a heat storage tank containing a heat storage agent such as water, and 19 denotes a refrigerant pipe. Between the freezing-side condenser 12 and the freezing-side solenoid valve 13, a freezing-side cold-heat supply heat exchanger 17 arranged in a heat storage tank 18 is connected in series.

【0006】すなわち、冷凍側冷媒回路16には冷凍側
冷熱供給用熱交換器17と冷媒管路19が設けられる。
また、図11に示す複合型冷媒回路設備では、冷蔵側冷
媒回路6に接続された冷蔵側蓄熱用熱交換器7が、蓄熱
剤を介して冷凍側冷熱供給用熱交換器17に対して熱移
動できるように蓄熱槽18内に配置されている。
That is, the refrigeration side refrigerant circuit 16 is provided with a refrigeration side cold heat supply heat exchanger 17 and a refrigerant pipe line 19.
In the combined refrigerant circuit equipment shown in FIG. 11, the refrigeration-side heat storage heat exchanger 7 connected to the refrigeration-side refrigerant circuit 6 heats the refrigeration-side cold-heat supply heat exchanger 17 via a heat storage agent. The heat storage tank 18 is provided so as to be movable.

【0007】従来の複合型冷媒回路設備は上記のように
構成され、冷蔵側冷媒回路6において冷蔵側圧縮機1や
冷蔵側凝縮器2はショーケース等の冷蔵側冷却環境につ
いて予め設定されている最大冷凍能力に対する最大負荷
に対応できるように設計されている。このため、冷蔵側
冷却環境における負荷が減少すると、前述の最大負荷と
そのときの冷蔵側冷却環境における負荷との差からなる
余剰の冷凍能力が発生する。
The conventional complex type refrigerant circuit equipment is configured as described above, and in the refrigeration side refrigerant circuit 6, the refrigeration side compressor 1 and the refrigeration side condenser 2 are preset with respect to the refrigeration side cooling environment such as a showcase. It is designed to support the maximum load for the maximum refrigeration capacity. For this reason, when the load in the refrigeration-side cooling environment is reduced, an excess refrigeration capacity is generated which is the difference between the aforementioned maximum load and the load in the refrigeration-side cooling environment at that time.

【0008】この余剰冷凍能力に対応する量の冷媒液が
冷蔵側蓄熱用電磁弁8、冷蔵側蓄熱用膨張弁からなる冷
蔵側蓄熱用絞り装置9を経て冷蔵側蓄熱用熱交換器7に
供給される。これによって、前述の余剰冷凍能力が冷熱
として蓄熱槽18内の蓄熱剤に蓄冷される。また、冷凍
側冷媒回路16においては冷凍側圧縮機11で発生した
高温、高圧のガス冷媒が、冷凍側凝縮器12で液化され
た後に冷媒管路19を経て蓄熱槽18内の冷凍側冷熱供
給用熱交換器17に供給されて蓄熱剤により冷却され
る。
An amount of the refrigerant liquid corresponding to the surplus refrigeration capacity is supplied to the refrigeration-side heat storage heat exchanger 7 via the refrigeration-side heat storage expansion device 9 comprising a refrigeration-side heat storage electromagnetic valve 8 and a refrigeration-side heat storage expansion valve. Is done. As a result, the surplus refrigeration capacity is stored as cold in the heat storage agent in the heat storage tank 18. In the refrigeration-side refrigerant circuit 16, the high-temperature, high-pressure gas refrigerant generated in the refrigeration-side compressor 11 is liquefied in the refrigeration-side condenser 12 and then supplied through the refrigerant line 19 to the refrigeration-side cold heat supply in the heat storage tank 18. And is cooled by the heat storage agent.

【0009】これによって、より低い温度に冷却された
冷媒が冷凍側電磁弁13等を経て冷凍側蒸発器15に供
給される。このように、余剰の冷凍能力として冷蔵側冷
媒回路6から蓄熱槽18内の蓄熱剤に蓄えられた冷熱
が、冷蔵側冷媒回路6及び冷凍側冷媒回路16に共用さ
れる蓄熱槽18内の蓄熱剤を介して冷凍側冷媒回路16
で消費される。
As a result, the refrigerant cooled to a lower temperature is supplied to the freezing side evaporator 15 via the freezing side solenoid valve 13 and the like. As described above, the cold stored in the heat storage agent in the heat storage tank 18 from the refrigeration side refrigerant circuit 6 as the excess refrigeration capacity is stored in the heat storage tank 18 shared by the refrigeration side refrigerant circuit 6 and the refrigeration side refrigerant circuit 16. Refrigeration side refrigerant circuit 16
Consumed in

【0010】したがって、冷蔵側蒸発器5での冷媒の蒸
発温度が高い、すなわち運転効率の高い冷蔵側冷媒回路
6で余剰になった冷熱が蓄冷される。また、蓄冷された
冷熱は冷凍側蒸発器15での冷媒の蒸発温度が低い、す
なわち運転効率の低い冷凍側冷媒回路16で利用され
る。これにより、冷蔵側冷媒回路6及び冷凍側冷媒回路
16を含めた設備全体としての総合的な冷凍効率を向上
させることができ、冷凍側冷媒回路16の容量が11k
W、15kWと大きいほど、その冷凍効率向上作用が増
大する。
[0010] Therefore, surplus cold heat is stored in the refrigeration-side refrigerant circuit 6 having a high evaporation temperature of the refrigerant in the refrigeration-side evaporator 5, that is, high operating efficiency. The stored cold heat is used in the refrigeration-side refrigerant circuit 16 in which the evaporation temperature of the refrigerant in the refrigeration-side evaporator 15 is low, that is, the operation efficiency is low. As a result, the overall refrigeration efficiency of the entire equipment including the refrigeration side refrigerant circuit 6 and the refrigeration side refrigerant circuit 16 can be improved, and the capacity of the refrigeration side refrigerant circuit 16 becomes 11 k.
The larger the W and 15 kW, the greater the effect of improving the refrigeration efficiency.

【0011】[0011]

【発明が解決しようとする課題】上記のような従来の複
合型冷媒回路設備において、冷却状況の異なる複数の冷
却環境をそれぞれ冷却する複数の冷媒回路相互間で、冷
凍効率の高い高冷却温度側冷媒回路からの余剰の冷熱を
蓄熱槽18の蓄熱剤を介して、冷凍効率の低い低冷却温
度側冷媒回路へ移動させる。これによって、設備全体と
して総合的な冷凍効率の向上が図られている。そして、
冷凍側冷媒回路16の容量が11kW、15kWと大き
いほど、その冷凍効率向上作用が増大する。
In the above-mentioned conventional complex type refrigerant circuit equipment, a plurality of refrigerant circuits, each of which cools a plurality of cooling environments having different cooling conditions, are connected with each other at a high cooling temperature side with high refrigeration efficiency. Excess cold heat from the refrigerant circuit is transferred to the low cooling temperature side refrigerant circuit having low refrigeration efficiency via the heat storage agent in the heat storage tank 18. As a result, the overall refrigeration efficiency of the entire facility is improved. And
The larger the capacity of the refrigeration-side refrigerant circuit 16 is, for example, 11 kW or 15 kW, the greater the effect of improving the refrigeration efficiency.

【0012】しかし、冷凍側冷媒回路16の容量が1.
5kWと小さい場合には、この容量よりも冷凍側冷媒回
路16の出力を低減させることが難しいため、総合的な
冷凍効率の向上作用が得られないという問題点があっ
た。なお、契約受電容量に制限がある複合型冷媒回路設
備の場合に、設備全体の容量によっては契約受電容量が
超過するので、契約受電容量を増す必要があって費用が
増加することになる。
However, the capacity of the refrigeration side refrigerant circuit 16 is 1.
If the power is as small as 5 kW, it is difficult to reduce the output of the refrigeration-side refrigerant circuit 16 from this capacity, so that there is a problem that an overall improvement effect of the refrigeration efficiency cannot be obtained. In the case of a complex refrigerant circuit facility having a limited contracted receiving capacity, the contracted receiving capacity is exceeded depending on the capacity of the entire facility, so that it is necessary to increase the contracted receiving capacity, which increases costs.

【0013】また、冷蔵側冷媒回路の余剰冷凍能力が非
常に大きい場合、蓄熱槽内の氷の量が多くなって蓄熱槽
内の配管又は蓄熱槽自体が損傷する恐れがあるという問
題点があった。
Further, when the excess refrigeration capacity of the refrigeration-side refrigerant circuit is extremely large, there is a problem that the amount of ice in the heat storage tank may increase and the piping in the heat storage tank or the heat storage tank itself may be damaged. Was.

【0014】また、空調側冷媒回路が暖房運転している
場合、冷蔵側冷媒回路で余剰になった冷熱を蓄熱槽内の
蓄熱剤に蓄えて、その冷熱が空調側熱交換器により冷蔵
側冷却環境に関連した空調冷却環境において熱交換する
ことによって消費されても暖房能力が向上しないという
問題点があった。
When the air-conditioning-side refrigerant circuit performs a heating operation, surplus cold heat in the refrigeration-side refrigerant circuit is stored in a heat storage agent in a heat storage tank, and the cold heat is cooled by the air-conditioning-side heat exchanger. There is a problem that the heating capacity is not improved even if consumed by exchanging heat in an air conditioning cooling environment related to the environment.

【0015】また、冷蔵側冷媒回路で余剰となった冷熱
を蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調側熱交換
器により冷蔵側冷却環境に関連した空調冷却環境におい
て熱交換することによって消費される場合、空調側冷媒
回路の空調側熱交換器と熱交換する冷熱供給回路の配管
温度が所定値以上になると、空調側冷媒回路の液温が上
昇して冷房能力が逆に低下するという問題点があった。
[0015] Further, surplus cold heat in the refrigeration side refrigerant circuit is stored in a heat storage agent in a heat storage tank, and the cold heat is exchanged by an air conditioning side heat exchanger in an air conditioning cooling environment related to the refrigeration side cooling environment. When the temperature of the piping of the cold-heat supply circuit that exchanges heat with the air-conditioning-side heat exchanger of the air-conditioning-side refrigerant circuit exceeds a predetermined value, the liquid temperature of the air-conditioning-side refrigerant circuit rises and the cooling capacity decreases. There was a problem of doing.

【0016】また、冷蔵側冷媒回路で余剰となった冷熱
を蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調側熱交換
器により冷蔵側冷却環境に関連した空調冷却環境におい
て熱交換することによって消費される場合、空調側冷媒
回路の温度が低下して空調側熱交換器が凍結する恐れが
あるという問題点があった。
[0016] Further, surplus cold heat in the refrigeration side refrigerant circuit is stored in a heat storage agent in the heat storage tank, and the cold heat is exchanged by the air conditioning side heat exchanger in an air conditioning cooling environment related to the refrigeration side cooling environment. When the air conditioner is consumed by the air conditioner, there is a problem that the temperature of the air conditioning side refrigerant circuit is lowered and the air conditioning side heat exchanger may freeze.

【0017】この発明は、かかる問題点を解消するため
になされたものであり、冷凍側冷媒回路の容量が小さい
場合であっても、冷蔵側冷媒回路の余剰能力により蓄熱
槽に蓄えられた冷熱を効率よく利用でき、少ない費用で
運転できる複合型冷媒回路設備を得ることを目的とす
る。
The present invention has been made to solve such a problem. Even when the capacity of the refrigeration-side refrigerant circuit is small, the refrigeration stored in the heat storage tank by the surplus capacity of the refrigeration-side refrigerant circuit. It is an object of the present invention to obtain a composite refrigerant circuit equipment that can be used efficiently and can be operated at low cost.

【0018】[0018]

【課題を解決するための手段】この発明に係る複合型冷
媒回路設備においては、冷凍側圧縮機、冷凍側凝縮器、
冷凍側絞り装置及び冷凍側冷却環境を冷却する冷凍側蒸
発器を主要機器として構成された冷凍側冷媒回路と、こ
の冷凍側冷媒回路と並列に形成された冷蔵側冷媒回路に
接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交
換器を主要機器として構成された冷蔵側蓄熱用冷媒回路
と、冷蔵側冷媒回路の最大冷凍能力と冷蔵側冷媒回路の
冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を
蓄冷する蓄熱槽と、この蓄熱槽の蓄熱剤からの冷熱を冷
蔵側冷却環境に関連した空調冷却環境に対し直接的に熱
交換する冷熱供給回路とが設けられる。
In the combined refrigerant circuit equipment according to the present invention, a refrigeration-side compressor, a refrigeration-side condenser,
A refrigeration side refrigerant circuit configured as a main device including a refrigeration side expansion device and a refrigeration side evaporator that cools the refrigeration side cooling environment, and a refrigeration side refrigerant circuit formed in parallel with the refrigeration side refrigerant circuit. The refrigerating circuit for refrigerating heat storage, which is mainly composed of a heat storage throttle device and a heat exchanger for refrigerating heat storage, the maximum refrigerating capacity of the refrigerating side refrigerant circuit, the required refrigerating capacity of the refrigerating side cooling environment of the refrigerating side refrigerant circuit, and the like. And a cold heat supply circuit that directly exchanges heat from the heat storage agent in the heat storage tank with the air conditioning cooling environment related to the refrigeration side cooling environment.

【0019】また、この発明に係る複合型冷媒回路設備
においては、冷凍側圧縮機、冷凍側凝縮器、冷凍側絞り
装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主要
機器として構成された冷凍側冷媒回路と、この冷凍側冷
媒回路と並列に形成された冷蔵側冷媒回路に接続され、
冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要
機器として構成された冷蔵側蓄熱用冷媒回路と、冷蔵側
冷媒回路の最大冷凍能力と冷蔵側冷媒回路の冷蔵側冷却
環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄
熱槽と、空調側圧縮機、空調側凝縮器、空調側熱交換
器、空調側絞り装置及び空調側冷却環境を冷却する空調
側蒸発器を主要機器として構成された空調側冷媒回路
と、蓄熱槽の蓄熱剤からの冷熱を空調側熱交換器を介し
空調側冷媒回路に供給する冷熱供給用熱交換器が設けら
れた冷熱供給回路とが設けられる。
In the combined refrigerant circuit equipment according to the present invention, the refrigerating-side compressor, the refrigerating-side condenser, the refrigerating-side expansion device, and the refrigerating-side evaporator for cooling the refrigerating-side cooling environment are mainly constituted. A refrigeration-side refrigerant circuit, connected to a refrigeration-side refrigerant circuit formed in parallel with the refrigeration-side refrigerant circuit,
Refrigeration-side heat storage refrigerant circuit composed mainly of a refrigeration-side heat storage expansion device and a refrigeration-side heat storage heat exchanger, the maximum refrigeration capacity of the refrigeration-side refrigerant circuit, and the required refrigeration of the refrigeration-side cooling environment of the refrigeration-side refrigerant circuit Main equipment includes a heat storage tank that stores cold heat corresponding to the difference in capacity, an air conditioning-side compressor, an air-conditioning-side condenser, an air-conditioning-side heat exchanger, an air-conditioning-side expansion device, and an air-conditioning-side evaporator that cools the air-conditioning-side cooling environment. An air-conditioning-side refrigerant circuit configured as: and a cold-heat supply circuit provided with a cold-heat supply heat exchanger that supplies cold heat from the heat storage agent in the heat storage tank to the air-conditioning-side refrigerant circuit via the air-conditioning heat exchanger .

【0020】また、この発明に係る複合型冷媒回路設備
においては、冷凍側圧縮機、冷凍側凝縮器、冷凍側絞り
装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主要
機器として構成された冷凍側冷媒回路と、この冷凍側冷
媒回路と並列に形成された冷蔵側冷媒回路に接続され、
冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要
機器として構成された冷蔵側蓄熱用冷媒回路と、冷蔵側
冷媒回路の最大冷凍能力と冷蔵側冷媒回路の冷蔵側冷却
環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄
熱槽と、この蓄熱槽の蓄熱剤からの冷熱を冷蔵側冷却環
境に関連した空調冷却環境に対して熱交換する空調用熱
交換器が設けられた冷熱供給回路とが設けられる。
In the combined refrigerant circuit equipment according to the present invention, the refrigerating-side compressor, the refrigerating-side condenser, the refrigerating-side expansion device, and the refrigerating-side evaporator for cooling the refrigerating-side cooling environment are mainly constituted. A refrigeration-side refrigerant circuit, connected to a refrigeration-side refrigerant circuit formed in parallel with the refrigeration-side refrigerant circuit,
Refrigeration-side heat storage refrigerant circuit composed mainly of a refrigeration-side heat storage expansion device and a refrigeration-side heat storage heat exchanger, the maximum refrigeration capacity of the refrigeration-side refrigerant circuit, and the required refrigeration of the refrigeration-side cooling environment of the refrigeration-side refrigerant circuit A heat storage tank for storing cold heat corresponding to the difference in capacity and an air conditioning heat exchanger for exchanging heat from the heat storage agent in the heat storage tank to an air conditioning cooling environment related to the refrigeration side cooling environment were provided. And a cold heat supply circuit.

【0021】また、この発明に係る複合型冷媒回路設備
においては、蓄熱槽内の氷の温度を検知する氷温検知手
段と、この氷温検知手段の出力値が所定値以下になると
冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制御
回路とが設けられる。
Further, in the combined refrigerant circuit equipment according to the present invention, the ice temperature detecting means for detecting the temperature of ice in the heat storage tank, and when the output value of the ice temperature detecting means becomes a predetermined value or less, the refrigeration side refrigerant And a control circuit for closing the refrigeration-side heat storage solenoid valve in the circuit.

【0022】また、この発明に係る複合型冷媒回路設備
においては、蓄熱槽内の氷の温度を検知する氷温検知手
段と、蓄熱槽内の水位を検知する水位検知手段と、氷温
検知手段の出力値が所定値以下、水位検知手段の出力値
が所定値以上、のいずれかになると冷蔵側冷媒回路内の
冷蔵側蓄熱用電磁弁を閉成する制御回路とが設けられ
る。
Further, in the combined refrigerant circuit equipment according to the present invention, ice temperature detecting means for detecting the temperature of ice in the heat storage tank, water level detecting means for detecting the water level in the heat storage tank, and ice temperature detecting means And a control circuit for closing the refrigeration-side heat storage electromagnetic valve in the refrigeration-side refrigerant circuit when the output value of the water level detection means becomes equal to or less than a predetermined value and the output value of the water level detection means becomes equal to or more than the predetermined value.

【0023】また、この発明に係る複合型冷媒回路設備
においては、空調側冷媒回路の空調側熱交換器と直列に
接続された空調側放熱用電磁弁と、空調側熱交換器及び
空調側放熱用電磁弁と並列に接続された空調側放熱バイ
パス電磁弁と、空調側冷媒回路の運転モードを設定する
運転モード決定手段と、この運転モード決定手段の設定
による暖房運転時に空調側放熱用電磁弁を閉成し、かつ
空調側放熱バイパス電磁弁を開放する制御回路とが設け
られる。
In the combined refrigerant circuit equipment according to the present invention, the air conditioning-side heat-dissipating solenoid valve connected in series with the air-conditioning-side heat exchanger of the air-conditioning-side refrigerant circuit; Air-conditioning-side heat radiation bypass solenoid valve connected in parallel with the air-conditioning side electromagnetic valve, operation mode determining means for setting the operation mode of the air-conditioning-side refrigerant circuit, and air-conditioning side heat radiation electromagnetic valve during heating operation by setting the operation mode determining means And a control circuit for closing the air-conditioning-side radiation bypass electromagnetic valve.

【0024】また、この発明に係る複合型冷媒回路設備
においては、空調側冷媒回路の空調側熱交換器と直列に
接続された空調側放熱用電磁弁と、空調側熱交換器及び
空調側放熱用電磁弁と並列に接続された空調側放熱バイ
パス電磁弁と、空調側冷媒回路の四方弁の出力接点の閉
成時に空調側放熱用電磁弁を閉成し、かつ空調側放熱バ
イパス電磁弁を開放する制御回路とが設けられる。
In the combined refrigerant circuit equipment according to the present invention, the air-conditioning heat-dissipating solenoid valve connected in series with the air-conditioning heat exchanger of the air-conditioning refrigerant circuit; The air-conditioning side heat radiation bypass solenoid valve connected in parallel with the air-conditioning side heat radiation bypass solenoid valve, and the air-conditioning side heat radiation bypass solenoid valve is closed when the output contact of the four-way valve of the air-conditioning side refrigerant circuit is closed. And a control circuit for opening.

【0025】また、この発明に係る複合型冷媒回路設備
においては、空調側冷媒回路の空調側熱交換器と直列に
接続された空調側放熱用電磁弁と、空調側熱交換器及び
空調側放熱用電磁弁と並列に接続された空調側放熱バイ
パス電磁弁と、冷熱供給回路の配管温度を検出する配管
温度検出装置と、この配管温度検出装置の出力値が所定
値以上になると空調側放熱用電磁弁を閉成し、かつ空調
側放熱バイパス電磁弁を開放する制御回路とが設けられ
る。
In the combined refrigerant circuit equipment according to the present invention, the air-conditioning-side heat-exchange solenoid valve connected in series with the air-conditioning-side heat exchanger of the air-conditioning-side refrigerant circuit; An air-conditioning side heat radiation bypass solenoid valve connected in parallel with a solenoid valve for air-conditioning, a pipe temperature detecting device for detecting the pipe temperature of the cooling / heating supply circuit, and an air-conditioning side heat radiation when the output value of the pipe temperature detecting device becomes a predetermined value or more. And a control circuit for closing the solenoid valve and opening the air-conditioning side heat radiation bypass solenoid valve.

【0026】また、この発明に係る複合型冷媒回路設備
においては、蓄熱槽の蓄熱剤からの冷熱を空調側熱交換
器を介して空調側冷媒回路に供給する空調側冷熱供給用
熱交換器と、蓄熱槽の蓄熱剤からの冷熱を冷凍側熱交換
器を介して、冷凍側冷媒回路に供給する冷凍側冷熱供給
用熱交換器を有する冷凍側冷熱供給回路とが設けられ
る。
In the combined refrigerant circuit equipment according to the present invention, the air conditioner-side cold heat supply heat exchanger that supplies the cold heat from the heat storage agent in the heat storage tank to the air conditioner-side refrigerant circuit via the air conditioner-side heat exchanger. And a refrigeration-side cold-heat supply circuit having a refrigeration-side cold-heat supply heat exchanger that supplies cold heat from the heat storage agent in the heat storage tank to the refrigeration-side refrigerant circuit via the refrigeration-side heat exchanger.

【0027】また、この発明に係る複合型冷媒回路設備
においては、蓄熱槽の蓄熱剤からの冷熱を空調側熱交換
器を介して空調側冷媒回路に供給する空調側冷熱供給用
熱交換器と、蓄熱槽の蓄熱剤からの冷熱を冷凍側熱交換
器を介し冷凍側冷媒回路に供給する冷凍側冷熱供給用熱
交換器が設けられた冷凍側冷熱供給回路とが設けられ
る。そして、冷凍側熱交換器を介して冷熱を冷凍側冷媒
回路に供給する冷凍側冷熱供給用熱交換器が常時付勢さ
れる。
In the combined refrigerant circuit equipment according to the present invention, the air conditioner-side cold heat supply heat exchanger that supplies cold heat from the heat storage agent in the heat storage tank to the air conditioner-side refrigerant circuit via the air conditioner-side heat exchanger. A refrigeration-side cold-heat supply circuit provided with a refrigeration-side cold-heat supply heat exchanger that supplies cold heat from the heat storage agent in the heat storage tank to the refrigeration-side refrigerant circuit via the refrigeration-side heat exchanger. Then, the refrigerating-side cold-heat supply heat exchanger that supplies cold heat to the refrigerating-side refrigerant circuit via the refrigerating-side heat exchanger is constantly energized.

【0028】[0028]

【発明の実施の形態】実施の形態1.図1は、この発明
の実施の形態の一例を示す冷媒回路図である。図におい
て、1は冷蔵側圧縮機、2は冷蔵側凝縮器、3は後述す
る冷蔵側蒸発器へ供給する冷媒を制御する冷蔵側電磁
弁、4は膨張弁からなる冷蔵側絞り装置、5は冷蔵側蒸
発器、6は環状をなし冷蔵側圧縮機1、冷蔵側凝縮器
2、冷蔵側電磁弁3、冷蔵側絞り装置4及び冷蔵側蒸発
器5を管路により順次接続した冷蔵側冷媒回路である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a refrigerant circuit diagram showing an example of an embodiment of the present invention. In the figure, 1 is a refrigeration compressor, 2 is a refrigeration condenser, 3 is a refrigeration solenoid valve for controlling the refrigerant to be supplied to a refrigeration evaporator described later, 4 is a refrigeration throttle device composed of an expansion valve, 5 is The refrigeration-side evaporator 6 has an annular shape, and the refrigeration-side compressor circuit 1, the refrigeration-side condenser 2, the refrigeration-side solenoid valve 3, the refrigeration-side expansion device 4, and the refrigeration-side evaporator 5 are connected in order by a pipe line. It is.

【0029】7は冷蔵側蓄熱用蒸発器からなる冷蔵側蓄
熱用熱交換器、8は冷蔵側蓄熱用熱交換器7へ供給する
冷媒を制御する冷蔵側蓄熱用電磁弁、9は冷蔵側蓄熱用
膨張弁からなる冷蔵側蓄熱用絞り装置、10は冷蔵側冷
媒回路6に連通して並列に設けられて、冷蔵側蓄熱用電
磁弁8、冷蔵側蓄熱用絞り装置9及び冷蔵側蓄熱用熱交
換器7を接続し、冷蔵側蓄熱用熱交換器7へ冷媒を送る
冷蔵側蓄熱用冷媒回路である。
Reference numeral 7 denotes a refrigeration-side heat storage heat exchanger comprising a refrigeration-side heat storage evaporator, 8 denotes a refrigeration-side heat storage solenoid valve for controlling the refrigerant supplied to the refrigeration-side heat storage heat exchanger 7, and 9 denotes a refrigeration-side heat storage. The refrigeration-side heat storage throttle device 10 comprising an expansion valve for cooling is provided in parallel with the refrigeration-side refrigerant circuit 6, and is provided with a refrigeration-side heat storage electromagnetic valve 8, a refrigeration-side heat storage expansion device 9, and a refrigeration-side heat storage heat source. This is a refrigeration-side heat storage refrigerant circuit that connects the exchanger 7 and sends refrigerant to the refrigeration-side heat storage heat exchanger 7.

【0030】11は冷凍側圧縮機、12は冷凍側凝縮
器、13は後述する冷凍側蒸発器へ供給する冷媒を制御
する冷凍側電磁弁、14は冷凍側膨張弁からなる冷凍側
絞り装置、15は冷凍側蒸発器、16は冷凍側圧縮機1
1、冷凍側凝縮器12、冷凍側電磁弁13、冷凍側絞り
装置14及び冷凍側蒸発器15を管路により順次接続し
た冷凍側冷媒回路である。
11 is a refrigerating side compressor, 12 is a refrigerating side condenser, 13 is a refrigerating side solenoid valve for controlling a refrigerant to be supplied to a refrigerating side evaporator to be described later, 14 is a refrigerating side expansion device comprising a refrigerating side expansion valve, 15 is a freezing side evaporator, 16 is a freezing side compressor 1
1. A refrigeration-side refrigerant circuit in which a refrigeration-side condenser 12, a refrigeration-side solenoid valve 13, a refrigeration-side expansion device 14, and a refrigeration-side evaporator 15 are sequentially connected by a pipe.

【0031】18は水などの蓄熱剤を収容した蓄熱槽、
20は空調側圧縮機、21は空調側凝縮器、22は空調
側減圧装置からなる空調側絞り装置、23は空調側凝縮
器21と空調側絞り装置22の間に配置された空調側過
冷却用熱交換器からなる空調側熱交換器、24は空調側
蒸発器、25は空調側圧縮機20、空調側凝縮器21、
空調側熱交換器23、空調側絞り装置22、空調側蒸発
器24を管路により順次接続した空調側冷媒回路であ
る。
18 is a heat storage tank containing a heat storage agent such as water,
Reference numeral 20 denotes an air-conditioning compressor, 21 denotes an air-conditioning condenser, 22 denotes an air-conditioning-side expansion device composed of an air-conditioning-side pressure reducing device, and 23 denotes an air-conditioning-side subcooling disposed between the air-conditioning-side condenser 21 and the air-conditioning-side expansion device 22. An air-conditioning-side heat exchanger composed of a heat exchanger for use, 24 is an air-conditioning-side evaporator, 25 is an air-conditioning-side compressor 20,
This is an air-conditioning-side refrigerant circuit in which an air-conditioning-side heat exchanger 23, an air-conditioning-side expansion device 22, and an air-conditioning-side evaporator 24 are sequentially connected by a pipe.

【0032】26は蓄熱槽18の蓄熱剤からの冷熱を冷
熱供給用熱交換器27に供給する冷熱供給管路である。
28は蓄熱槽18の蓄熱剤からの冷熱を循環させるポン
プである。なお、空調側熱交換器23と冷熱供給用熱交
換器27は互いに熱交換できるように構成されている。
Reference numeral 26 denotes a cold heat supply pipe for supplying cold heat from the heat storage agent in the heat storage tank 18 to the cold heat supply heat exchanger 27.
Reference numeral 28 denotes a pump for circulating cold heat from the heat storage agent in the heat storage tank 18. In addition, the air-conditioning-side heat exchanger 23 and the cold-heat supply heat exchanger 27 are configured to exchange heat with each other.

【0033】そして、特に図1における複合型冷媒回路
設備では、冷蔵側冷媒回路6の冷蔵側蓄熱用熱交換器7
が、蓄熱剤を介して空調側熱交換器23に対して熱移動
できるように蓄熱槽18内に設けられている。また、冷
凍側冷媒回路16は独立して配置されて、冷蔵側冷媒回
路6及び空調側冷媒回路25に対して熱移動できる管路
が設けられていない。
In particular, in the combined type refrigerant circuit equipment shown in FIG. 1, the refrigeration side heat storage heat exchanger 7 of the refrigeration side refrigerant circuit 6 is used.
Is provided in the heat storage tank 18 so that heat can be transferred to the air-conditioning side heat exchanger 23 via the heat storage agent. Further, the refrigeration-side refrigerant circuit 16 is disposed independently, and there is no pipe line that can transfer heat to the refrigeration-side refrigerant circuit 6 and the air-conditioning-side refrigerant circuit 25.

【0034】上記のように構成された複合型冷媒回路設
備において、冷蔵側冷媒回路6において冷蔵側圧縮機1
や冷蔵側凝縮器2はショーケース等の冷蔵側冷却環境に
ついて予め設定されている最大冷凍能力に対する最大負
荷に対応できるように設計されている。このため、冷蔵
側冷却環境における負荷が減少すると、前述の最大負荷
とそのときの冷蔵側冷却環境における負荷との差からな
る余剰の冷凍能力が発生する。
In the combined refrigerant circuit equipment configured as described above, the refrigeration-side compressor 1
The refrigeration-side condenser 2 is designed to be able to cope with a maximum load corresponding to a preset maximum refrigeration capacity in a refrigeration-side cooling environment such as a showcase. For this reason, when the load in the refrigeration-side cooling environment is reduced, an excess refrigeration capacity is generated which is the difference between the aforementioned maximum load and the load in the refrigeration-side cooling environment at that time.

【0035】この余剰冷凍能力に対応する量の冷媒液が
冷蔵側蓄熱用電磁弁8、冷蔵側蓄熱用膨張弁からなる冷
蔵側蓄熱用絞り装置9を経て冷蔵側蓄熱用熱交換器7に
供給される。これによって、前述の余剰冷凍能力が冷熱
として蓄熱槽18内の蓄熱剤に蓄冷される。また、空調
側冷媒回路25においては空調側圧縮機20で発生した
高温、高圧のガス冷媒が、空調側凝縮器21で液化され
た後に空調側熱交換器23に送出される。
An amount of the refrigerant liquid corresponding to the surplus refrigeration capacity is supplied to the refrigeration-side heat storage heat exchanger 7 through the refrigeration-side heat storage expansion device 9 comprising a refrigeration-side heat storage solenoid valve 8 and a refrigeration-side heat storage expansion valve. Is done. As a result, the surplus refrigeration capacity is stored as cold in the heat storage agent in the heat storage tank 18. In the air-conditioning-side refrigerant circuit 25, high-temperature, high-pressure gas refrigerant generated in the air-conditioning-side compressor 20 is sent to the air-conditioning-side heat exchanger 23 after being liquefied in the air-conditioning-side condenser 21.

【0036】そして、蓄熱槽18からの冷熱供給管路2
6により送出される蓄熱剤によって冷熱供給用熱交換器
27と空調側熱交換器23の間で熱交換されて液化した
冷媒が冷却される。これにより、より低い温度に冷却さ
れた冷媒が空調側絞り装置22、空調側蒸発器24に供
給される。このようにして、余剰の冷凍能力として冷蔵
側冷媒回路6から蓄熱槽18に蓄熱剤に蓄えられた冷熱
が、冷蔵側冷媒回路6及び空調側冷媒回路25に共用さ
れる蓄熱槽18の蓄熱剤を介して空調側冷媒回路25に
よって消費される。
Then, the cold / hot supply line 2 from the heat storage tank 18
The refrigerant that has been liquefied by heat exchange between the cold heat supply heat exchanger 27 and the air-conditioning side heat exchanger 23 is cooled by the heat storage agent delivered by 6. Thereby, the refrigerant cooled to a lower temperature is supplied to the air conditioning-side expansion device 22 and the air conditioning-side evaporator 24. In this manner, the cold stored in the heat storage agent in the heat storage tank 18 from the refrigeration side refrigerant circuit 6 as the excess refrigeration capacity is transferred to the heat storage agent in the heat storage tank 18 shared by the refrigeration side refrigerant circuit 6 and the air conditioning side refrigerant circuit 25. And is consumed by the air-conditioning-side refrigerant circuit 25 via the

【0037】すなわち、冷蔵側冷媒回路6で余剰となっ
た冷熱が蓄冷されて、蓄冷された冷熱は空調側冷媒回路
25で利用される。このため、冷凍側冷媒回路16の容
量が小さく設備全体とし総合的な冷凍効率の向上作用が
得られ難い場合と比較して、総合的な冷凍効率を向上さ
せることができる。また、空調側熱交換器23において
液冷媒がさらに低い温度に冷却されて、過冷却度を大き
くする。したがって、空調側冷媒回路25の能力が向上
するので、例えば、空調側冷媒回路25の容量が7.5
kWであった場合に、5.5kWとすることができる。
That is, surplus cold heat is stored in the refrigeration-side refrigerant circuit 6, and the stored cold heat is used in the air-conditioning-side refrigerant circuit 25. For this reason, the overall refrigeration efficiency can be improved as compared with the case where the capacity of the refrigeration-side refrigerant circuit 16 is small and it is difficult to improve the overall refrigeration efficiency as a whole facility. Further, the liquid refrigerant is cooled to a lower temperature in the air conditioner-side heat exchanger 23 to increase the degree of supercooling. Therefore, the capacity of the air-conditioning-side refrigerant circuit 25 is improved, and for example, the capacity of the air-conditioning-side refrigerant circuit 25 is 7.5.
If it is kW, it can be 5.5 kW.

【0038】このため、電力の低減が可能になり設備全
体の契約受電容量を増すことなく、少ない費用で運転で
きる複合型冷媒回路設備を実現することができる。な
お、図1の実施の形態において、蓄熱槽18に蓄熱剤に
蓄えられた冷熱が、冷熱供給用熱交換器27と空調側熱
交換器23の間で熱交換されるものとした。しかし、冷
熱供給回路26を介して蓄熱槽18の蓄熱剤からの冷熱
を冷蔵側冷却環境に関連した空調冷却環境に対し直接的
に熱交換することも可能である。
[0038] For this reason, it is possible to reduce power consumption and to realize a composite refrigerant circuit facility that can be operated at a low cost without increasing the contracted power receiving capacity of the entire facility. In the embodiment of FIG. 1, the cold stored in the heat storage agent in the heat storage tank 18 is exchanged between the cold heat supply heat exchanger 27 and the air conditioner-side heat exchanger 23. However, it is also possible to directly exchange heat from the heat storage agent in the heat storage tank 18 to the air conditioning cooling environment related to the refrigeration side cooling environment via the cold heat supply circuit 26.

【0039】実施の形態2.図2は、この発明の他の実
施の形態の一例を示す冷媒回路図である。図において、
前述の図1と同符号は相当部分を示し、29は空調用熱
交換器である。
Embodiment 2 FIG. 2 is a refrigerant circuit diagram showing an example of another embodiment of the present invention. In the figure,
The same reference numerals as those in FIG. 1 described above denote corresponding parts, and 29 denotes an air-conditioning heat exchanger.

【0040】上記のように構成された複合型冷媒回路設
備において、前述の図1における空調側冷媒回路25の
機器が省略される。そして、冷蔵側冷媒回路6、冷凍側
冷媒回路16が基本的には図1の実施の形態と同様に冷
凍サイクル動作し、蓄熱槽18内の蓄熱剤に蓄えられた
冷熱が、蓄熱剤を介して冷熱供給管路26を通じて送出
される。この蓄熱剤によって空調用熱交換器29部にて
冷蔵側冷媒回路6の冷蔵側冷却環境に関連した空調冷却
環境における空調負荷、例えば店舗内空気と熱交換され
る。
In the composite refrigerant circuit equipment configured as described above, the equipment of the air conditioning-side refrigerant circuit 25 in FIG. 1 described above is omitted. Then, the refrigeration-side refrigerant circuit 6 and the refrigeration-side refrigerant circuit 16 basically operate in a refrigeration cycle in the same manner as in the embodiment of FIG. 1, and the cold stored in the heat storage agent in the heat storage tank 18 passes through the heat storage agent. And delivered through the cold heat supply line 26. The heat storage agent exchanges heat with an air conditioning load in an air conditioning cooling environment related to the refrigeration side cooling environment of the refrigeration side refrigerant circuit 6, for example, air in a store, in the air conditioning heat exchanger 29.

【0041】これにより、店舗内を25°C等の快適な
温度に保持することができ、冷蔵側冷媒回路6で余剰と
なった冷熱が蓄冷されて、蓄冷された冷熱は空調冷却環
境における空調負荷のために利用される。したがって、
冷凍側冷媒回路16の容量が小さく設備全体とし総合的
な冷凍効率の向上作用が得られ難い場合と比較して、総
合的な冷凍効率を向上させることができる。
As a result, the inside of the store can be maintained at a comfortable temperature of 25 ° C. or the like, and the surplus cold heat stored in the refrigeration side refrigerant circuit 6 is stored. Used for load. Therefore,
The overall refrigeration efficiency can be improved as compared with the case where the capacity of the refrigeration side refrigerant circuit 16 is small and it is difficult to improve the overall refrigeration efficiency as the entire facility.

【0042】実施の形態3.図3も、この発明の他の実
施の形態の一例を示す冷媒回路図である。図において、
前述の図1と同符号は相当部分を示し、30は空調側凝
縮器、32は空調側減圧装置からなる空調側絞り装置、
31は空調側凝縮器30と空調側絞り装置32の間に配
置された空調側過冷却用熱交換器からなる空調側熱交換
器、33は空調側蒸発器、34は空調側圧縮機、35は
空調側圧縮機34、空調側凝縮器30、空調側熱交換器
31、空調側絞り装置32、空調側蒸発器33を管路に
より順次接続した空調側冷媒回路である。
Embodiment 3 FIG. 3 is also a refrigerant circuit diagram showing an example of another embodiment of the present invention. In the figure,
The same reference numerals as those in FIG. 1 described above denote corresponding parts, 30 is an air-conditioning-side condenser, 32 is an air-conditioning-side expansion device including an air-conditioning-side decompression device,
Reference numeral 31 denotes an air conditioning side heat exchanger including an air conditioning side supercooling heat exchanger disposed between the air conditioning side condenser 30 and the air conditioning side expansion device 32; 33, an air conditioning side evaporator; 34, an air conditioning side compressor; Is an air-conditioning-side refrigerant circuit in which an air-conditioning-side compressor 34, an air-conditioning-side condenser 30, an air-conditioning-side heat exchanger 31, an air-conditioning-side expansion device 32, and an air-conditioning-side evaporator 33 are sequentially connected by a pipe.

【0043】36は600〜700W程度の小型の第一
圧縮機、37は第一凝縮器、38は絞り装置、39は第
一蒸発器であり空調側熱交換器31と熱交換できるよう
になっている。40は第一圧縮機36、第一凝縮器3
7、絞り装置38、第一蒸発器39を管路により順次接
続した小型冷凍機冷媒回路である。
Reference numeral 36 denotes a small first compressor of about 600 to 700 W, 37 denotes a first condenser, 38 denotes a throttling device, and 39 denotes a first evaporator, which can exchange heat with the air-conditioning side heat exchanger 31. ing. 40 is the first compressor 36, the first condenser 3
7, a small refrigerator refrigerant circuit in which a throttle device 38 and a first evaporator 39 are sequentially connected by a pipeline.

【0044】上記のように構成された複合型冷媒回路設
備において、前述の冷蔵側冷媒回路6、冷凍側冷媒回路
16の基本的な冷凍サイクル動作は、図1の実施の形態
及び図2の実施の形態とほぼ同じである。ただし、冷蔵
側冷媒回路6においては蓄熱槽18内の蓄冷剤に冷熱を
蓄えない部分のみ図1の実施の形態及び図2の実施の形
態と相違する。
In the combined refrigerant circuit equipment configured as described above, the basic refrigeration cycle operation of the refrigeration-side refrigerant circuit 6 and the refrigeration-side refrigerant circuit 16 described above is based on the embodiment shown in FIG. 1 and the embodiment shown in FIG. It is almost the same as the form. However, in the refrigeration-side refrigerant circuit 6, only the portion in which the cold storage agent in the heat storage tank 18 does not store cold heat differs from the embodiment of FIG. 1 and the embodiment of FIG.

【0045】すなわち、空調側冷媒回路35において
は、空調側圧縮機34で圧縮された高温、高圧ガス冷媒
が空調側凝縮器30で液化され、その後空調側冷媒回路
35を経て空調側熱交換器31へ送出される。ここで、
第一圧縮機36、第一凝縮器37、絞り装置38、第一
蒸発器39からなる小型冷凍機における第一蒸発器39
で蒸発する冷媒の潜熱により液化された冷媒が冷却され
る。
That is, in the air-conditioning-side refrigerant circuit 35, the high-temperature, high-pressure gas refrigerant compressed by the air-conditioning-side compressor 34 is liquefied in the air-conditioning-side condenser 30, and then passes through the air-conditioning-side refrigerant circuit 35. 31. here,
The first evaporator 39 in the small refrigerator including the first compressor 36, the first condenser 37, the expansion device 38, and the first evaporator 39.
The liquefied refrigerant is cooled by the latent heat of the refrigerant evaporating in.

【0046】これによって、より低い温度に冷却された
冷媒が空調側絞り装置32、空調側蒸発器33に供給さ
れる。以上のように構成された小型冷凍機は蓄熱槽18
に比べ小形であって安価に製造できる。また、空気調和
負荷が増加した場合に、機器を入れ替えることなく、前
述の小型冷凍機を追加することにより能力増加が可能で
あって、容易に空気調和負荷増加に対処することができ
る。
As a result, the refrigerant cooled to a lower temperature is supplied to the air-conditioning-side expansion device 32 and the air-conditioning-side evaporator 33. The small refrigerator configured as described above has a heat storage tank 18.
It is smaller and can be manufactured at lower cost. In addition, when the air conditioning load increases, the capacity can be increased by adding the above-described small refrigerator without replacing the equipment, and the increase in the air conditioning load can be easily dealt with.

【0047】実施の形態4.図4及び図5も、この発明
の他の実施の形態の一例を示す図で、図4は冷媒回路
図、図5は図4の冷媒回路に係わる制御回路図である。
図において、前述の図1と同符号は相当部分を示し、4
1は空調側冷媒回路25の空調側熱交換器23と直列に
接続された空調側放熱用電磁弁、42は空調側放熱用電
磁弁41及び空調側熱交換器23と並列に接続された空
調側放熱バイパス電磁弁である。
Embodiment 4 4 and 5 also show an example of another embodiment of the present invention. FIG. 4 is a refrigerant circuit diagram, and FIG. 5 is a control circuit diagram relating to the refrigerant circuit of FIG.
In the figure, the same reference numerals as those in FIG.
1 is an air-conditioning-side heat-dissipating solenoid valve connected in series with the air-conditioning-side heat exchanger 23 of the air-conditioning-side refrigerant circuit 25, and 42 is an air conditioner connected in parallel with the air-conditioning-side heat-dissipating electromagnetic valve 41 and the air conditioning-side heat exchanger 23. It is a side heat radiation bypass solenoid valve.

【0048】43は空調側放熱バイパス電磁弁42と並
列に接続された逆止弁、44は蓄熱槽18内の氷の温度
を検知する氷温検知手段、45は蓄熱槽18内の水位を
検知する水位検知手段、49は冷熱供給回路26の配管
温度を検出する配管温度検出装置である。440は氷温
検知手段44及び冷蔵側蓄熱用電磁弁8を主要部として
構成された制御回路である。
Reference numeral 43 denotes a check valve connected in parallel with the air-conditioning-side radiation bypass electromagnetic valve 42, 44 denotes ice temperature detecting means for detecting the temperature of ice in the heat storage tank 18, and 45 detects the water level in the heat storage tank 18. The water level detecting means 49 is a pipe temperature detecting device for detecting the pipe temperature of the cold heat supply circuit 26. Reference numeral 440 denotes a control circuit mainly including the ice temperature detecting means 44 and the refrigeration side heat storage electromagnetic valve 8.

【0049】上記のように構成された複合型冷媒回路設
備において、氷温検知手段44は例えばサーモスタット
であって蓄熱槽18内の氷の温度を検知して、氷の温度
が所定値以下になると接点が開放する。これによって、
冷蔵側冷媒回路6内の冷蔵側冷媒回路6内の冷蔵側蓄熱
用電磁弁8を閉成する制御回路440が形成されてい
る。
In the composite refrigerant circuit equipment configured as described above, the ice temperature detecting means 44 is a thermostat, for example, which detects the temperature of the ice in the heat storage tank 18 and when the temperature of the ice falls below a predetermined value. Contacts open. by this,
A control circuit 440 for closing the refrigeration-side heat storage electromagnetic valve 8 in the refrigeration-side refrigerant circuit 6 in the refrigeration-side refrigerant circuit 6 is formed.

【0050】したがって、冷蔵側冷媒回路6の余剰冷凍
能力が非常に大きい場合には、氷温検知手段44によっ
て蓄熱槽18内の氷の温度を検知する。そして、氷の温
度が所定温度以下になると冷蔵側冷媒回路6内の冷蔵側
蓄熱用電磁弁8が閉成し、蓄熱槽18内の氷の量が多く
ならず蓄熱槽18内の配管又は蓄熱槽18自体の損傷の
発生を未然に防止することができる。
Therefore, when the surplus refrigeration capacity of the refrigeration-side refrigerant circuit 6 is extremely large, the ice temperature detecting means 44 detects the temperature of the ice in the heat storage tank 18. When the temperature of the ice falls below a predetermined temperature, the refrigeration-side heat storage solenoid valve 8 in the refrigeration-side refrigerant circuit 6 is closed, and the amount of ice in the heat storage tank 18 does not increase so that the pipe or heat storage in the heat storage tank 18 does not increase. The occurrence of damage to the tank 18 itself can be prevented.

【0051】実施の形態5.図6も、この発明の他の実
施の形態の一例を示す制御回路図である。図において、
前述の図4と同符号は相当部分を示し、氷温検知手段4
4は例えばサーモスタットであって蓄熱槽18内の氷の
温度を検知して、氷の温度が所定値以下になると接点が
開放する。また、水位検知手段45は蓄熱槽18内の水
位が所定値以上になると接点が開放し、氷の温度が所定
温度以下となるか又は蓄熱槽18内の水位が所定値以上
になると、冷蔵側冷媒回路6内の冷蔵側蓄熱用電磁弁8
を閉成する制御回路440が形成されている。
Embodiment 5 FIG. FIG. 6 is a control circuit diagram showing an example of another embodiment of the present invention. In the figure,
The same reference numerals as those in FIG.
Reference numeral 4 denotes, for example, a thermostat which detects the temperature of ice in the heat storage tank 18 and opens a contact when the temperature of the ice falls below a predetermined value. The water level detecting means 45 opens the contact when the water level in the heat storage tank 18 becomes higher than a predetermined value, and when the ice temperature becomes lower than the predetermined temperature or when the water level in the heat storage tank 18 becomes higher than the predetermined value, Refrigeration-side heat storage solenoid valve 8 in refrigerant circuit 6
Is formed in the control circuit 440 which closes the control circuit.

【0052】したがって、冷蔵側冷媒回路6の余剰冷凍
能力が非常に大きい場合には、氷温検知手段44によっ
て蓄熱槽18内の氷の温度を検知する。そして、氷の温
度が所定温度以下になるか又は水位検知手段45によっ
て蓄熱槽18内の水位が所定値以上になると冷蔵側冷媒
回路6内の冷蔵側蓄熱用電磁弁8を閉成する。このた
め、蓄熱槽18内の氷の量が多くならず蓄熱槽18内の
配管又は蓄熱槽18自体の損傷の発生を未然に防止する
ことができる。
Therefore, when the surplus refrigeration capacity of the refrigeration side refrigerant circuit 6 is extremely large, the ice temperature detecting means 44 detects the temperature of the ice in the heat storage tank 18. Then, when the temperature of the ice becomes equal to or lower than the predetermined temperature or the water level in the heat storage tank 18 becomes equal to or higher than the predetermined value by the water level detecting means 45, the refrigeration-side heat storage electromagnetic valve 8 in the refrigeration-side refrigerant circuit 6 is closed. For this reason, the amount of ice in the heat storage tank 18 does not increase and damage to the piping in the heat storage tank 18 or the heat storage tank 18 itself can be prevented.

【0053】実施の形態6.図7も、この発明の他の実
施の形態の一例を示す制御回路図である。図において、
前述の図4と同符号は相当部分を示し、46は空調側冷
媒回路25の運転モードを決定する運転モード決定手段
で、例えばスイッチからなり運転モード決定手段46に
よって暖房運転となった場合、空調側放熱用電磁弁41
を閉成し、空調側放熱バイパス電磁弁42を開放する制
御回路440が形成されている。
Embodiment 6 FIG. FIG. 7 is a control circuit diagram showing an example of another embodiment of the present invention. In the figure,
The same reference numerals as those in FIG. 4 denote the corresponding parts, and 46 is an operation mode determining means for determining the operation mode of the air-conditioning side refrigerant circuit 25. Side heat radiation solenoid valve 41
And a control circuit 440 for closing the air-conditioning side heat radiation bypass electromagnetic valve 42 is formed.

【0054】したがって、空調側冷媒回路25が暖房運
転している場合、空調側放熱用電磁弁41を閉成し、空
調側放熱バイパス電磁弁42を開放する。これにより冷
蔵側冷媒回路6で余剰となった冷熱を蓄熱槽18内の蓄
熱剤に蓄える。そして、その冷熱を空調側熱交換器23
により冷蔵側冷却環境に関連した空調冷却環境において
熱交換することがなくなり蓄熱槽18内の氷を余分に消
費しないようにすることができる。
Therefore, when the air-conditioning-side refrigerant circuit 25 is performing the heating operation, the air-conditioning-side radiation electromagnetic valve 41 is closed, and the air-conditioning-side radiation bypass electromagnetic valve 42 is opened. Thereby, the surplus cold heat in the refrigeration side refrigerant circuit 6 is stored in the heat storage agent in the heat storage tank 18. Then, the cold heat is transferred to the air-conditioning side heat exchanger 23.
Thereby, heat exchange does not occur in the air-conditioning cooling environment related to the refrigeration side cooling environment, and the ice in the heat storage tank 18 can be prevented from being consumed excessively.

【0055】実施の形態7.図8も、この発明の他の実
施の形態の一例を示す制御回路図である。図において、
前述の図4と同符号は相当部分を示し、47は空調側冷
媒回路25の四方弁の出力接点、48は補助リレーであ
る。そして、四方弁の出力接点47が閉成すると空調側
放熱用電磁弁41を閉成し、空調側放熱バイパス電磁弁
42を開放する制御回路440が形成されている。
Embodiment 7 FIG. FIG. 8 is a control circuit diagram showing an example of another embodiment of the present invention. In the figure,
The same reference numerals as those in FIG. 4 described above denote corresponding parts, 47 is an output contact of a four-way valve of the air conditioning-side refrigerant circuit 25, and 48 is an auxiliary relay. When the output contact 47 of the four-way valve is closed, a control circuit 440 that closes the air-conditioning-side heat radiation electromagnetic valve 41 and opens the air-conditioning-side heat radiation bypass electromagnetic valve 42 is formed.

【0056】したがって、空調側冷媒回路25の四方弁
の出力接点47が閉成した場合、空調側放熱用電磁弁4
1を閉成し、空調側放熱バイパス電磁弁42を開放す
る。これにより冷蔵側冷媒回路6で余剰となった冷熱を
蓄熱槽18内の蓄熱剤に蓄える。そして、その冷熱を空
調側熱交換器23により冷蔵側冷却環境に関連した空調
冷却環境において熱交換することがなくなり蓄熱槽18
内の氷を余分に消費しないようにすることができる。
Therefore, when the output contact 47 of the four-way valve of the air-conditioning-side refrigerant circuit 25 is closed, the air-conditioning-side radiation electromagnetic valve 4 is closed.
1 is closed, and the air-conditioning side heat radiation bypass solenoid valve 42 is opened. Thereby, the surplus cold heat in the refrigeration side refrigerant circuit 6 is stored in the heat storage agent in the heat storage tank 18. The heat is not exchanged by the air-conditioning heat exchanger 23 in the air-conditioning cooling environment related to the refrigeration-side cooling environment.
You can avoid consuming extra ice inside.

【0057】実施の形態8.図9も、この発明の他の実
施の形態の一例を示す制御回路図である。図において、
前述の図4と同符号は相当部分を示し、49は配管温度
検出装置で、例えばサーモスタットからなり冷熱供給回
路26の配管温度を検知する。そして、配管温度が所定
温度以上になると接点が閉成し、補助リレー50が動作
して空調側放熱用電磁弁41を閉成し、空調側放熱バイ
パス電磁弁42を開放する制御回路440が形成されて
いる。
Embodiment 8 FIG. FIG. 9 is a control circuit diagram showing another example of the embodiment of the present invention. In the figure,
The same reference numerals as those in FIG. 4 described above denote corresponding parts, and reference numeral 49 denotes a pipe temperature detecting device which is made of, for example, a thermostat and detects the pipe temperature of the cooling / heating supply circuit 26. Then, when the pipe temperature becomes equal to or higher than a predetermined temperature, the contact is closed, the auxiliary relay 50 is operated to close the air-conditioning-side heat radiation electromagnetic valve 41, and the control circuit 440 is opened to open the air-conditioning side heat radiation bypass electromagnetic valve 42. Have been.

【0058】したがって、冷蔵側冷媒回路6で余剰とな
った冷熱を蓄熱槽18内の蓄熱剤に蓄える。そして、そ
の冷熱が空調側熱交換器23により冷蔵側冷却環境に関
連した空調冷却環境において熱交換して消費される場
合、空調側冷媒回路25の空調側熱交換器23と熱交換
する冷熱供給回路26の配管温度が所定値以上になる
と、空調側放熱用電磁弁41を閉成し、空調側放熱バイ
パス電磁弁42を開放する。これにより、空調側熱交換
器23で熱交換せず、空調側冷媒回路25の液温が上昇
しなくなって冷房能力が逆に低下しないようにすること
ができる。
Therefore, surplus cold heat in the refrigeration side refrigerant circuit 6 is stored in the heat storage agent in the heat storage tank 18. When the cold heat is exchanged by the air-conditioning heat exchanger 23 in the air-conditioning cooling environment related to the refrigeration-side cooling environment, the heat is exchanged with the air-conditioning heat exchanger 23 of the air-conditioning refrigerant circuit 25 to supply cold heat. When the piping temperature of the circuit 26 becomes equal to or higher than a predetermined value, the air-conditioning-side heat radiation electromagnetic valve 41 is closed and the air-conditioning side heat radiation bypass electromagnetic valve 42 is opened. Thus, heat exchange is not performed in the air-conditioning-side heat exchanger 23, so that the liquid temperature of the air-conditioning-side refrigerant circuit 25 does not rise and the cooling capacity can be prevented from decreasing.

【0059】実施の形態9.図10も、この発明の他の
実施の形態の一例を示す冷媒回路図である。図におい
て、前述の図4と同符号は相当部分を示し、51は冷凍
側熱交換器、52は冷凍側冷熱供給回路で、蓄熱槽18
の蓄熱剤から冷熱を冷凍側冷熱供給用熱交換器53に供
給する。
Embodiment 9 FIG. 10 is also a refrigerant circuit diagram showing an example of another embodiment of the present invention. In the drawing, the same reference numerals as those in FIG. 4 described above denote corresponding parts, 51 is a freezing-side heat exchanger, 52 is a freezing-side cold heat supply circuit, and the heat storage tank 18 is provided.
From the heat storage agent is supplied to the refrigeration-side cold-heat supply heat exchanger 53.

【0060】上記のように構成された複合型冷媒回路設
備において、蓄熱槽18から冷凍側冷熱供給回路52に
より送出される蓄熱剤によって、冷凍側冷熱供給用熱交
換器53と冷凍側熱交換器51の間で熱交換されること
により冷媒が冷却される。これにより、より低い温度に
冷却された冷媒が冷凍側絞り装置14、冷凍側蒸発器1
5に供給される。
In the combined refrigerant circuit equipment configured as described above, the heat storage agent delivered from the heat storage tank 18 by the freezing side cold heat supply circuit 52 causes the freezing side cold heat supply heat exchanger 53 and the freezing side heat exchanger 53 to operate. The refrigerant is cooled by exchanging heat between 51. Thereby, the refrigerant cooled to a lower temperature is supplied to the freezing-side expansion device 14 and the freezing-side evaporator 1.
5 is supplied.

【0061】このようにして、余剰の冷凍能力として冷
蔵側冷媒回路6から蓄熱槽18の蓄熱剤に蓄えられた冷
熱が、冷蔵側冷媒回路6、空調側冷媒回路25及び冷凍
側冷媒回路16に共用される蓄熱槽18の蓄熱剤を介し
て、空調側冷媒回路25及び冷凍側冷媒回路16によっ
て消費される。
In this manner, the cold heat stored in the heat storage agent in the heat storage tank 18 from the refrigeration side refrigerant circuit 6 as surplus refrigeration capacity is transferred to the refrigeration side refrigerant circuit 6, the air conditioning side refrigerant circuit 25, and the refrigeration side refrigerant circuit 16. It is consumed by the air-conditioning-side refrigerant circuit 25 and the refrigeration-side refrigerant circuit 16 via the shared heat storage agent of the heat storage tank 18.

【0062】これにより、冷蔵側冷媒回路6で余剰とな
った冷熱が蓄熱槽18内の蓄熱剤に蓄えられる。そし
て、その冷熱が空調側熱交換器23により冷蔵側冷却環
境に関連した空調冷却環境において熱交換して消費され
る場合、冷凍側冷媒回路16に供給する冷凍側冷熱供給
用熱交換器53を有する冷凍側冷熱供給回路52が設け
られている。このため、空調側冷媒回路25の温度低下
が抑制されて空調側熱交換器23の凍結を防ぐことがで
きる。
As a result, surplus cold heat in the refrigeration side refrigerant circuit 6 is stored in the heat storage agent in the heat storage tank 18. When the cold heat is exchanged by the air-conditioning heat exchanger 23 in the air-conditioning cooling environment related to the refrigeration-side cooling environment and is consumed, the heat exchanger 53 for supplying the refrigerating-side cold heat supplied to the refrigerating-side refrigerant circuit 16 is used. The refrigeration-side cold / heat supply circuit 52 is provided. For this reason, the temperature of the air-conditioning-side refrigerant circuit 25 is suppressed from lowering, and the freezing of the air-conditioning-side heat exchanger 23 can be prevented.

【0063】また、蓄熱槽18の蓄熱剤から冷熱を空調
側熱交換器23に供給する空調側冷熱供給用熱交換器2
7及び冷凍側熱交換器51を介して冷凍側冷媒回路16
に供給する冷凍側冷熱供給用熱交換器53を有する冷凍
側冷熱供給回路52が設けられて、冷凍側熱交換器51
を介し冷凍側冷媒回路16に供給する冷凍側冷熱供給用
熱交換器53が常時付勢されるように構成されている。
The heat exchanger 2 for supplying cold air from the heat storage tank 18 to the air conditioner-side heat exchanger 23 for supplying cold heat from the heat storage agent to the air conditioner-side heat exchanger 23.
7 and the refrigeration side refrigerant circuit 16 via the refrigeration side heat exchanger 51.
A refrigeration-side cold-heat supply circuit 52 having a refrigeration-side cold-heat supply heat exchanger 53 for supplying the refrigeration-side heat exchanger 51 is provided.
The refrigeration-side cold-heat supply heat exchanger 53 that is supplied to the refrigeration-side refrigerant circuit 16 via the refrigeration circuit is always energized.

【0064】これにより、冷蔵側冷媒回路6で余剰とな
った冷熱を蓄熱槽18内の蓄熱剤に蓄えられる。そし
て、その冷熱が空調側熱交換器23により冷蔵側冷却環
境に関連した空調冷却環境において熱交換して消費され
る場合、冷凍側冷媒回路16に供給する冷凍側冷熱供給
用熱交換器53を有する冷凍側冷熱供給回路52が設け
られている。このため、空調側冷媒回路25の温度低下
が抑制されて空調側熱交換器23が凍結を防ぐことがで
きる。
Thus, the surplus cold heat in the refrigeration side refrigerant circuit 6 is stored in the heat storage agent in the heat storage tank 18. When the cold heat is exchanged by the air-conditioning heat exchanger 23 in the air-conditioning cooling environment related to the refrigeration-side cooling environment and is consumed, the heat exchanger 53 for supplying the refrigerating-side cold heat supplied to the refrigerating-side refrigerant circuit 16 is used. The refrigeration-side cold / heat supply circuit 52 is provided. Therefore, the temperature of the air-conditioning-side refrigerant circuit 25 is prevented from lowering, and the air-conditioning-side heat exchanger 23 can be prevented from freezing.

【0065】[0065]

【発明の効果】この発明は以上説明したように、冷凍側
圧縮機、冷凍側凝縮器、冷凍側絞り装置及び冷凍側冷却
環境を冷却する冷凍側蒸発器を主要機器として構成され
た冷凍側冷媒回路と、この冷凍側冷媒回路と並列に形成
された冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装
置及び冷蔵側蓄熱用熱交換器を主要機器として構成され
た冷蔵側蓄熱用冷媒回路と、冷蔵側冷媒回路の最大冷凍
能力と冷蔵側冷媒回路の冷蔵側冷却環境の所要冷凍能力
との差に対応した冷熱を蓄冷する蓄熱槽と、この蓄熱槽
の蓄熱剤からの冷熱を冷蔵側冷却環境に関連した空調冷
却環境に対し直接的に熱交換する冷熱供給回路とを設け
たものである。
As described above, the present invention relates to a refrigeration-side refrigerant mainly composed of a refrigeration-side compressor, a refrigeration-side condenser, a refrigeration-side expansion device, and a refrigeration-side evaporator for cooling a refrigeration-side cooling environment. A refrigeration-side heat storage refrigerant circuit connected to a refrigeration-side refrigerant circuit formed in parallel with the refrigeration-side refrigerant circuit and configured as a refrigeration-side heat storage expansion device and a refrigeration-side heat storage heat exchanger as main components. A heat storage tank for storing cold heat corresponding to the difference between the maximum refrigeration capacity of the refrigeration-side refrigerant circuit and the required refrigeration capacity of the refrigeration-side cooling circuit of the refrigeration-side refrigerant circuit, and refrigeration-side cooling of the heat from the heat storage agent in the heat storage tank. A cooling / heat supply circuit for directly exchanging heat with an air conditioning cooling environment related to the environment.

【0066】これによって、冷蔵側冷媒回路で余剰にな
った冷熱を冷蔵側冷媒回路及び空調側冷媒回路に共用さ
れる蓄熱槽内の蓄熱剤に蓄えて、その冷熱が冷蔵側冷媒
回路の冷蔵側冷却環境に関連した空調冷却環境における
空調負荷によって消費される。したがって、冷凍側冷媒
回路の容量が小さくて設備全体とし総合的な冷凍効率の
向上作用が得られ難い場合であっても、総合的な冷凍効
率を向上する効果がある。
Thus, the surplus cold heat in the refrigeration side refrigerant circuit is stored in the heat storage agent in the heat storage tank shared by the refrigeration side refrigerant circuit and the air conditioning side refrigerant circuit, and the cold heat is stored in the refrigeration side refrigerant circuit. Air conditioning related to the cooling environment It is consumed by the air conditioning load in the cooling environment. Therefore, even when the capacity of the refrigeration side refrigerant circuit is small and it is difficult to improve the overall refrigeration efficiency as the entire facility, there is an effect of improving the overall refrigeration efficiency.

【0067】また、この発明は以上説明したように、冷
凍側圧縮機、冷凍側凝縮器、冷凍側絞り装置及び冷凍側
冷却環境を冷却する冷凍側蒸発器を主要機器として構成
された冷凍側冷媒回路と、この冷凍側冷媒回路と並列に
形成された冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞
り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成
された冷蔵側蓄熱用冷媒回路と、冷蔵側冷媒回路の最大
冷凍能力と冷蔵側冷媒回路の冷蔵側冷却環境の所要冷凍
能力との差に対応した冷熱を蓄冷する蓄熱槽と、空調側
圧縮機、空調側凝縮器、空調側熱交換器、空調側絞り装
置及び空調側冷却環境を冷却する空調側蒸発器を主要機
器として構成された空調側冷媒回路と、蓄熱槽の蓄熱剤
からの冷熱を空調側熱交換器を介し空調側冷媒回路に供
給する冷熱供給用熱交換器が設けられた冷熱供給回路と
を設けたものである。
Further, as described above, the present invention provides a refrigerating-side refrigerant having a refrigerating-side compressor, a refrigerating-side condenser, a refrigerating-side expansion device, and a refrigerating-side evaporator for cooling a refrigerating-side cooling environment as main components. A refrigeration-side heat storage refrigerant circuit connected to a refrigeration-side refrigerant circuit formed in parallel with the refrigeration-side refrigerant circuit and configured as a refrigeration-side heat storage expansion device and a refrigeration-side heat storage heat exchanger as main components. A heat storage tank for storing cold heat corresponding to the difference between the maximum refrigerating capacity of the refrigerating side refrigerant circuit and the required refrigerating capacity of the refrigerating side refrigerant circuit, an air conditioning side compressor, an air conditioning side condenser, and an air conditioning side heat. An air conditioner-side refrigerant circuit mainly composed of an exchanger, an air conditioner-side expansion device, and an air-conditioner-side evaporator that cools the air-conditioner-side cooling environment, and cools heat from a heat storage agent in a heat storage tank through the air conditioner-side heat exchanger through the air conditioner-side heat exchanger. For supplying cold heat to the refrigerant circuit It is provided with a the cold supply circuit exchanger is provided.

【0068】これによって、冷蔵側冷媒回路で余剰にな
った冷熱を冷蔵側冷媒回路及び空調側冷媒回路に共用さ
れる蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調側熱交
換器及び冷熱供給用熱交換器を介し空調側冷媒回路によ
って消費される。したがって、冷凍側冷媒回路の容量が
小さく設備全体とし総合的な冷凍効率の向上作用が得ら
れ難い場合であっても、総合的な冷凍効率を向上する効
果がある。また、空調側熱交換器において液冷媒がさら
に低い温度に冷却されて、過冷却度を大きくすることが
でき、空調側冷媒回路の能力が向上するので、空調側冷
媒回路の容量を小さくすることができる。このため、電
力の低減が可能になり設備全体の契約受電容量増を要せ
ず、運転費を低減する効果がある。
In this way, the surplus cold heat in the refrigeration-side refrigerant circuit is stored in the heat storage agent in the heat storage tank shared by the refrigeration-side refrigerant circuit and the air-conditioning-side refrigerant circuit. It is consumed by the air conditioning-side refrigerant circuit via the supply heat exchanger. Therefore, even when the capacity of the refrigeration-side refrigerant circuit is small and it is difficult to improve the overall refrigeration efficiency for the entire facility, there is an effect of improving the overall refrigeration efficiency. Further, since the liquid refrigerant is cooled to a lower temperature in the air-conditioning side heat exchanger, the degree of supercooling can be increased, and the capacity of the air-conditioning side refrigerant circuit is improved. Can be. For this reason, it is possible to reduce the electric power, and it is not necessary to increase the contract power receiving capacity of the entire equipment, and there is an effect of reducing the operating cost.

【0069】また、この発明は以上説明したように、冷
凍側圧縮機、冷凍側凝縮器、冷凍側絞り装置及び冷凍側
冷却環境を冷却する冷凍側蒸発器を主要機器として構成
された冷凍側冷媒回路と、この冷凍側冷媒回路と並列に
形成された冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞
り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成
された冷蔵側蓄熱用冷媒回路と、冷蔵側冷媒回路の最大
冷凍能力と冷蔵側冷却環境の所要冷凍能力との差に対応
した冷熱を蓄冷する蓄熱槽と、この蓄熱槽の蓄熱剤から
の冷熱を冷蔵側冷却環境に関連した空調冷却環境に対し
て、熱交換する空調用熱交換器が設けられた冷熱供給回
路とを設けたものである。
Further, as described above, the present invention relates to a refrigerating-side refrigerant mainly comprising a refrigerating-side compressor, a refrigerating-side condenser, a refrigerating-side expansion device, and a refrigerating-side evaporator for cooling a refrigerating-side cooling environment. A refrigeration-side heat storage refrigerant circuit connected to a refrigeration-side refrigerant circuit formed in parallel with the refrigeration-side refrigerant circuit and configured as a refrigeration-side heat storage expansion device and a refrigeration-side heat storage heat exchanger as main components. A heat storage tank for storing cold heat corresponding to a difference between the maximum refrigeration capacity of the refrigeration side refrigerant circuit and the required refrigeration capacity of the refrigeration side cooling environment, and air conditioning related to the refrigeration side cooling environment by transferring the cold heat from the heat storage agent in the heat storage tank. A cooling heat supply circuit provided with an air-conditioning heat exchanger for exchanging heat with a cooling environment is provided.

【0070】これによって、冷蔵側冷媒回路で余剰にな
った冷熱を冷蔵側冷媒回路及び空調側冷媒回路に共用さ
れる蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調用熱交
換器により冷蔵側冷却環境に関連した空調冷却環境にお
いて熱交換することによって消費される。したがって、
冷凍側冷媒回路の容量が小さく設備全体とし総合的な冷
凍効率の向上作用が得られ難い場合であっても、総合的
な冷凍効率を向上する効果がある。
[0070] Thereby, the surplus cold heat in the refrigeration side refrigerant circuit is stored in the heat storage agent in the heat storage tank shared by the refrigeration side refrigerant circuit and the air conditioning side refrigerant circuit, and the cold heat is refrigerated by the air conditioning heat exchanger. It is consumed by exchanging heat in an air conditioning cooling environment associated with the side cooling environment. Therefore,
Even in the case where the capacity of the refrigeration side refrigerant circuit is small and it is difficult to improve the overall refrigeration efficiency for the entire facility, there is an effect of improving the overall refrigeration efficiency.

【0071】また、この発明は以上説明したように、蓄
熱槽内の氷の温度を検知する氷温検知手段と、この氷温
検知手段の出力値が所定値以下になると冷蔵側冷媒回路
内の冷蔵側蓄熱用電磁弁を閉成する制御回路とを設けた
ものである。
Further, as described above, the present invention relates to an ice temperature detecting means for detecting the temperature of ice in the heat storage tank, and when the output value of the ice temperature detecting means becomes equal to or lower than a predetermined value, the cooling circuit in the refrigeration-side refrigerant circuit. And a control circuit for closing the refrigeration side heat storage solenoid valve.

【0072】これによって、冷蔵側冷媒回路の余剰冷凍
能力が非常に大きい場合に、氷温検知手段によって蓄熱
槽内の氷の温度を検知する。そして、氷の温度が所定温
度以下になると冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁
が閉成されるので、蓄熱槽内の氷の量が多くならず蓄熱
槽内の配管又は蓄熱槽自体の損傷発生を未然に防止する
効果がある。
Thus, when the surplus refrigeration capacity of the refrigeration side refrigerant circuit is extremely large, the temperature of the ice in the heat storage tank is detected by the ice temperature detecting means. When the temperature of the ice drops below a predetermined temperature, the refrigeration-side heat storage solenoid valve in the refrigeration-side refrigerant circuit is closed, so that the amount of ice in the heat storage tank does not increase and the pipes in the heat storage tank or the heat storage tank itself are used. This has the effect of preventing damage from occurring.

【0073】また、この発明は以上説明したように、蓄
熱槽内の氷の温度を検知する氷温検知手段と、蓄熱槽内
の水位を検知する水位検知手段と、氷温検知手段の出力
値が所定値以下、水位検知手段の出力値が所定値以上の
いずれかになると冷蔵側冷媒回路内の冷蔵側蓄熱用電磁
弁を閉成する制御回路とを設けたものである。
As described above, the present invention provides an ice temperature detecting means for detecting the temperature of ice in a heat storage tank, a water level detecting means for detecting a water level in the heat storage tank, and an output value of the ice temperature detecting means. And a control circuit that closes the refrigeration-side heat storage solenoid valve in the refrigeration-side refrigerant circuit when the output value of the water level detection means is equal to or less than a predetermined value and is equal to or more than the predetermined value.

【0074】これによって、冷蔵側冷媒回路の余剰冷凍
能力が非常に大きい場合に、氷温検知手段によって蓄熱
槽の氷の温度を検知する。そして、氷の温度が所定温度
以下になるか又は水位検知手段による蓄熱槽内の水位が
所定値以上になると冷蔵側冷媒回路内の冷蔵側蓄熱用電
磁弁が閉成されるので、蓄熱槽内の氷の量が多くならず
蓄熱槽内の配管又は蓄熱槽自体の損傷発生を未然に防止
する効果がある。
Thus, when the surplus refrigeration capacity of the refrigeration-side refrigerant circuit is extremely large, the temperature of ice in the heat storage tank is detected by the ice temperature detecting means. Then, when the temperature of the ice becomes equal to or lower than a predetermined temperature or the water level in the heat storage tank by the water level detecting means becomes equal to or higher than a predetermined value, the refrigeration-side heat storage electromagnetic valve in the refrigeration-side refrigerant circuit is closed. The amount of ice does not increase so that there is an effect of preventing damage to piping in the heat storage tank or the heat storage tank itself.

【0075】また、この発明は以上説明したように、空
調側冷媒回路の空調側熱交換器と直列に接続された空調
側放熱用電磁弁と、空調側熱交換器及び空調側放熱用電
磁弁と並列に接続された空調側放熱バイパス電磁弁と、
空調側冷媒回路の運転モードを設定する運転モード決定
手段と、この運転モード決定手段の設定による暖房運転
時に空調側放熱用電磁弁を閉成し、かつ空調側放熱バイ
パス電磁弁を開放する制御回路とを設けたものである。
Further, as described above, the present invention relates to an air-conditioning-side heat-dissipating solenoid valve connected in series with an air-conditioning-side heat exchanger of an air-conditioning-side refrigerant circuit; An air-conditioning-side radiation bypass solenoid valve connected in parallel with
An operation mode determining means for setting an operation mode of the air-conditioning-side refrigerant circuit, and a control circuit for closing the air-conditioning-side radiation electromagnetic valve and opening the air-conditioning-side radiation bypass electromagnetic valve during heating operation by setting of the operation mode determining means. Are provided.

【0076】これによって、空調側冷媒回路の暖房運転
時に、空調側放熱用電磁弁が閉成されて空調側放熱バイ
パス電磁弁が開放される。これにより冷蔵側冷媒回路で
余剰となった冷熱が蓄熱槽内の蓄熱剤に蓄えられる。そ
して、その冷熱を空調側熱交換器により冷蔵側冷却環境
に関連した空調冷却環境において熱交換することがなく
なり、蓄熱槽内の氷の浪費を抑制する効果がある。
Thus, during the heating operation of the air-conditioning-side refrigerant circuit, the air-conditioning-side radiation electromagnetic valve is closed and the air-conditioning-side radiation bypass electromagnetic valve is opened. Thereby, surplus cold heat in the refrigeration side refrigerant circuit is stored in the heat storage agent in the heat storage tank. Then, the cold heat is not exchanged by the air-conditioning heat exchanger in the air-conditioning cooling environment related to the refrigeration-side cooling environment, and there is an effect of suppressing the waste of ice in the heat storage tank.

【0077】また、この発明は以上説明したように、空
調側冷媒回路の空調側熱交換器と直列に接続された空調
側放熱用電磁弁と、空調側熱交換器及び空調側放熱用電
磁弁と並列に接続された空調側放熱バイパス電磁弁と、
空調側冷媒回路の四方弁の出力接点の閉成時に空調側放
熱用電磁弁を閉成し、かつ空調側放熱バイパス電磁弁を
開放する制御回路とを設けたものである。
Further, as described above, the present invention relates to an air-conditioning heat-dissipating solenoid valve connected in series with an air-conditioning-side heat exchanger of an air-conditioning-side refrigerant circuit; An air-conditioning-side radiation bypass solenoid valve connected in parallel with
And a control circuit for closing the air-conditioning-side radiation electromagnetic valve and opening the air-conditioning-side radiation bypass electromagnetic valve when the output contact of the four-way valve of the air conditioning-side refrigerant circuit is closed.

【0078】これによって、空調側冷媒回路の四方弁の
出力接点の閉成時に、空調側放熱用電磁弁が閉成され、
空調側放熱バイパス電磁弁が開放される。これにより冷
蔵側冷媒回路で余剰となった冷熱が蓄熱槽内の蓄熱剤に
蓄えられる。そして、その冷熱を空調側熱交換器により
冷蔵側冷却環境に関連した空調冷却環境において熱交換
することがなくなり、蓄熱槽内の氷の浪費を抑制する効
果がある。
Thus, when the output contact of the four-way valve of the air conditioning side refrigerant circuit is closed, the air conditioning side heat radiation solenoid valve is closed,
The air-conditioning side heat radiation bypass solenoid valve is opened. Thereby, surplus cold heat in the refrigeration side refrigerant circuit is stored in the heat storage agent in the heat storage tank. Then, the cold heat is not exchanged by the air-conditioning heat exchanger in the air-conditioning cooling environment related to the refrigeration-side cooling environment, and there is an effect of suppressing the waste of ice in the heat storage tank.

【0079】また、この発明は以上説明したように、空
調側冷媒回路の空調側熱交換器と直列に接続された空調
側放熱用電磁弁と、空調側熱交換器及び空調側放熱用電
磁弁と並列に接続された空調側放熱バイパス電磁弁と、
冷熱供給回路の配管温度を検出する配管温度検出装置
と、この配管温度検出装置の出力値が所定値以上になる
と空調側放熱用電磁弁を閉成し、かつ空調側放熱バイパ
ス電磁弁を開放する制御回路とを設けたものである。
Further, as described above, the present invention relates to an air-conditioning-side heat-dissipating solenoid valve connected in series with an air-conditioning-side heat exchanger of an air-conditioning-side refrigerant circuit; An air-conditioning-side radiation bypass solenoid valve connected in parallel with
A pipe temperature detecting device for detecting a pipe temperature of the cold heat supply circuit, and when an output value of the pipe temperature detecting device becomes a predetermined value or more, the air-conditioning-side heat radiation solenoid valve is closed and the air-conditioning side heat radiation bypass solenoid valve is opened. And a control circuit.

【0080】これによって、冷蔵側冷媒回路で余剰とな
った冷熱が蓄熱槽内の蓄熱剤に蓄えられる。そして、そ
の冷熱が空調側熱交換器により冷蔵側冷却環境に関連し
た空調冷却環境において熱交換して消費される場合、空
調側冷媒回路の空調側熱交換器と熱交換する冷熱供給回
路の配管温度が所定値以上になると、空調側放熱用電磁
弁を閉成し、空調側放熱バイパス電磁弁を開放する。こ
れにより、空調側熱交換器で熱交換せず、空調側冷媒回
路の液温が上昇しなくなって冷房能力が逆に低下するこ
とを防ぐ効果がある。
Thus, surplus cold heat in the refrigeration-side refrigerant circuit is stored in the heat storage agent in the heat storage tank. When the cold heat is consumed by the air-conditioning heat exchanger by exchanging heat in an air-conditioning cooling environment related to the refrigeration-side cooling environment, piping of a cold-heat supply circuit that exchanges heat with the air-conditioning heat exchanger of the air-conditioning refrigerant circuit. When the temperature becomes equal to or higher than the predetermined value, the air-conditioning-side heat radiation solenoid valve is closed and the air-conditioning side heat radiation bypass solenoid valve is opened. This has the effect of preventing heat from being exchanged in the air-conditioning-side heat exchanger and preventing the liquid temperature of the air-conditioning-side refrigerant circuit from rising and consequently reducing the cooling capacity.

【0081】また、この発明は以上説明したように、蓄
熱槽の蓄熱剤からの冷熱を空調側熱交換器を介して空調
側冷媒回路に供給する空調側冷熱供給用熱交換器と、蓄
熱槽の蓄熱剤からの冷熱を冷凍側熱交換器を介し冷凍側
冷媒回路に供給する冷凍側冷熱供給用熱交換器を有する
冷凍側冷熱供給回路とを設けたものである。
Further, as described above, the present invention provides a heat exchanger for supplying air-conditioning-side cold heat to supply cooling air from a heat storage agent in a heat storage tank to an air-conditioning-side refrigerant circuit via an air-conditioning-side heat exchanger. And a refrigeration-side cold-heat supply circuit having a refrigeration-side cold-heat supply heat exchanger that supplies cold heat from the heat storage agent to the refrigeration-side refrigerant circuit via the refrigeration-side heat exchanger.

【0082】これによって、冷蔵側冷媒回路で余剰とな
った冷熱を蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調
側熱交換器により冷蔵側冷却環境に関連した空調冷却環
境において熱交換して消費される場合、冷凍側冷媒回路
に供給する冷凍側冷熱供給用熱交換器を有する冷凍側冷
熱供給回路が設けられているので、空調側冷媒回路の温
度低下が抑制されて空調側熱交換器の凍結発生を防止す
る効果がある。
Thus, surplus cold heat in the refrigeration side refrigerant circuit is stored in the heat storage agent in the heat storage tank, and the cold heat is exchanged by the air conditioning side heat exchanger in an air conditioning cooling environment related to the refrigeration side cooling environment. When the refrigeration circuit is consumed, the refrigeration-side cold-heat supply circuit having the refrigeration-side refrigeration supply circuit for supplying the refrigeration-side refrigerant circuit is provided. This has the effect of preventing the freezing of the vessel.

【0083】また、この発明は以上説明したように、蓄
熱槽の蓄熱剤からの冷熱を空調側熱交換器を介して空調
側冷媒回路に供給する空調側冷熱供給用熱交換器と、蓄
熱槽の蓄熱剤からの冷熱を冷凍側熱交換器を介し冷凍側
冷媒回路に供給する冷凍側冷熱供給用熱交換器が設けら
れた冷凍側冷熱供給回路とを設けたものである。そし
て、冷凍側熱交換器を介して冷熱を冷凍側冷媒回路に供
給する冷凍側冷熱供給用熱交換器を常時付勢するもので
ある。
Further, as described above, the present invention relates to an air-conditioning-side cold-heat supply heat exchanger that supplies cold heat from a heat storage agent in a heat-storage tank to an air-conditioning-side refrigerant circuit via an air-conditioning-side heat exchanger. And a refrigeration-side cold-heat supply circuit provided with a refrigeration-side cold-heat supply heat exchanger that supplies cold heat from the heat storage agent to the refrigeration-side refrigerant circuit via the refrigeration-side heat exchanger. Then, the heat exchanger for supplying refrigeration-side cold heat, which supplies cold heat to the refrigeration-side refrigerant circuit via the refrigeration-side heat exchanger, is always energized.

【0084】これによって、冷蔵側冷媒回路で余剰とな
った冷熱が蓄熱槽内の蓄熱剤に蓄えられる。そして、そ
の冷熱が空調側熱交換器により冷蔵側冷却環境に関連し
た空調冷却環境において熱交換して消費される場合に、
冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器を
有する冷凍側冷熱供給回路が設けられているので、空調
側冷媒回路の温度低下が抑制されて空調側熱交換器の凍
結を防止する効果がある。
Thus, surplus cold heat in the refrigeration-side refrigerant circuit is stored in the heat storage agent in the heat storage tank. Then, when the cold heat is exchanged and consumed in the air conditioning cooling environment related to the refrigeration side cooling environment by the air conditioning side heat exchanger,
Since the refrigerating-side cold-heat supply circuit having the refrigerating-side cold-heat supplying heat exchanger to be supplied to the refrigerating-side refrigerant circuit is provided, a decrease in the temperature of the air-conditioning-side refrigerant circuit is suppressed, and the freezing of the air-conditioning-side heat exchanger is prevented. effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1を示す冷媒回路図。FIG. 1 is a refrigerant circuit diagram showing Embodiment 1 of the present invention.

【図2】 この発明の実施の形態2を示す冷媒回路図。FIG. 2 is a refrigerant circuit diagram showing Embodiment 2 of the present invention.

【図3】 この発明の実施の形態3を示す冷媒回路図。FIG. 3 is a refrigerant circuit diagram showing a third embodiment of the present invention.

【図4】 この発明の実施の形態4を示す冷媒回路図。FIG. 4 is a refrigerant circuit diagram showing a fourth embodiment of the present invention.

【図5】 図4の冷媒回路に係わる制御回路図。FIG. 5 is a control circuit diagram relating to the refrigerant circuit of FIG. 4;

【図6】 この発明の実施の形態5を示す制御回路図。FIG. 6 is a control circuit diagram showing a fifth embodiment of the present invention.

【図7】 この発明の実施の形態6を示す制御回路図。FIG. 7 is a control circuit diagram showing a sixth embodiment of the present invention.

【図8】 この発明の実施の形態7を示す制御回路図。FIG. 8 is a control circuit diagram showing a seventh embodiment of the present invention.

【図9】 この発明の実施の形態8を示す制御回路図。FIG. 9 is a control circuit diagram showing Embodiment 8 of the present invention.

【図10】 この発明の実施の形態9を示す冷媒回路
図。
FIG. 10 is a refrigerant circuit diagram showing a ninth embodiment of the present invention.

【図11】 従来の複合型冷媒回路設備を示す冷媒回路
図。
FIG. 11 is a refrigerant circuit diagram showing a conventional composite refrigerant circuit equipment.

【符号の説明】[Explanation of symbols]

6 冷蔵側冷媒回路、7 冷蔵側蓄熱用熱交換器、8
冷蔵側蓄熱用電磁弁、9 冷蔵側蓄熱用絞り装置、10
冷蔵側蓄熱用冷媒回路、11 冷凍側圧縮機、12
冷凍側凝縮器、14 冷凍側絞り装置、15 冷凍側蒸
発器、16 冷凍側冷媒回路、18 蓄熱槽、20 空
調側圧縮機、21 空調側凝縮器、22空調側絞り装
置、23 空調側熱交換器、24 空調側蒸発器、25
空調側冷媒回路、26 冷熱供給回路、27 空調側
冷熱供給用熱交換器、29 空調用熱交換器、41 空
調側放熱用電磁弁、42 空調側放熱バイパス電磁弁、
44 氷温検知手段、45 水位検知手段、46 運転
モード決定手段、47 空調側冷媒回路の四方弁の出力
接点、49 配管温度検出装置、51 冷凍側熱交換
器、52 冷凍側冷熱供給回路、53 冷凍側冷熱供給
用熱交換器、440制御回路。
6 refrigeration side refrigerant circuit, 7 refrigeration side heat storage heat exchanger, 8
Refrigeration-side heat storage solenoid valve, 9 Refrigeration-side heat storage expansion device, 10
Refrigeration side heat storage refrigerant circuit, 11 Refrigeration side compressor, 12
Refrigeration side condenser, 14 Refrigeration side expansion device, 15 Refrigeration side evaporator, 16 Refrigeration side refrigerant circuit, 18 Heat storage tank, 20 Air conditioning side compressor, 21 Air conditioning side condenser, 22 Air conditioning side expansion device, 23 Air conditioning side heat exchange Vessel, 24 Air conditioning side evaporator, 25
Air conditioning side refrigerant circuit, 26 Cold heat supply circuit, 27 Air conditioning side cold heat supply heat exchanger, 29 Air conditioning side heat exchanger, 41 Air conditioning side heat dissipation solenoid valve, 42 Air conditioning side heat dissipation bypass solenoid valve,
44 ice temperature detecting means, 45 water level detecting means, 46 operating mode determining means, 47 output contact of the four-way valve of the air conditioning side refrigerant circuit, 49 pipe temperature detecting device, 51 freezing side heat exchanger, 52 freezing side cold heat supply circuit, 53 Heat exchanger for refrigeration side cold heat supply, 440 control circuit.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 冷凍側圧縮機、冷凍側凝縮器、冷凍側絞
り装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主
要機器として構成された冷凍側冷媒回路と、この冷凍側
冷媒回路と並列に形成された冷蔵側冷媒回路に接続さ
れ、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を
主要機器として構成された冷蔵側蓄熱用冷媒回路と、上
記冷蔵側冷媒回路の最大冷凍能力と上記冷蔵側冷媒回路
の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱
を蓄冷する蓄熱槽と、この蓄熱槽の蓄熱剤からの冷熱を
上記冷蔵側冷却環境に関連した空調冷却環境に対し熱交
換する冷熱供給回路とを備えた複合型冷媒回路設備。
1. A refrigeration-side refrigerant circuit mainly including a refrigeration-side compressor, a refrigeration-side condenser, a refrigeration-side expansion device, and a refrigeration-side evaporator for cooling a refrigeration-side cooling environment. A refrigeration-side heat storage refrigerant circuit connected to a refrigeration-side refrigerant circuit formed in parallel and configured with a refrigeration-side heat storage expansion device and a refrigeration-side heat storage heat exchanger as main components; and a maximum refrigeration of the refrigeration-side refrigerant circuit. A heat storage tank for storing cold heat corresponding to the difference between the capacity and the required refrigerating capacity of the refrigeration side cooling environment of the refrigeration side refrigerant circuit, and air conditioning cooling related to the refrigeration side cooling environment by transferring the cold heat from the heat storage agent in the heat storage tank. Combined refrigerant circuit equipment with a cold heat supply circuit that exchanges heat with the environment.
【請求項2】 冷凍側圧縮機、冷凍側凝縮器、冷凍側絞
り装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主
要機器として構成された冷凍側冷媒回路と、この冷凍側
冷媒回路と並列に形成された冷蔵側冷媒回路に接続さ
れ、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を
主要機器として構成された冷蔵側蓄熱用冷媒回路と、上
記冷蔵側冷媒回路の最大冷凍能力と上記冷蔵側冷媒回路
の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱
を蓄冷する蓄熱槽と、空調側圧縮機、空調側凝縮器、空
調側熱交換器、空調側絞り装置及び空調側冷却環境を冷
却する空調側蒸発器を主要機器として構成された空調側
冷媒回路と、上記蓄熱槽の蓄熱剤からの冷熱を上記空調
側熱交換器を介し上記空調側冷媒回路に供給する冷熱供
給用熱交換器が設けられた冷熱供給回路とを備えた複合
型冷媒回路設備。
2. A refrigeration-side refrigerant circuit mainly including a refrigeration-side compressor, a refrigeration-side condenser, a refrigeration-side expansion device, and a refrigeration-side evaporator for cooling a refrigeration-side cooling environment. A refrigeration-side heat storage refrigerant circuit connected to a refrigeration-side refrigerant circuit formed in parallel and configured with a refrigeration-side heat storage expansion device and a refrigeration-side heat storage heat exchanger as main components; and a maximum refrigeration of the refrigeration-side refrigerant circuit. A heat storage tank for storing cold heat corresponding to the difference between the capacity and the required refrigeration capacity of the refrigeration side refrigerant environment of the refrigeration side refrigerant circuit, an air conditioning side compressor, an air conditioning side condenser, an air conditioning side heat exchanger, and an air conditioning side expansion device And an air-conditioning-side refrigerant circuit configured with an air-conditioning-side evaporator that cools the air-conditioning-side cooling environment as main equipment, and supplying cold heat from a heat storage agent in the heat storage tank to the air-conditioning-side refrigerant circuit via the air-conditioning heat exchanger. A heat exchanger for supplying cold heat Combined refrigerant circuit equipment provided with a cooled heat supply circuit.
【請求項3】 冷凍側圧縮機、冷凍側凝縮器、冷凍側絞
り装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主
要機器として構成された冷凍側冷媒回路と、この冷凍側
冷媒回路と並列に形成された冷蔵側冷媒回路に接続さ
れ、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を
主要機器として構成された冷蔵側蓄熱用冷媒回路と、上
記冷蔵側冷媒回路の最大冷凍能力と上記冷蔵側冷媒回路
の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱
を蓄冷する蓄熱槽と、この蓄熱槽の蓄熱剤からの冷熱を
上記冷蔵側冷却環境に関連した空調冷却環境に対して、
熱交換する空調用熱交換器が設けられた冷熱供給回路と
を備えた複合型冷媒回路設備。
3. A refrigeration-side refrigerant circuit mainly comprising a refrigeration-side compressor, a refrigeration-side condenser, a refrigeration-side expansion device, and a refrigeration-side evaporator for cooling the refrigeration-side cooling environment. A refrigeration-side heat storage refrigerant circuit connected to a refrigeration-side refrigerant circuit formed in parallel and configured with a refrigeration-side heat storage expansion device and a refrigeration-side heat storage heat exchanger as main components; and a maximum refrigeration of the refrigeration-side refrigerant circuit. A heat storage tank for storing cold heat corresponding to the difference between the capacity and the required refrigerating capacity of the refrigeration side cooling environment of the refrigeration side refrigerant circuit, and air conditioning cooling related to the refrigeration side cooling environment by transferring the cold heat from the heat storage agent in the heat storage tank. For the environment
A composite refrigerant circuit facility comprising: a cold heat supply circuit provided with an air-conditioning heat exchanger for heat exchange.
【請求項4】 蓄熱槽内の氷の温度を検知する氷温検知
手段と、この氷温検知手段の出力値が所定値以下になる
と冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制
御回路とを備えたことを特徴とする請求項1〜請求項3
のいずれか一つに記載の複合型冷媒回路設備。
4. An ice temperature detecting means for detecting the temperature of ice in the heat storage tank, and a refrigeration-side heat storage solenoid valve in the refrigeration-side refrigerant circuit is closed when an output value of the ice temperature detecting means falls below a predetermined value. 4. A control circuit comprising:
The composite refrigerant circuit equipment according to any one of the above.
【請求項5】 蓄熱槽内の氷の温度を検知する氷温検知
手段と、上記蓄熱槽内の水位を検知する水位検知手段
と、上記氷温検知手段の出力値が所定値以下、上記水位
検知手段の出力値が所定値以上のいずれかになると冷蔵
側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制御回路
とを備えたことを特徴とする請求項1〜請求項3のいず
れか一つに記載の複合型冷媒回路設備。
5. An ice temperature detecting means for detecting a temperature of ice in the heat storage tank, a water level detecting means for detecting a water level in the heat storage tank, and an output value of the ice temperature detecting means being lower than a predetermined value. 4. A control circuit for closing a refrigeration-side heat storage solenoid valve in the refrigeration-side refrigerant circuit when an output value of the detection means becomes equal to or more than a predetermined value. The combined refrigerant circuit equipment according to any one of the above.
【請求項6】 空調側冷媒回路の空調側熱交換器と直列
に接続された空調側放熱用電磁弁と、上記空調側熱交換
器及び空調側放熱用電磁弁と並列に接続された空調側放
熱バイパス電磁弁と、上記空調側冷媒回路の運転モード
を設定する運転モード決定手段と、この運転モード決定
手段の設定による暖房運転時に上記空調側放熱用電磁弁
を閉成し、かつ上記空調側放熱バイパス電磁弁を開放す
る制御回路とを備えたことを特徴とする請求項2に記載
の複合型冷媒回路設備。
6. An air-conditioning-side heat-dissipating solenoid valve connected in series with an air-conditioning-side heat exchanger of an air-conditioning-side refrigerant circuit, and an air-conditioning side connected in parallel with the air-conditioning-side heat exchanger and the air-conditioning-side heat-dissipating electromagnetic valve. A radiation bypass solenoid valve, an operation mode determining means for setting an operation mode of the air-conditioning-side refrigerant circuit, and closing the air-conditioning-side heat radiation electromagnetic valve during a heating operation by setting the operation mode determining means; The combined refrigerant circuit equipment according to claim 2, further comprising a control circuit that opens the heat radiation bypass solenoid valve.
【請求項7】 空調側冷媒回路の空調側熱交換器と直列
に接続された空調側放熱用電磁弁と、上記空調側熱交換
器及び空調側放熱用電磁弁と並列に接続された空調側放
熱バイパス電磁弁と、上記空調側冷媒回路の四方弁の出
力接点の閉成時に上記空調側放熱用電磁弁を閉成し、か
つ上記空調側放熱バイパス電磁弁を開放する制御回路と
を備えたことを特徴とする請求項2に記載の複合型冷媒
回路設備。
7. An air-conditioning-side heat-dissipating solenoid valve connected in series with an air-conditioning-side heat exchanger of an air-conditioning-side refrigerant circuit, and an air-conditioning side connected in parallel with the air-conditioning-side heat exchanger and the air-conditioning-side heat-dissipating electromagnetic valve. A heat dissipation bypass solenoid valve, and a control circuit for closing the air conditioning side heat dissipation solenoid valve when the output contact of the four-way valve of the air conditioning side refrigerant circuit is closed, and opening the air conditioning side heat dissipation bypass solenoid valve. 3. The combined refrigerant circuit equipment according to claim 2, wherein:
【請求項8】 空調側冷媒回路の空調側熱交換器と直列
に接続された空調側放熱用電磁弁と、上記空調側熱交換
器及び空調側放熱用電磁弁と並列に接続された空調側放
熱バイパス電磁弁と、冷熱供給回路の配管温度を検出す
る配管温度検出装置と、この配管温度検出装置の出力値
が所定値以上になると上記空調側放熱用電磁弁を閉成
し、かつ上記空調側放熱バイパス電磁弁を開放する制御
回路とを備えたことを特徴とする請求項2に記載の複合
型冷媒回路設備。
8. An air-conditioning-side heat-dissipating solenoid valve connected in series with an air-conditioning-side heat exchanger of an air-conditioning-side refrigerant circuit, and an air-conditioning side connected in parallel with the air-conditioning-side heat exchanger and the air-conditioning-side heat-dissipating electromagnetic valve. A radiation bypass solenoid valve, a piping temperature detecting device for detecting a piping temperature of the cooling / heating supply circuit, and, when an output value of the piping temperature detecting device becomes a predetermined value or more, closing the air-conditioning side radiation electromagnetic valve, and The combined refrigerant circuit equipment according to claim 2, further comprising a control circuit for opening the side heat radiation bypass solenoid valve.
【請求項9】 蓄熱槽の蓄熱剤からの冷熱を空調側熱交
換器を介して空調側冷媒回路に供給する空調側冷熱供給
用熱交換器と、上記冷熱を冷凍側熱交換器を介し冷凍側
冷媒回路に供給する冷凍側冷熱供給用熱交換器が設けら
れた冷凍側冷熱供給回路を備えたことを特徴とする請求
項1〜請求項3のいずれか一つに記載の複合型冷媒回路
設備。
9. An air-conditioning-side cold-heat supply heat exchanger that supplies cold heat from a heat storage agent in a heat storage tank to an air-conditioning-side refrigerant circuit via an air-conditioning-side heat exchanger, and refrigerates the cold heat through a refrigerating-side heat exchanger. The combined refrigerant circuit according to any one of claims 1 to 3, further comprising a refrigeration-side cold-heat supply circuit provided with a refrigeration-side cold-heat supply heat exchanger to be supplied to the side-refrigerant circuit. Facility.
【請求項10】 蓄熱槽の蓄熱剤からの冷熱を空調側熱
交換器を介して空調側冷媒回路に供給する空調側冷熱供
給用熱交換器と、上記冷熱を冷凍側熱交換器を介し冷凍
側冷媒回路に供給する冷凍側冷熱供給用熱交換器が設け
られた冷凍側冷熱供給回路とを備え、上記冷凍側熱交換
器を介し上記冷熱を上記冷凍側冷媒回路に供給する上記
冷凍側冷熱供給用熱交換器が常時付勢されることを特徴
とする請求項1〜請求項3のいずれか一つに記載の複合
型冷媒回路設備。
10. An air-conditioning-side cold-heat supply heat exchanger that supplies cold heat from a heat storage agent in a heat storage tank to an air-conditioning-side refrigerant circuit through an air-conditioning-side heat exchanger, and refrigerates the cold heat through a refrigerating-side heat exchanger. A refrigeration-side cold-heat supply circuit provided with a refrigeration-side cold-heat supply heat exchanger that supplies the refrigeration-side refrigeration circuit to the refrigeration-side refrigerant circuit through the refrigeration-side heat exchanger. The composite refrigerant circuit equipment according to any one of claims 1 to 3, wherein the supply heat exchanger is constantly energized.
JP24201898A 1998-02-09 1998-08-27 Complex refrigerant circuit equipment Expired - Lifetime JP4188461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24201898A JP4188461B2 (en) 1998-02-09 1998-08-27 Complex refrigerant circuit equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-26850 1998-02-09
JP2685098 1998-02-09
JP24201898A JP4188461B2 (en) 1998-02-09 1998-08-27 Complex refrigerant circuit equipment

Publications (2)

Publication Number Publication Date
JPH11287523A true JPH11287523A (en) 1999-10-19
JP4188461B2 JP4188461B2 (en) 2008-11-26

Family

ID=26364698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24201898A Expired - Lifetime JP4188461B2 (en) 1998-02-09 1998-08-27 Complex refrigerant circuit equipment

Country Status (1)

Country Link
JP (1) JP4188461B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099514A (en) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd Heat storage type air-conditioning and refrigerating device
JP2005249221A (en) * 2004-03-01 2005-09-15 Takasago Thermal Eng Co Ltd Air-conditioning system
CN109713881A (en) * 2019-02-01 2019-05-03 广东美的暖通设备有限公司 Frequency converter
JP2019168213A (en) * 2018-08-08 2019-10-03 株式会社ヤマト Brine chiller and cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099514A (en) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd Heat storage type air-conditioning and refrigerating device
JP2005249221A (en) * 2004-03-01 2005-09-15 Takasago Thermal Eng Co Ltd Air-conditioning system
JP2019168213A (en) * 2018-08-08 2019-10-03 株式会社ヤマト Brine chiller and cooling system
CN109713881A (en) * 2019-02-01 2019-05-03 广东美的暖通设备有限公司 Frequency converter

Also Published As

Publication number Publication date
JP4188461B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP6857883B2 (en) Geothermal utilization system and geothermal utilization method
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
US9217574B2 (en) Hot water supply apparatus associated with heat pump
JP5312075B2 (en) Defrost equipment in carbon dioxide circulation and cooling system
JP2006023006A (en) Refrigeration facility
US20130061622A1 (en) Refrigerating and air-conditioning apparatus
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
JP4670576B2 (en) vending machine
JP5316973B2 (en) Cooling and defrosting system using carbon dioxide refrigerant, and operation method thereof
JP4188461B2 (en) Complex refrigerant circuit equipment
JP7069660B2 (en) Air conditioning system and system control method
WO2016170616A1 (en) Air conditioner
JP4043348B2 (en) Carbon dioxide secondary refrigerant ice heat storage refrigeration system
JP2013011423A (en) Refrigerating apparatus
JP5375333B2 (en) vending machine
JP5084933B2 (en) Defrost equipment in carbon dioxide circulation and cooling system
JPH07269983A (en) Air conditioner for shop
JPH05196267A (en) Heat accumulating air-conditioner
JPH09280668A (en) Composite refrigerant circuit equipment
JP2001012812A (en) Heat accumulator for refrigerant
JP5058348B2 (en) Defrost equipment in carbon dioxide circulation and cooling system
JPH05118696A (en) Heat pump device
JP2002349996A (en) Exhaust heat recovery air conditioner
JP5482689B2 (en) Defrost equipment in carbon dioxide circulation and cooling system
JP2710883B2 (en) Operation control method in regenerative refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term