JP2005249221A - Air-conditioning system - Google Patents

Air-conditioning system Download PDF

Info

Publication number
JP2005249221A
JP2005249221A JP2004055975A JP2004055975A JP2005249221A JP 2005249221 A JP2005249221 A JP 2005249221A JP 2004055975 A JP2004055975 A JP 2004055975A JP 2004055975 A JP2004055975 A JP 2004055975A JP 2005249221 A JP2005249221 A JP 2005249221A
Authority
JP
Japan
Prior art keywords
air conditioner
air
cold water
compression
type air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004055975A
Other languages
Japanese (ja)
Other versions
JP4472383B2 (en
Inventor
Masayuki Yano
正幸 谷野
Akihiko Okamura
明彦 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2004055975A priority Critical patent/JP4472383B2/en
Publication of JP2005249221A publication Critical patent/JP2005249221A/en
Application granted granted Critical
Publication of JP4472383B2 publication Critical patent/JP4472383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-conditioning system capable of compensating the profits and losses of a compression/expansion type air conditioner and a central type air conditioner, having excellent energy-saving property and excellent personality of air conditioning, and installable easily. <P>SOLUTION: This air-conditioning system of a building comprises the compression/expansion type air conditioners 10 and 15 cooling air-conditioned spaces a and b in the building 1 by performing a refrigerating cycle by circulating a refrigerant between outdoor units 20 and 40 and indoor units 11 and 16 and the central type air conditioner 12 for cooling the air-conditioned space in the building 1 by circulatingly supplying a cool water 61 in a heat source apparatus 60 to indoor devices 13 and 17 installed in the air-conditioned spaces a and c. Also, the system comprises heat exchangers 32 and 35 for exchanging heat between the refrigerant from outdoor devices 20 and 40 in the compression/expansion air conditioners 10 and 15 to the indoor devices 11 and 16 and the cool water fed from the indoor devices 13 and 17 in the central type air conditioner 12 to the heat source apparatus 60. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,圧縮膨張方式の空調装置とセントラル方式の空調装置を有する建築物の空調システムに関する。   The present invention relates to an air conditioning system for a building having a compression / expansion air conditioner and a central air conditioner.

貸しビル等の業務用建築物などの内部には,各ユニットに分割された複数の空調空間が存在する。そのような複数の空調空間を空調する空調設備として,室外器で凝縮させた冷媒を室内器に循環供給して膨張させ,冷凍サイクルを行うことにより建築物内の空調空間を冷房する圧縮膨張方式の空調装置が一般に知られている。この空調装置は,パッケージ型空調装置などと呼ばれている。例えば,特開2003−56930号公報には,そのような圧縮膨張方式の空調装置に用いられる冷凍サイクルが開示されている。   A plurality of air-conditioned spaces divided into individual units exist inside commercial buildings such as rental buildings. As an air-conditioning system for air-conditioning such multiple air-conditioned spaces, a compression / expansion system that cools the air-conditioned space in the building by circulating and supplying refrigerant condensed in the outdoor unit to the indoor unit and expanding it. The air conditioner is generally known. This air conditioner is called a package type air conditioner. For example, Japanese Patent Laid-Open No. 2003-56930 discloses a refrigeration cycle used in such a compression / expansion type air conditioner.

また一方,建築物の地下空間や機械室等に設置した熱源設備(例えば蓄熱槽)から空調空間内に設置したファンコイルユニットやエアハンドリングユニットなどの室内器に冷水を循環供給して冷房を行うセントラル方式の空調装置が知られている。このセントラル方式の空調装置では,比較的大規模な熱源設備で集中して冷水を作り出し,その冷水を建築物内全体に循環させて,建築物内の空調空間をまとめて冷房するようになっている。   On the other hand, cooling water is circulated and supplied to indoor units such as fan coil units and air handling units installed in the air-conditioned space from heat source equipment (for example, heat storage tanks) installed in the underground space or machine room of the building. Central type air conditioners are known. In this central type air conditioner, cold water is concentrated in a relatively large heat source facility, and the cold water is circulated throughout the building to collectively cool the air-conditioned space in the building. Yes.

特開2003−56930号公報JP 2003-56930 A

これら圧縮膨張方式の空調装置とセントラル方式の空調装置の得失は次のようである。即ち,圧縮膨張方式の空調装置は設置が比較的容易であり,また,一般的に空調装置のパーソナル性が明かなため,貸しビルオーナーにとってはテナントなどへの課金が透明である。しかしながら圧縮膨張方式の空調装置は,セントラル方式の空調装置に比べてCOP(成績計数)が低く,省エネルギー性に劣る。   The advantages and disadvantages of these compression / expansion air conditioners and central air conditioners are as follows. In other words, the compression / expansion type air conditioner is relatively easy to install, and the personality of the air conditioner is generally clear. However, the compression / expansion type air conditioner has a lower COP (results count) than the central type air conditioner and is inferior in energy saving.

一方,セントラル方式の空調装置は,圧縮膨張方式の空調装置に比べてCOPが高く,省エネルギー性に優れる。また,最近の大規模ビルでの全館マルチ方式における冷媒配管の長尺化による能力,効率の低下や,室外器の稠密配置による能力,効率の低下を考え併せると,特にセントラル方式の空調装置は,圧縮膨張方式の空調装置に比べて省エネルギー性の高い空調装置であると言える。さらに,セントラル方式の空調装置は,機械室や地下室などに設置された冷凍機(ヒートポンプ)内のみでフロン冷媒が使用されるので,圧縮膨張方式の空調装置に比べてフロン使用量が少ない(冷凍機のフロン使用量はマルチ方式のパッケージ型空調装置の35%程度)。セントラル方式の空調装置は,今様の地球環境保全のための自然冷媒利用に対しても,冷凍機の更新だけで柔軟に対応することができる。その反面,セントラル方式の空調装置は,多数のファンコイルユニットなどに対して一つの熱源設備から冷水を供給するため,空調のパーソナル性が不透明であり,装置の設置も比較的大がかりである。   On the other hand, the central type air conditioner has a higher COP than the compression / expansion type air conditioner and is excellent in energy saving. In addition, considering the decrease in capacity and efficiency due to the lengthening of refrigerant pipes in multi-systems in recent large-scale buildings, and the decrease in capacity and efficiency due to dense arrangement of outdoor units, the central type air conditioner is particularly Therefore, it can be said that this is an air-conditioning device with higher energy savings than a compression-expansion type air-conditioning device. In addition, since the central type air conditioner uses chlorofluorocarbon refrigerant only in refrigerators (heat pumps) installed in machine rooms and basements, it uses less chlorofluorocarbon (compressed refrigeration) than the compression and expansion type air conditioners. The amount of chlorofluorocarbons used in the machine is about 35% of the multi-type package type air conditioner). Central type air conditioners can flexibly respond to the use of natural refrigerants for the preservation of the global environment just by replacing the refrigerator. On the other hand, since the central type air conditioner supplies cold water from a single heat source facility to a large number of fan coil units, the personality of the air conditioner is unclear and the installation of the device is relatively large.

このように,圧縮膨張方式の空調装置とセントラル方式の空調装置の得失は表裏一体の関係になっている。例えば,関西・淡路大震災における各種ライフラインの復旧(電気復旧:2日後,水道復旧:32日後,ガス復旧:36日後)の経験から,緊急時における空調施設の復旧には,装置の設置容易性,自立性を担保するために,圧縮膨張方式の空調装置が推奨された。また復旧時には,冷却水である水道の確保が困難なことから,特に全電気の圧縮膨張方式の空調装置が推奨された。しかし,震災後に復旧,施工された関西地方の冷蔵倉庫では,圧縮膨張方式の空調装置が多く採用された結果,震災前の冷凍設備に比べて消費電力が増えてCOPが悪くなり,利益の大幅な減額に繋がるといった重大な問題になっている。   In this way, the advantages and disadvantages of the compression / expansion type air conditioner and the central type air conditioner are in an integrated relationship. For example, from the experience of restoration of various lifelines in the Great Kansai-Awaji Earthquake (Electricity restoration: 2 days later, water supply restoration: 32 days later, gas restoration: 36 days later), it is easy to install equipment to restore air conditioning facilities in an emergency. In order to ensure independence, a compression / expansion type air conditioner was recommended. At the time of restoration, it was difficult to secure water supply as cooling water, so an all-electric compression / expansion air conditioning system was recommended. However, in the refrigerated warehouses in the Kansai region that were restored and constructed after the earthquake, many of the compression and expansion type air conditioners were adopted. As a result, the power consumption increased and the COP deteriorated compared to the refrigeration facilities before the earthquake. It is a serious problem that leads to a significant reduction in the amount of money.

本発明の目的は,圧縮膨張方式の空調装置とセントラル方式の空調装置の得失を補い合うことが可能な,省エネルギー性にも優れ,しかも,空調のパーソナル性と装置の設置容易性に優れた空調システムを提供することにある。   An object of the present invention is to make up for the advantages and disadvantages of a compression / expansion type air conditioner and a central type air conditioner, which is excellent in energy saving, and excellent in air conditioning personality and equipment installation ease. Is to provide.

本発明によれば,室外器と室内器の間で冷媒を循環させ,冷凍サイクルを行うことにより建築物内の空調空間を冷房する圧縮膨張方式の空調装置と,熱源設備の冷水を空調空間内に設置した室内器に循環供給して,建築物内の空調空間を冷房するセントラル方式の空調装置を有する建築物の空調システムであって,前記圧縮膨張方式の空調装置の室外器から室内器に送られる冷媒と,前記セントラル方式の空調装置の室内器から熱源設備に送られる冷水とを熱交換させる熱交換器を設けたことを特徴とする,空調システムが提供される。   According to the present invention, the refrigerant is circulated between the outdoor unit and the indoor unit, and the refrigeration cycle is performed to cool the air-conditioned space in the building. An air conditioning system for a building having a central type air conditioner that circulates and supplies air conditioning space in the building to the indoor unit installed in the building, from the outdoor unit of the compression / expansion type air conditioner to the indoor unit An air conditioning system is provided, characterized in that a heat exchanger is provided to exchange heat between the refrigerant to be sent and the cold water sent from the indoor unit of the central type air conditioner to the heat source facility.

また本発明によれば,室外器と室内器の間で冷媒を循環させ,冷凍サイクルを行うことにより建築物内の空調空間を冷房する圧縮膨張方式の空調装置と,熱源設備の冷水を空調空間内に設置した室内器に循環供給して,建築物内の空調空間を冷房するセントラル方式の空調装置を有する建築物の空調システムであって,前記圧縮膨張方式の空調装置の室外器から室内器に送られる冷媒と,前記セントラル方式の空調装置の熱源設備から熱源設備に送られる冷水とを熱交換させる熱交換器を設けたことを特徴とする,空調システムが提供される。   Further, according to the present invention, the refrigerant is circulated between the outdoor unit and the indoor unit, and the refrigeration cycle is performed to cool the air-conditioned space in the building. An air conditioning system for a building having a central type air conditioner that circulates and supplies air conditioning space in the building by circulating supply to the indoor unit installed in the interior, from the outdoor unit of the compression / expansion type air conditioner to the indoor unit There is provided an air conditioning system comprising a heat exchanger for exchanging heat between the refrigerant sent to the heat source and the cold water sent from the heat source equipment of the central type air conditioner to the heat source equipment.

前記圧縮膨張方式の空調装置は,前記熱交換器を経た冷媒を室内器を経ずに室外器に戻すバイパス配管を備えていても良い。また,前記セントラル方式の空調装置の室内器が前記建築物内に複数配置され,それら複数の室内器に,共通の熱源設備から冷水が循環供給されるように構成しても良い。また,前記セントラル方式の空調装置は,熱源設備から室内器に冷水を送液する配管と,室内器から熱交換器に冷水を送液する配管と,熱交換器から熱源設備に冷水を送液する配管とを備え,熱源設備,室内器,熱交換器の順に冷水が循環するように構成しても良い。また,前記セントラル方式の空調装置は,熱源設備から室内器と熱交換器とに冷水を送液する配管と,室内器と熱交換器から熱源設備に冷水を送液する配管とを備え,熱源設備と室内器の間で冷水が循環すると共に,熱源設備と熱交換器の間で冷水が循環するように構成しても良い。また,前記圧縮膨張方式の空調装置により非定常の冷房負荷を処理し,前記セントラル方式の空調装置により定常の冷房負荷を処理するように構成しても良い。なお,前記セントラル方式の空調装置の室内器は,例えば冷水の冷熱によって空調空間内を冷房するファンコイルユニットである。   The compression-expansion type air conditioner may include a bypass pipe that returns the refrigerant that has passed through the heat exchanger to the outdoor unit without passing through the indoor unit. Further, a plurality of indoor units of the central type air conditioner may be arranged in the building, and cold water may be circulated and supplied to the plurality of indoor units from a common heat source facility. In addition, the central type air conditioner has a pipe for feeding cold water from the heat source equipment to the indoor unit, a pipe for feeding cold water from the indoor unit to the heat exchanger, and a pipe for sending cold water from the heat exchanger to the heat source equipment. It may be configured such that cold water circulates in the order of heat source equipment, indoor unit, and heat exchanger. The central air conditioner includes a pipe for sending cold water from the heat source equipment to the indoor unit and the heat exchanger, and a pipe for sending cold water from the indoor unit and the heat exchanger to the heat source equipment. You may comprise so that cold water may circulate between an installation and an indoor unit, and cold water may circulate between a heat-source installation and a heat exchanger. Further, a non-steady cooling load may be processed by the compression / expansion air conditioner, and a steady cooling load may be processed by the central air conditioner. The indoor unit of the central type air conditioner is a fan coil unit that cools the air-conditioned space by cooling the cold water, for example.

本発明によれば,圧縮膨張方式の空調装置は,熱交換器を介してセントラル方式の空調装置から冷熱を受取ることで,冷房能力が向上し,結果的に建築物全体の省エネルギー性を高めることができる。一般に,建築物の空調システムの出力は余裕を持って設計されるので,実際の建築物では,年間を通じて,熱源機器は部分負荷での運転状態となるのが殆どである。本発明の空調システムでは,高効率なセントラル方式の空調装置を主として稼動させ,比較的効率の悪い圧縮膨張方式の空調装置の稼働を抑えることにより,空調システムの省エネルギー性を更に高めることができる。   According to the present invention, the compression / expansion type air conditioner receives the cooling heat from the central type air conditioner via the heat exchanger, thereby improving the cooling capacity and consequently improving the energy saving performance of the entire building. Can do. In general, since the output of a building air conditioning system is designed with a margin, in an actual building, the heat source equipment is almost always in a partial load operation state throughout the year. In the air conditioning system of the present invention, the energy efficiency of the air conditioning system can be further improved by mainly operating the highly efficient central air conditioner and suppressing the operation of the relatively inefficient compression / expansion air conditioner.

また,建築物内に複数の空調空間が形成されている場合は,各空調空間単位で互いに独立した空調を行う複数の圧縮膨張方式の空調装置を設けることにより,空調のパーソナル性が明かとなり,貸しビルオーナーなどにとってはテナントなどへの課金が透明となる。セントラル方式の空調装置は,建築物内に形成された複数の空調空間における冷却能力向上に均等に寄与するので,セントラル方式の空調装置の運転費を各圧縮膨張方式の空調装置の運転時間(消費電力)に基づいて課金するようなことも可能である。このように,利便性及び自立性と,セントラル方式の空調装置の特長である省エネルギー性及び地球環境保全策への柔軟性(フロン使用量低減,自然冷媒利用)の両方を併せ持つ統合型の空調システムを提供できる。   In addition, when multiple air-conditioned spaces are formed in a building, the personality of the air-conditioning becomes clear by providing multiple compression / expansion air conditioners that perform air conditioning independent of each other. Billing to tenants, etc. will be transparent for rental building owners. Since the central air conditioner contributes equally to the improvement of the cooling capacity in the multiple air conditioning spaces formed in the building, the operating cost of the central air conditioner is reduced to the operating time (consumption) of each compression / expansion air conditioner. It is also possible to charge based on (electric power). In this way, an integrated air-conditioning system that combines both convenience and independence with the energy-saving features of the central air-conditioning system and the flexibility of global environmental conservation measures (reduction of chlorofluorocarbon usage and use of natural refrigerants) Can provide.

以下,本発明の実施の形態を,図面を参照にして説明する。図1は,本発明の実施の形態にかかる空調システムを適用した建築物1の説明図である。建築物1の内部には,3つに分割された空調空間a,b,cと,地下空間dが形成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Drawing 1 is an explanatory view of building 1 to which an air-conditioning system concerning an embodiment of the invention is applied. Inside the building 1, air-conditioned spaces a, b, and c divided into three and an underground space d are formed.

これら3つの空調空間a,b,cのうち,空調空間aには,圧縮膨張方式の空調装置10の室内器11と,セントラル方式の空調装置12の室内器としてのファンコイルユニット13が設置されている。空調空間bには,圧縮膨張方式の空調装置15の室内器16のみが設置され,一方,空調空間cには,セントラル方式の空調装置12室内器としてのファンコイルユニット17のみが設置されている。   Among these three air-conditioned spaces a, b, and c, in the air-conditioned space a, the indoor unit 11 of the compression / expansion type air conditioner 10 and the fan coil unit 13 as the indoor unit of the central type air conditioner 12 are installed. ing. Only the indoor unit 16 of the compression / expansion type air conditioner 15 is installed in the air-conditioned space b, while only the fan coil unit 17 as the central type air conditioner 12 indoor unit is installed in the air-conditioned space c. .

圧縮膨張方式の空調装置10は,空調空間aのみを独立して空調する個別方式の空調装置である。この空調装置10は,建築物1の外部に設置された室外器20と,空調空間aに設置された室内器11と,室外器20から室内器11に冷媒を送る配管21及び室内器11から室外器20に冷媒を送る配管22を備えている。室外器20は,建築物1の屋上,ベランダ,隣接地などに設置され,外気によって空冷式に冷媒を冷却する。室外器20は,圧縮機25,放熱コイル26,ファン27,制御弁28等を備えており,室内器11は,蒸発器30,ファン31,膨張弁29などの制御弁等を備えている。そして,配管21,22を通じて,これら圧縮機25,放熱コイル26,制御弁28,蒸発器30,膨張弁29などの制御弁の順に冷媒を循環させることにより,冷凍サイクルを行わせしめて,空調空間a内の冷房運転を行うようになっている。室外器20から室内器11に冷媒を送る配管21には,後述するように,圧縮膨張方式の空調装置10の冷媒とセントラル方式の空調装置12の冷水とを熱交換させるための熱交換器32が設けられている。   The compression-expansion air conditioner 10 is an individual air conditioner that independently air-conditions only the air-conditioned space a. The air conditioner 10 includes an outdoor unit 20 installed outside the building 1, an indoor unit 11 installed in the air-conditioned space a, a pipe 21 that sends refrigerant from the outdoor unit 20 to the indoor unit 11, and the indoor unit 11. A pipe 22 for sending the refrigerant to the outdoor unit 20 is provided. The outdoor unit 20 is installed on the roof, veranda, adjacent land, etc. of the building 1 and cools the refrigerant in an air-cooled manner by the outside air. The outdoor unit 20 includes a compressor 25, a heat radiation coil 26, a fan 27, a control valve 28, and the like, and the indoor unit 11 includes control valves such as an evaporator 30, a fan 31, and an expansion valve 29. The refrigerant is circulated through the pipes 21 and 22 in the order of the control valve such as the compressor 25, the heat radiating coil 26, the control valve 28, the evaporator 30 and the expansion valve 29, thereby causing the refrigeration cycle to be performed. The cooling operation in a is performed. As will be described later, the pipe 21 for sending the refrigerant from the outdoor unit 20 to the indoor unit 11 has a heat exchanger 32 for exchanging heat between the refrigerant of the compression / expansion type air conditioner 10 and the cold water of the central type air conditioner 12. Is provided.

同様に,圧縮膨張方式の空調装置15は,空調空間bのみを独立して空調する個別方式の空調装置である。この空調装置15は,建築物1の外部に設置された室外器40と,空調空間bに設置された室内器16と,室外器40から室内器16に冷媒を送る配管41及び室内器16から室外器40に冷媒を送る配管42を備えている。室外器40も,建築物1の屋上,ベランダ,隣接地などに設置され,外気によって空冷式に冷媒を冷却する。室外器40も,圧縮機45,放熱コイル46,ファン47,制御弁48等を備えており,室内器16は,蒸発器50,ファン51,膨張弁49などの制御弁等を備えている。そして,配管41,42を通じて,これら圧縮機45,放熱コイル46,制御弁48,蒸発器50,膨張弁49などの制御弁の順に冷媒を循環させることにより,冷凍サイクルを行わせしめて,空調空間b内の冷房運転を行うようになっている。室外器40から室内器16に冷媒を送る配管41には,後述するように,圧縮膨張方式の空調装置15の冷媒とセントラル方式の空調装置12の冷水とを熱交換させるための熱交換器52が設けられている。   Similarly, the compression / expansion air conditioner 15 is an individual air conditioner that independently air-conditions only the air-conditioned space b. The air conditioner 15 includes an outdoor unit 40 installed outside the building 1, an indoor unit 16 installed in the air-conditioned space b, a pipe 41 that sends refrigerant from the outdoor unit 40 to the indoor unit 16, and the indoor unit 16. A pipe 42 for sending the refrigerant to the outdoor unit 40 is provided. The outdoor unit 40 is also installed on the roof, veranda, adjacent land, etc. of the building 1 and cools the refrigerant in an air-cooled manner by the outside air. The outdoor unit 40 also includes a compressor 45, a heat dissipation coil 46, a fan 47, a control valve 48, and the like, and the indoor unit 16 includes control valves such as an evaporator 50, a fan 51, and an expansion valve 49. The refrigerant is circulated through the pipes 41 and 42 in the order of the compressor 45, the heat radiating coil 46, the control valve 48, the evaporator 50, the expansion valve 49, and the like, thereby causing the refrigeration cycle to be performed and the conditioned space. The cooling operation in b is performed. As will be described later, the pipe 41 for sending the refrigerant from the outdoor unit 40 to the indoor unit 16 has a heat exchanger 52 for exchanging heat between the refrigerant of the compression / expansion type air conditioner 15 and the cold water of the central type air conditioner 12. Is provided.

セントラル方式の空調装置12は,地下空間dに設置された熱源設備としての蓄熱槽60と,空調空間aに設置された室内器としてのファンコイルユニット13及び空調空間cに設置された室内器としてのファンコイルユニット17を備えている。この空調装置12は,2つのファンコイルユニット13,17に,1つの共通の蓄熱槽60から冷水61を循環供給するようになっている。   The central type air conditioner 12 includes a heat storage tank 60 as a heat source facility installed in the underground space d, a fan coil unit 13 as an indoor unit installed in the air conditioned space a, and an indoor unit installed in the air conditioned space c. The fan coil unit 17 is provided. This air conditioner 12 circulates and supplies cold water 61 from one common heat storage tank 60 to the two fan coil units 13 and 17.

このセントラル方式の空調装置12において,蓄熱槽60に蓄えられた冷水61は,配管53,54を介してポンプ64の稼動によって冷凍機63に循環させられ,冷凍機63によって冷却された冷水が,蓄熱槽60に蓄えられるようになっている。冷凍機63には,建築物1の屋上など外部に設置された冷却塔55が配管56,57によって接続してある。   In this central type air conditioner 12, the cold water 61 stored in the heat storage tank 60 is circulated to the refrigerator 63 by the operation of the pump 64 via the pipes 53 and 54, and the cold water cooled by the refrigerator 63 is It can be stored in the heat storage tank 60. A cooling tower 55 installed outside such as the roof of the building 1 is connected to the refrigerator 63 by pipes 56 and 57.

空調空間aに設置されたファンコイルユニット13は,冷却コイル65とファン66を備えている。同様に,空調空間cに設置されたファンコイルユニット17も,冷却コイル67とファン68を備えている。これらファンコイルユニット13の冷却コイル65とファンコイルユニット17の冷却コイル67には,ポンプ70の稼動で蓄熱槽60から汲み上げられた冷水61が,配管71を通じてそれぞれ送液される。そして,ファンコイルユニット13では,ファン66の稼動によって冷却コイル65の表面に空調空間a内の空気を送風し,空調空間a内の空気を冷却することにより冷房が行われる。同様に,ファンコイルユニット17でも,ファン68の稼動によって冷却コイル67の表面に空調空間c内の空気を循環送風し,空調空間c内の空気を冷却することにより冷房が行われる。そして,これら冷却コイル65,67を通過した冷水61(空調空間a,c内の空気と熱交換した後の冷水61)は,配管72に排出されて蓄熱槽60に戻される。   The fan coil unit 13 installed in the conditioned space a includes a cooling coil 65 and a fan 66. Similarly, the fan coil unit 17 installed in the air-conditioned space c also includes a cooling coil 67 and a fan 68. Cold water 61 pumped from the heat storage tank 60 by the operation of the pump 70 is sent to the cooling coil 65 of the fan coil unit 13 and the cooling coil 67 of the fan coil unit 17 through the pipe 71. In the fan coil unit 13, the air in the conditioned space a is blown to the surface of the cooling coil 65 by the operation of the fan 66, and cooling is performed by cooling the air in the conditioned space a. Similarly, in the fan coil unit 17, the air in the air-conditioned space c is circulated and blown to the surface of the cooling coil 67 by the operation of the fan 68, and the air in the air-conditioned space c is cooled. The cold water 61 (cold water 61 after heat exchange with the air in the air-conditioned spaces a and c) that has passed through the cooling coils 65 and 67 is discharged to the pipe 72 and returned to the heat storage tank 60.

そして,配管72内の冷水61は,配管73を通って熱交換器32に供給され,空調装置10の冷媒と熱交換されるようになっている。また,熱交換器32において空調装置10の冷媒と熱交換した冷水61は,配管74を通って配管75に排出され,配管75を通じて蓄熱槽60に戻される。なお,配管73,74には開閉弁80,81が設けられているが,開閉弁80,81は通常は開いている。また,配管73,74同士の間に介在しているバイパス管82は,開閉弁83によって通常閉じられている。   And the cold water 61 in the piping 72 is supplied to the heat exchanger 32 through the piping 73, and is heat-exchanged with the refrigerant | coolant of the air conditioner 10. FIG. Further, the cold water 61 heat-exchanged with the refrigerant of the air conditioner 10 in the heat exchanger 32 is discharged to the pipe 75 through the pipe 74 and returned to the heat storage tank 60 through the pipe 75. The pipes 73 and 74 are provided with on-off valves 80 and 81, but the on-off valves 80 and 81 are normally open. The bypass pipe 82 interposed between the pipes 73 and 74 is normally closed by an on-off valve 83.

同様に,配管72内の冷水61は,配管85を通って熱交換器52にも供給され,空調装置15の冷媒と熱交換されるようになっている。また,熱交換器52において空調装置15の冷媒と熱交換した冷水61は,配管86を通って配管75に排出され,配管75を通じて蓄熱槽60に戻される。なお,配管85,86にも開閉弁87,88が設けられており,これら開閉弁87,88も通常は開いている。また,配管85,86同士の間に介在しているバイパス管89は,開閉弁90によって通常閉じられている。   Similarly, the cold water 61 in the pipe 72 is also supplied to the heat exchanger 52 through the pipe 85 so as to exchange heat with the refrigerant of the air conditioner 15. In addition, the cold water 61 that exchanges heat with the refrigerant of the air conditioner 15 in the heat exchanger 52 is discharged to the pipe 75 through the pipe 86 and returned to the heat storage tank 60 through the pipe 75. The pipes 85 and 86 are also provided with on-off valves 87 and 88, and these on-off valves 87 and 88 are normally open. Further, the bypass pipe 89 interposed between the pipes 85 and 86 is normally closed by the on-off valve 90.

しかして,以上のように構成された空調システムを備える建築物1において主として夏季に行われる冷房運転を説明すると,先ず空調空間aでは,圧縮膨張方式の空調装置10により,圧縮機25,放熱コイル26,制御弁28,蒸発器30,膨張弁29などの制御弁の順に冷媒が循環されて冷凍サイクルが行われ,空調空間a内の冷房が行われる。また空調空間aでは,セントラル方式の空調装置12により,蓄熱槽60から汲み上げられた冷水61がファンコイルユニット13に供給されて,冷房が行われる。こうして空調空間aでは,圧縮膨張方式の空調装置10とセントラル方式の空調装置12の両方による冷房が行われる。   Thus, the cooling operation performed mainly in the summer in the building 1 having the air conditioning system configured as described above will be described. First, in the air-conditioned space a, the compressor 25, the heat radiating coil are provided by the compression / expansion type air conditioner 10. The refrigerant is circulated in the order of control valves such as the control valve 26, the control valve 28, the evaporator 30, and the expansion valve 29 to perform the refrigeration cycle, and the air-conditioned space a is cooled. In the air-conditioned space a, the central air conditioner 12 supplies the cold water 61 pumped from the heat storage tank 60 to the fan coil unit 13 for cooling. Thus, in the air-conditioned space a, cooling is performed by both the compression / expansion air conditioner 10 and the central air conditioner 12.

ここで,セントラル方式の空調装置12において,ファンコイルユニット13(冷却コイル65)を通過した冷水61(空調空間a内の空気と熱交換した後の冷水61)は,配管72,73を通って熱交換器32に供給され,圧縮膨張方式の空調装置10において室外器20から室内器11に送られる冷媒と熱交換される。これにより,空調装置10において室外器20から室内器11に送られる冷媒は,減圧膨張前に冷却されて過冷却の状態となるので,空調装置10の冷房能力が向上することになる。また一方,圧縮膨張方式の空調装置10の冷媒と熱交換したことにより,熱交換器32から配管74に排出された冷水61は昇温した状態で配管75に排出され,蓄熱槽60に戻される。   Here, in the central type air conditioner 12, the cold water 61 (cold water 61 after heat exchange with the air in the air-conditioned space a) that has passed through the fan coil unit 13 (cooling coil 65) passes through the pipes 72 and 73. Heat is exchanged with the refrigerant supplied to the heat exchanger 32 and sent from the outdoor unit 20 to the indoor unit 11 in the compression / expansion type air conditioner 10. As a result, the refrigerant sent from the outdoor unit 20 to the indoor unit 11 in the air conditioner 10 is cooled before being decompressed and expanded to a supercooled state, so that the cooling capacity of the air conditioner 10 is improved. On the other hand, by exchanging heat with the refrigerant of the compression / expansion type air conditioner 10, the cold water 61 discharged from the heat exchanger 32 to the pipe 74 is discharged to the pipe 75 in a heated state and returned to the heat storage tank 60. .

次に空調空間bでは,圧縮膨張方式の空調装置15により,圧縮機45,放熱コイル46,制御弁48,蒸発器50,膨張弁49などの制御弁の順に冷媒が循環されて冷凍サイクルが行われ,空調空間b内の冷房が行われる。こうして空調空間bでは,圧縮膨張方式の空調装置15のみによる冷房が行われる。   Next, in the conditioned space b, the refrigerant is circulated in the order of the control valves such as the compressor 45, the heat radiating coil 46, the control valve 48, the evaporator 50, and the expansion valve 49 by the compression / expansion air conditioner 15 to perform a refrigeration cycle. The air-conditioning space b is cooled. Thus, in the air-conditioned space b, cooling is performed only by the compression / expansion type air conditioner 15.

また空調空間cでは,セントラル方式の空調装置12により,蓄熱槽60から汲み上げられた冷水61がファンコイルユニット17に供給されて,冷房が行われる。こうして空調空間cでは,セントラル方式の空調装置12のみによる冷房が行われる。   In the air-conditioned space c, the central air conditioner 12 supplies the cold water 61 pumped from the heat storage tank 60 to the fan coil unit 17 for cooling. Thus, in the air-conditioned space c, cooling is performed only by the central type air conditioner 12.

ここで,セントラル方式の空調装置12において,ファンコイルユニット17(冷却コイル67)を通過した冷水61(空調空間c内の空気と熱交換した後の冷水61)は,配管72,85を通って熱交換器52に供給され,圧縮膨張方式の空調装置15において室外器40から室内器16に送られる冷媒と熱交換される。これにより,空調装置15において室外器40から室内器16に送られる冷媒は,減圧膨張前に冷却されて過冷却の状態となるので,空調装置15の冷房能力も同様に向上することになる。また一方,圧縮膨張方式の空調装置15の冷媒と熱交換したことにより,熱交換器52から配管86に排出された冷水61も昇温した状態で配管75に排出され,蓄熱槽60に戻される。   Here, in the central type air conditioner 12, the cold water 61 (cold water 61 after heat exchange with the air in the air-conditioned space c) that has passed through the fan coil unit 17 (cooling coil 67) passes through the pipes 72 and 85. Heat is exchanged with the refrigerant supplied to the heat exchanger 52 and sent from the outdoor unit 40 to the indoor unit 16 in the compression / expansion type air conditioner 15. As a result, the refrigerant sent from the outdoor unit 40 to the indoor unit 16 in the air conditioner 15 is cooled before being decompressed and expanded to be in a supercooled state, so that the cooling capacity of the air conditioner 15 is similarly improved. On the other hand, due to heat exchange with the refrigerant of the compression / expansion type air conditioner 15, the cold water 61 discharged from the heat exchanger 52 to the pipe 86 is also discharged to the pipe 75 in a heated state and returned to the heat storage tank 60. .

こうして,セントラル方式の空調装置12において,冷水61は昇温された状態で配管75から蓄熱槽60に戻されることになるが,例えば冷凍機63によって冷却された蓄熱槽60内の冷水61の水温を7℃,ファンコイルユニット13(冷却コイル65)を通過した後の冷水61の水温(空調空間a内の空気と熱交換した後の冷水61の水温)を12℃,熱交換器32において圧縮膨張方式の空調装置10の冷媒と熱交換したことにより昇温し,配管75から蓄熱槽60に戻される冷水61の水温を17℃と仮定すれば,蓄熱槽60では7℃/17℃の10deg.差送水となり,熱交換器32が無い場合の通常の7℃/12℃の5deg.差送水に比べて倍の温度差送水が可能になる。このため,熱交換器32が無い場合に比べて蓄熱容量を大きくでき,蓄熱槽の効率向上にも繋がる。   Thus, in the central air conditioner 12, the cold water 61 is returned to the heat storage tank 60 from the pipe 75 in a heated state. For example, the water temperature of the cold water 61 in the heat storage tank 60 cooled by the refrigerator 63. The temperature of the cold water 61 after passing through the fan coil unit 13 (cooling coil 65) (the temperature of the cold water 61 after heat exchange with the air in the air-conditioned space a) is compressed in the heat exchanger 32 at 12 ° C. Assuming that the water temperature of the cold water 61 returned to the heat storage tank 60 from the pipe 75 is 17 ° C. due to heat exchange with the refrigerant of the expansion-type air conditioner 10, the heat storage tank 60 has 10 ° of 7 ° C./17° C. . 5 deg. Of normal 7 ° C / 12 ° C when there is no heat exchanger 32. Double temperature difference water supply is possible compared to the difference water supply. For this reason, compared with the case where there is no heat exchanger 32, heat storage capacity can be enlarged and it leads also to the efficiency improvement of a heat storage tank.

次に,図2は,図1に示したものとは異なる本発明の実施の形態にかかる空調システムを適用した建築物1の説明図である。先に図1で説明した空調システムでは,圧縮膨張方式の空調装置10,15の室外器20,40から室内器11,16に送られる冷媒を,セントラル方式の空調装置12のファンコイルユニット13,17から蓄熱槽60に送られる冷水61と熱交換させていた(換言すれば,ファンコイルユニット13,17で冷熱を消費した後の冷水61で圧縮膨張方式の空調装置10,15の冷媒を冷却していた)。それに対して,この図2に示した実施の形態にかかる空調システムでは,圧縮膨張方式の空調装置10,15の室外器20,40から室内器11,16に送られる冷媒を,セントラル方式の空調装置12の蓄熱槽60から蓄熱槽60に送られる冷水61と熱交換させた点(換言すれば,ファンコイルユニット13,17で冷熱を消費していない冷水61で圧縮膨張方式の空調装置10,15の冷媒を冷却している点)が異なっている。つまり,先に図1で説明した空調システムでは,セントラル方式の空調装置12において,蓄熱槽60,ファンコイルユニット13,17,熱交換器32,52の順に冷水を直列的に循環させていたのに対し,この図2に示した実施の形態にかかる空調システムでは,セントラル方式の空調装置12において,蓄熱槽60とファンコイルユニット13,17の間で冷水を循環させると共に,蓄熱槽60と熱交換器32,52の間で冷水が循環させる並列的な循環を行う点が異なっている。   Next, FIG. 2 is explanatory drawing of the building 1 to which the air conditioning system concerning embodiment of this invention different from what was shown in FIG. 1 is applied. In the air conditioning system described above with reference to FIG. 1, the refrigerant sent from the outdoor units 20 and 40 of the compression / expansion air conditioners 10 and 15 to the indoor units 11 and 16 is used as the fan coil unit 13 of the central air conditioner 12. The heat is exchanged with the cold water 61 sent from the heat storage tank 60 to the heat storage tank 60 (in other words, the refrigerant of the compression / expansion type air conditioners 10 and 15 is cooled with the cold water 61 after the cold heat is consumed by the fan coil units 13 and 17. Was). On the other hand, in the air conditioning system according to the embodiment shown in FIG. 2, the refrigerant sent from the outdoor units 20 and 40 of the compression / expansion type air conditioners 10 and 15 to the indoor units 11 and 16 is sent to the central type air conditioning system. The point of heat exchange with the cold water 61 sent from the heat storage tank 60 of the apparatus 12 to the heat storage tank 60 (in other words, the air conditioning apparatus 10 of the compression / expansion method with the cold water 61 that does not consume the cold heat in the fan coil units 13, 17, 15 refrigerants are cooled). That is, in the air conditioning system previously described with reference to FIG. 1, in the central type air conditioner 12, cold water was circulated in series in the order of the heat storage tank 60, the fan coil units 13 and 17, and the heat exchangers 32 and 52. On the other hand, in the air conditioning system according to the embodiment shown in FIG. 2, in the central type air conditioner 12, the cold water is circulated between the heat storage tank 60 and the fan coil units 13 and 17, and the heat storage tank 60 and the heat The difference is that a parallel circulation in which cold water circulates between the exchangers 32 and 52 is performed.

この図2に示した実施の形態にかかる空調システムでは,ポンプ70の稼動で蓄熱槽60から汲み上げられた冷水61が,配管71から配管73を通って熱交換器32に直接(ファンコイルユニット13を介さないで)供給され,同様に配管85を通って熱交換器52に直接(ファンコイルユニット17を介さないで)供給されている。また,ファンコイルユニット13,17を通過した冷水61(空調空間a,c内の空気と熱交換した後の冷水61)は,配管75に直接(熱交換器32,52を介さないで)排出されて蓄熱槽60に戻される。   In the air conditioning system according to the embodiment shown in FIG. 2, the cold water 61 pumped from the heat storage tank 60 by the operation of the pump 70 passes directly from the pipe 71 through the pipe 73 to the heat exchanger 32 (fan coil unit 13 In the same manner, it is supplied directly to the heat exchanger 52 through the pipe 85 (without the fan coil unit 17). Further, the cold water 61 (cold water 61 after heat exchange with the air in the air-conditioned spaces a and c) that has passed through the fan coil units 13 and 17 is discharged directly into the pipe 75 (without passing through the heat exchangers 32 and 52). And returned to the heat storage tank 60.

また,この図2に示した実施の形態にかかる空調システムでは,圧縮膨張方式の空調装置10において,室外器20から室内器11に冷媒を送る配管21における熱交換器32と室内器11の間に3方弁100を取り付けると共に,室内器11から室外器20に冷媒を送る配管22に3方弁101を取り付け,それら3方弁100,101の間をバイパス配管102で接続している。また同様に,圧縮膨張方式の空調装置15においても,室外器40から室内器16に冷媒を送る配管41における熱交換器52と室内器16の間に3方弁105を取り付けると共に,室内器16から室外器40に冷媒を送る配管42に3方弁106を取り付け,それら3方弁105,106の間をバイパス配管107で接続している。   In the air conditioning system according to the embodiment shown in FIG. 2, in the compression / expansion type air conditioner 10, the space between the heat exchanger 32 and the indoor unit 11 in the pipe 21 that sends the refrigerant from the outdoor unit 20 to the indoor unit 11. A three-way valve 100 is attached to the pipe 22 and a three-way valve 101 is attached to a pipe 22 for sending a refrigerant from the indoor unit 11 to the outdoor unit 20, and the three-way valve 100 and 101 are connected by a bypass pipe 102. Similarly, in the compression-expansion type air conditioner 15, the three-way valve 105 is attached between the heat exchanger 52 and the indoor unit 16 in the pipe 41 that sends the refrigerant from the outdoor unit 40 to the indoor unit 16, and the indoor unit 16 A three-way valve 106 is attached to a pipe 42 that sends refrigerant to the outdoor unit 40, and the three-way valves 105 and 106 are connected by a bypass pipe 107.

このように,図1の形態では,ファンコイルユニット13,17と熱交換器32,52を直列に接続し,冷水61をファンコイルユニット13,17から熱交換器32,52に送水していたのに対して,図2の形態では,ファンコイルユニット13,17と熱交換器32,52を並列に接続し,冷水61をファンコイルユニット13,17と熱交換器32,52にそれぞれ直接送水している点,及び,図2の形態では,圧縮膨張方式の空調装置10,15において,熱交換器32,52を経た冷媒を室内器11,16を経ずに,室外器20,40に直接戻すバイパス配管102,107を設けた点が相違するが,これらの相違点を除けば,この形態にかかる空調システムは,先に図1で説明した形態にの空調システムと同様の構成を備えている。このため,この図2において,先に図1で説明した実施の形態と共通の構成要素については,同じ符合を付することにより,重複した説明を省略する。   1, the fan coil units 13 and 17 and the heat exchangers 32 and 52 are connected in series, and the cold water 61 is supplied from the fan coil units 13 and 17 to the heat exchangers 32 and 52. On the other hand, in the embodiment of FIG. 2, the fan coil units 13 and 17 and the heat exchangers 32 and 52 are connected in parallel, and the cold water 61 is directly supplied to the fan coil units 13 and 17 and the heat exchangers 32 and 52, respectively. 2 and in the form of FIG. 2, in the compression / expansion type air conditioners 10 and 15, the refrigerant having passed through the heat exchangers 32 and 52 is transferred to the outdoor units 20 and 40 without passing through the indoor units 11 and 16. The difference is that the bypass pipes 102 and 107 for direct return are provided. Except for these differences, the air conditioning system according to this embodiment has the same configuration as the air conditioning system according to the embodiment described above with reference to FIG. Have . For this reason, in FIG. 2, the same reference numerals are given to the same components as those in the embodiment described above in FIG.

この図2に示した実施の形態の空調システムによれば,セントラル方式の空調装置12において例えば冷却コイル62で冷却された蓄熱槽60内の冷水61の水温を7℃と仮定すれば,その7℃の冷水61を熱交換器32,52に直接(ファンコイルユニット13,17を介さないで)供給することにより,先に図1で説明した実施の形態の空調システムに比べて,圧縮膨張方式の空調装置10,15において室外器20,40から室内器11,16に送られる冷媒を更に低温度に冷却させることができ,空調装置11,15の冷房能力を向上させることができる。   According to the air conditioning system of the embodiment shown in FIG. 2, if the water temperature of the cold water 61 in the heat storage tank 60 cooled by, for example, the cooling coil 62 in the central air conditioner 12 is assumed to be 7 ° C., 7 By supplying chilled water 61 at 0 ° C. directly to the heat exchangers 32 and 52 (without passing through the fan coil units 13 and 17), compared with the air conditioning system of the embodiment described above with reference to FIG. In the air conditioners 10 and 15, the refrigerant sent from the outdoor units 20 and 40 to the indoor units 11 and 16 can be cooled to a lower temperature, and the cooling capacity of the air conditioners 11 and 15 can be improved.

また,この図2に示した実施の形態の空調システムでは,バイパス配管102,107を設けたことにより,セントラル方式の空調装置12における蓄熱槽60内の冷水61を,圧縮膨張方式の空調装置10,15によって冷却することができる。即ち,建築物2内に冷房負荷がある場合は,空調装置10において,3方弁100,101を切替えることにより,室外器20から室内器11に冷媒を送ると共に,室内器11から室外器20に冷媒を送る状態とし,バイパス配管102には冷媒を送液させない状態にする。また同様に,空調装置10において,3方弁105,106を切替えることにより,室外器40から室内器16に冷媒を送ると共に,室内器16から室外器40に冷媒を送る状態とし,バイパス配管107には冷媒を送液させない状態にする。こうして,先に図1で説明した場合と同様に,室外器20,40と室内器11,16の間で冷媒を循環させ,冷房を行う。   Further, in the air conditioning system of the embodiment shown in FIG. 2, by providing the bypass pipes 102 and 107, the cold water 61 in the heat storage tank 60 in the central air conditioner 12 is replaced with the compression / expansion air conditioner 10. 15 can be cooled. That is, when there is a cooling load in the building 2, in the air conditioner 10, the refrigerant is sent from the outdoor unit 20 to the indoor unit 11 by switching the three-way valves 100 and 101, and from the indoor unit 11 to the outdoor unit 20. The refrigerant is sent to the bypass pipe 102 and the refrigerant is not sent to the bypass pipe 102. Similarly, in the air conditioner 10, by switching the three-way valves 105 and 106, the refrigerant is sent from the outdoor unit 40 to the indoor unit 16, and the refrigerant is sent from the indoor unit 16 to the outdoor unit 40. In such a state, the refrigerant is not fed. Thus, similarly to the case described above with reference to FIG. 1, the refrigerant is circulated between the outdoor units 20 and 40 and the indoor units 11 and 16 to perform cooling.

一方,夏季の夜間などのように建築物2内に冷房負荷が無い場合は,ポンプ70の稼動で蓄熱槽60から汲み上げた冷水61を,配管71から熱交換器32,52に直接送液して,配管75から蓄熱槽60に戻すように循環させる。なおその場合,ファンコイルユニット13,17への送水は,開閉弁を閉じるなどすることにより,適宜停止しても良い。一方,圧縮膨張方式の空調装置10,15においては,冷凍サイクルの運転を行うことにより,室外器20,40で圧縮凝縮させた冷媒を配管21,41を通って熱交換器32,52にそれぞれ供給する。但し,この場合は,3方弁100,101を切替えることにより,室外器20から送液されて熱交換器32を経た冷媒を,室内器11に通さずに,バイパス配管102に通して室外器20に直接戻すようにする。また同様に,3方弁105,106を切替えることにより,室外器40から送液されて熱交換器52を経た冷媒を,室内器16に通さずに,バイパス配管107に通して室外器40に直接戻すようにする。そして,熱交換器32,52においては,圧縮膨張方式の空調装置10,15で行われる冷凍サイクルにおける冷媒の蒸発を利用して,冷水61を冷却させる。なお,このとき,圧縮膨張方式の空調装置10,15においては,制御弁28,48はそれぞれ圧縮弁として機能させる。こうして冷却させた冷水61を配管75から蓄熱槽60に戻すことにより,セントラル方式の空調装置12における蓄熱槽60内の蓄熱を,圧縮膨張方式の空調装置10,15によって行うことができる。   On the other hand, when there is no cooling load in the building 2 such as at night in summer, the cold water 61 pumped from the heat storage tank 60 by the operation of the pump 70 is directly sent from the pipe 71 to the heat exchangers 32 and 52. Then, the pipe 75 is circulated back to the heat storage tank 60. In this case, water supply to the fan coil units 13 and 17 may be stopped as appropriate by closing the on-off valve. On the other hand, in the compression / expansion type air conditioners 10 and 15, by operating the refrigeration cycle, the refrigerant compressed and condensed in the outdoor units 20 and 40 passes through the pipes 21 and 41 to the heat exchangers 32 and 52, respectively. Supply. However, in this case, by switching the three-way valves 100 and 101, the refrigerant sent from the outdoor unit 20 and passed through the heat exchanger 32 is not passed through the indoor unit 11 but through the bypass pipe 102. Return to 20 directly. Similarly, by switching the three-way valves 105 and 106, the refrigerant sent from the outdoor unit 40 and passed through the heat exchanger 52 is not passed through the indoor unit 16 but through the bypass pipe 107 to the outdoor unit 40. Try to return directly. And in the heat exchangers 32 and 52, the cold water 61 is cooled using the evaporation of the refrigerant | coolant in the refrigerating cycle performed with the air conditioners 10 and 15 of a compression expansion system. At this time, in the compression / expansion type air conditioners 10 and 15, the control valves 28 and 48 function as compression valves, respectively. By returning the cooled cold water 61 from the pipe 75 to the heat storage tank 60, the heat storage in the heat storage tank 60 in the central air conditioner 12 can be performed by the compression / expansion air conditioners 10 and 15.

このように,セントラル方式の空調装置12の蓄熱を,圧縮膨張方式の空調装置10,15で行うことにより,図2中に示した冷却塔55,冷凍機63,ポンプ64などといったセントラル方式の空調装置12専用の冷凍手段を省略することも可能である。これにより,設備コストを低減できる。また,昼間に比べて料金の安い夜間電力を利用して空調装置12の蓄熱を行うことにより,ランニングコストも低減できる。   As described above, the heat storage of the central air conditioner 12 is performed by the compression / expansion air conditioners 10 and 15, so that the central air conditioner such as the cooling tower 55, the refrigerator 63, and the pump 64 shown in FIG. It is also possible to omit the refrigeration means dedicated to the device 12. This can reduce equipment costs. In addition, the running cost can be reduced by storing heat of the air conditioner 12 by using night electricity, which is cheaper than the daytime.

以上に説明した本発明の実施の形態によれば,圧縮膨張方式の空調装置10,15は,熱交換器32,52を介してセントラル方式の空調装置12から冷熱を受取ることで,冷房能力を向上させることができ,空調システム全体の冷房能力向上,省エネルギー性を高めることができる。なお,一般に,建築物の空調システムの出力は余裕を持って設計されるので,高効率なセントラル方式の空調装置12を主として稼動させ,比較的効率の悪い圧縮膨張方式の空調装置10,15の稼働を抑えることにより,空調システムの省エネルギー性を更に高めることができる。   According to the embodiment of the present invention described above, the compression / expansion air conditioners 10 and 15 receive cooling from the central air conditioner 12 via the heat exchangers 32 and 52, thereby improving the cooling capacity. This can improve the cooling capacity of the entire air conditioning system and improve energy saving. In general, since the output of the building air conditioning system is designed with a margin, the highly efficient central air conditioner 12 is mainly operated, and the relatively inefficient compression / expansion air conditioners 10 and 15 are operated. By suppressing the operation, the energy saving performance of the air conditioning system can be further enhanced.

また,空調空間a,bには互いに独立した圧縮膨張方式の空調装置10,15を設けているので,空調空間a,bについては空調装置のパーソナル性が明かとなり,貸しビルオーナーなどにとってはテナントなどへの課金が透明となる。このように,利便性及び自立性と,セントラル方式の空調装置12の特長である省エネルギー性及び地球環境保全策への柔軟性(フロン使用量低減,自然冷媒利用)の両方を併せ持つ統合型の空調システムを提供できる。   In addition, since the air-conditioning spaces a and b are provided with the compression-expansion type air-conditioning devices 10 and 15 that are independent from each other, the personality of the air-conditioning device becomes clear with respect to the air-conditioning spaces a and b. The billing to etc becomes transparent. In this way, integrated air conditioning that combines both convenience and independence with the energy saving and the flexibility of global environmental conservation measures (reduction of chlorofluorocarbons and the use of natural refrigerants), which are the features of the central air conditioner 12 Can provide a system.

また,震災などの緊急時には,電気の復旧から水道の復旧までは圧縮膨張方式の空調装置10,15の運転が可能であるので,電気・ガス・水道等のライフラインに対する自立性も併せ持つ空調システムといえる。そして,セントラル方式の空調装置12の蓄熱槽60として,冷水61を蓄える蓄熱槽を採用した場合は,その冷水61は緊急時の生活用水としても活用できる。また,セントラル方式の空調装置12の冷凍手段として用いられる冷凍機63は,フロン冷媒の使用量が相当に少ないので,地球環境保全(フロン対策/オゾン層破壊対策)にも寄与できる。   In the event of an emergency such as an earthquake disaster, the compression / expansion type air conditioners 10 and 15 can be operated from the restoration of electricity to the restoration of water supply. Therefore, the air conditioning also has independence for lifelines such as electricity, gas, and water. A system. And when the thermal storage tank which stores the cold water 61 is employ | adopted as the thermal storage tank 60 of the central type air conditioner 12, the cold water 61 can be utilized also as domestic water in emergency. Further, the refrigerator 63 used as the refrigeration means of the central type air conditioner 12 uses a considerably small amount of the chlorofluorocarbon refrigerant, so that it can contribute to the preservation of the global environment (measures against chlorofluorocarbons / measures against ozone layer destruction).

また,例えば空調システムのリニューアル(設備増築)などに対しては,軽微な工事で済む圧縮膨張方式の空調装置の増設によって,冷房負荷の増強に容易に対応できる。その場合も,セントラル方式の空調装置12の冷水61との熱交換を行わせることによって,増設した圧縮膨張方式の空調装置の冷房能力を向上させることができる。   Also, for example, renewal of the air conditioning system (extension of equipment) can easily cope with an increase in cooling load by adding a compression / expansion type air conditioner that requires only minor work. Also in this case, by performing heat exchange with the cold water 61 of the central air conditioner 12, it is possible to improve the cooling capacity of the additional compression / expansion air conditioner.

以上,本発明の好ましい実施の形態を説明したが,本発明は以上に例示した形態に限定されない。図1,2では,建築物1の内部に3つの空調空間a,b,cを示したが,建築物の内部に形成された空調空間は一つでも良いし,任意の複数に分割されていても良い。建築物の階数も任意であり,単層の建物でも,複数階の建物で良い。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to the form illustrated above. In FIGS. 1 and 2, three air-conditioned spaces a, b, and c are shown inside the building 1, but the air-conditioned space formed inside the building may be one or divided into an arbitrary plurality. May be. The number of floors of the building is arbitrary, and a single-layer building or a multi-storey building may be used.

また,各空調空間に設けられる圧縮膨張方式の空調装置は任意であり,すべての空調空間に圧縮膨張方式の空調装置をそれぞれ設けても良いし,図示したように,一部の空調空間に圧縮膨張方式の空調装置を設けても良い。また,圧縮膨張方式の空調装置は,一つの室外器から複数の室内器に冷媒を送るマルチ方式でも良い。また,圧縮膨張方式の空調装置は冷房運転のみを行うものでなくても良く,暖房運転も可能な冷暖房装置でも良いことはもちろんである。   In addition, the compression / expansion type air conditioner provided in each air-conditioned space is arbitrary, and the compression / expansion type air conditioner may be provided in each air-conditioned space, or as shown in the figure, a part of the air-conditioned space may be compressed. An expansion type air conditioner may be provided. In addition, the compression / expansion type air conditioner may be a multi-type that sends a refrigerant from one outdoor unit to a plurality of indoor units. Of course, the compression / expansion type air conditioner does not have to perform only the cooling operation, and may be a cooling / heating device capable of heating operation.

また,各空調空間に設けられるセントラル方式の空調装置の室内設備の台数も任意であり,すべての空調空間にセントラル方式の空調装置の室内設備をそれぞれ設けても良いし,図示したように,一部の空調空間に圧縮膨張方式の空調装置を設けても良い。また,一つの空調空間に圧縮膨張方式の空調装置を複数台設けても良い。   Also, the number of indoor facilities of the central type air conditioner provided in each air conditioned space is arbitrary, and the indoor facilities of the central type air conditioner may be provided in all the air conditioned spaces. A compression-expansion type air conditioner may be provided in the air-conditioned space of the unit. A plurality of compression / expansion type air conditioners may be provided in one air-conditioned space.

なお,図1,2に示したように圧縮膨張方式の空調装置10の室内器11とセントラル方式の空調装置12のファンコイルユニット13の両方を設置する空調空間aとしては,例えばデパートの出入り口,倉庫の荷捌室など,冷房負荷の多い箇所が考えられる。また,圧縮膨張方式の空調装置15の室内器16のみが設置される空調空間bとしては,例えば会議室,ホテルの宴会場などといった非定常の冷房負荷が要求される箇所が考えられる。そして,圧縮膨張方式の空調装置10により,そのような箇所に発生する非定常の冷房負荷を処理すれば良い。一方,セントラル方式の空調装置12のファンコイルユニット17のみが設置される空調空間cとしては,例えば執務室,冷蔵倉庫など,定常負荷の冷房が要求される箇所が考えられる。そして,セントラル方式の空調装置12により,そのような箇所で発生する定常の冷房負荷を処理すれば良い。   As shown in FIGS. 1 and 2, the air-conditioning space a in which both the indoor unit 11 of the compression / expansion air conditioner 10 and the fan coil unit 13 of the central air conditioner 12 are installed is, for example, an entrance / exit of a department store, There may be places where the cooling load is high, such as a cargo room in a warehouse. Further, as the air-conditioned space b in which only the indoor unit 16 of the compression / expansion type air conditioner 15 is installed, a place where an unsteady cooling load is required such as a conference room or a hotel banquet hall can be considered. Then, the unsteady cooling load generated in such a place may be processed by the compression / expansion type air conditioner 10. On the other hand, as the air-conditioned space c in which only the fan coil unit 17 of the central type air conditioner 12 is installed, there may be a place where a constant load cooling is required, such as a office room or a refrigerated warehouse. Then, it is only necessary to process a steady cooling load generated at such a location by the central type air conditioner 12.

図1,2では,建築物1の地下空間dにセントラル方式の空調装置12の蓄熱槽60を設置した例を示したが,セントラル方式の空調装置の熱源設備(蓄熱槽など)は建築物の外部に設置しても良い。また,セントラル方式の空調装置の熱源設備は一つに限らず,複数の熱源設備によって建築物内の冷却負荷を賄っても良い。セントラル方式の空調装置の熱源設備として冷水を蓄える蓄熱槽を採用する場合,冷水の冷却手段は,電気方式の他,ガスヒートポンプやガス焚き吸収冷凍機でも良い。セントラル方式の空調装置において冷水の冷却手段としてガス焚き吸収冷凍機を採用し,圧縮膨張方式の空調装置を電気方式とすれば,電力デマンド対策(受電契約量を下げる/電気の基本料金を抑えるため)に有効である。また,冷凍機は空気熱源ヒートポンプ等の空冷式でも良く,その場合は,冷却塔55やその付属配管56,57などは省略できる。またセントラル方式の空調装置に備えられる熱源設備の構成として,蓄熱槽を省略し,冷凍機などからそのまま(またはヘッダは熱交換器を介して)冷水を室内器(ファンコイルユニットや水熱源パッケージエアコンなど)や熱交換器に循環供給するものであっても良い。また,DHC(地域冷暖房施設)の熱を利用した冷水を室内器(ファンコイルユニットや水熱源パッケージエアコンなど)や熱交換器に循環供給するものであっても良い。セントラル方式の空調装置に備えられる熱源設備は,例えば建築物内の大半の冷却負荷を賄えるような比較的大量の冷熱を生成及び蓄熱できるようなものであることが好ましい。   1 and 2 show an example in which the heat storage tank 60 of the central type air conditioner 12 is installed in the underground space d of the building 1, but the heat source equipment (heat storage tank, etc.) of the central type air conditioner is It may be installed outside. Further, the heat source equipment of the central type air conditioner is not limited to one, and the cooling load in the building may be covered by a plurality of heat source equipments. When a heat storage tank that stores cold water is adopted as a heat source facility for a central type air conditioner, the cooling means for cold water may be a gas heat pump or a gas-fired absorption refrigerator as well as an electric type. If a gas-fired absorption chiller is used as a cooling method for cold water in the central type air conditioner and the compression / expansion type air conditioner is an electric type, measures against power demand (to reduce the amount of power receiving contracts / suppress the basic charge of electricity) ) Is effective. In addition, the refrigerator may be an air-cooled type such as an air heat source heat pump, in which case the cooling tower 55 and its associated pipes 56 and 57 can be omitted. In addition, the heat source equipment configuration of the central type air conditioner eliminates the heat storage tank, and chilled water directly from the refrigerator (or the header via a heat exchanger) to the indoor unit (fan coil unit or water heat source packaged air conditioner). Etc.) or a heat exchanger. Further, cold water using heat from a DHC (district air conditioning facility) may be circulated and supplied to an indoor unit (fan coil unit, water heat source package air conditioner, etc.) or a heat exchanger. It is preferable that the heat source equipment provided in the central type air conditioner can generate and store a relatively large amount of cold heat that can cover most cooling loads in the building, for example.

なお,セントラル方式の空調装置の熱源設備として蓄熱槽を採用する場合は,水蓄熱方式でも氷蓄熱方式でも良い。また,セントラル方式の空調装置の熱源設備として,蓄熱槽の他,蓄熱機能の無い冷凍機やヒートポンプも採用できる。また,セントラル方式の空調装置の室内器としてのファンコイルユニットを例示したが,その他,エアハンドリングユニットやユニタリーヒートポンプをセントラル方式の空調装置の室内器としても良い。ファンコイルユニットに限らず,例えば冷蔵食品のショーケースの冷却など,空調以外の用途にも適用できる。   When a heat storage tank is adopted as a heat source facility for a central type air conditioner, either a water heat storage method or an ice heat storage method may be used. In addition to heat storage tanks, refrigerators and heat pumps that do not have a heat storage function can also be used as heat source equipment for central air conditioners. In addition, although the fan coil unit as an indoor unit of the central type air conditioner has been exemplified, an air handling unit or a unitary heat pump may be used as the indoor unit of the central type air conditioner. The present invention is not limited to the fan coil unit, and can be applied to uses other than air conditioning such as cooling of a refrigerated food showcase.

図1,2で説明した本発明の実施の形態にかかる空調システムについてCOPを試算した。比較例として,熱交換器を備えていない圧縮膨張方式の空調装置のCOP(COP)は,単体で2.50,セントラル方式の空調装置の蓄熱槽のCOP(COP)は,4.00とした。 COP was calculated about the air-conditioning system concerning embodiment of this invention demonstrated in FIG. As a comparative example, the COP (COP P ) of a compression / expansion type air conditioner without a heat exchanger is 2.50 alone, and the COP (COP C ) of the heat storage tank of the central type air conditioner is 4.00. It was.

図1で説明したように,熱交換器に送水する冷水の温度が12℃の場合,圧縮膨張方式の空調装置の熱媒をセントラル方式の空調装置の蓄熱槽の冷水で冷却(冷媒過冷却)したことにより,図3に示すような圧縮膨張方式の空調装置の冷房能力向上率は24%と見積もることができる(冷媒過冷却による冷房能力向上率η=0.24)。この冷媒過冷却による圧縮膨張方式の空調装置のCOP(COPP−SC)は,下記の(1)式から2.75(通常のCOPと比較して10%向上)と計算できる。 As described in FIG. 1, when the temperature of the cold water sent to the heat exchanger is 12 ° C., the heat medium of the compression / expansion air conditioner is cooled with the cold water in the heat storage tank of the central air conditioner (refrigerant supercooling). Thus, the cooling capacity improvement rate of the compression-expansion type air conditioner as shown in FIG. 3 can be estimated to be 24% (cooling capacity improvement rate η = 0.24 due to refrigerant supercooling). The COP (COP P-SC ) of the compression / expansion type air conditioner by refrigerant supercooling can be calculated as 2.75 (10% improvement compared to normal COP P ) from the following equation (1).

COPP−SC=COP・COP/{η・COP+(1−η)・COP
・・・(1)
η:冷媒過冷却による冷房能力向上率
COP:冷媒過冷却の熱交換器を有さない圧縮膨張方式の空調装置の単体のCOP(2.50)
COP:ポンプも含めたセントラル方式の空調装置の蓄熱槽のCOP(4.00)
COP P-SC = COP P · COP C / {η · COP P + (1−η) · COP C }
... (1)
η: Cooling capacity improvement rate by refrigerant supercooling COP P : Single COP of a compression / expansion type air conditioner without a refrigerant supercooling heat exchanger (2.50)
COP C : COP of heat storage tank of central type air conditioner including pump (4.00)

また,冷媒過冷却の熱交換器に送水する冷水の温度が7℃の場合は,図3に示すような冷媒過冷却による冷房能力向上率は,35%と見積もることができる(冷房能力向上率η=0.35)。この冷媒過冷却による圧縮膨張方式の空調装置のCOP(COPP−SC)は,上記の(1)式から2.88(通常のCOPと比較して15%向上)と計算できる。 When the temperature of the chilled water fed to the refrigerant supercooling heat exchanger is 7 ° C., the cooling capacity improvement rate due to the refrigerant supercooling as shown in FIG. 3 can be estimated to be 35% (cooling capacity improvement ratio). η = 0.35). The COP (COP P-SC ) of the compression / expansion type air conditioner by refrigerant supercooling can be calculated as 2.88 (15% improvement compared to normal COP P ) from the above equation (1).

空調システム全体のCOPは,全床面積に対する圧縮膨張方式の空調装置が処理する床面積の割合(圧縮膨張方式の空調装置エリア比β)に依ることになる。前述のように,冷媒過冷却の熱交換器に送水する冷水の温度が12℃の場合と,冷媒過冷却の熱交換器に送水する冷水の温度が7℃の場合について,種々の圧縮膨張方式の空調装置エリア比(β=0.0(CASE1),0.2(CASE2),0.4(CASE3),0.6(CASE4),0.8(CASE5),1.0(CASE6))による空調システム全体のCOPを図4及び図5に示す。これらの空調システム全体のCOPは下記の(2)式から計算できる。表4及び図5には,冷媒過冷却の熱交換器を有しない圧縮膨張方式の空調装置の場合での計算結果も比較のために示した。   The COP of the entire air conditioning system depends on the ratio of the floor area processed by the compression / expansion air conditioning system to the total floor area (compression air conditioning system area ratio β). As described above, various compression / expansion systems are used for the case where the temperature of the chilled water sent to the refrigerant supercooling heat exchanger is 12 ° C. and the case where the temperature of the chilled water sent to the refrigerant supercooled heat exchanger is 7 ° C. Air conditioner area ratio (β = 0.0 (CASE1), 0.2 (CASE2), 0.4 (CASE3), 0.6 (CASE4), 0.8 (CASE5), 1.0 (CASE6)) The COP of the entire air conditioning system is shown in FIGS. The COP of the entire air conditioning system can be calculated from the following equation (2). Table 4 and FIG. 5 also show the calculation results in the case of a compression / expansion type air conditioner without a refrigerant supercooling heat exchanger for comparison.

COP=COPP−SC・COP/{β・COP+(1−β)・COPP−SC
・・・(2)
β:全床面積に対する圧縮膨張方式の空調装置が処理する床面積の割合(圧縮膨張方式の空調装置エリア比)
COPP−SC:冷媒過冷却の熱交換器を有しない圧縮膨張方式の空調装置のCOP((1)式による)
COP:ポンプや冷却ファンも含めたセントラル方式の空調装置の蓄熱槽のCOP(4.00)
COP = COP P-SC · COP C / {β · COP C + (1-β) · COP P-SC }
... (2)
β: Ratio of floor area processed by compression-expansion air conditioner to total floor area (compression expansion-type air conditioner area ratio)
COP P-SC : COP of a compression / expansion type air conditioner without a refrigerant supercooling heat exchanger (according to equation (1))
COP C : COP (4.00) of the heat storage tank of the central type air conditioner including pumps and cooling fans

表4及び図5に示されるように,冷媒過冷却の熱交換器を有しない圧縮膨張方式の空調装置の場合,冷媒過冷却の熱交換器に送水する冷水の温度が12℃の場合,冷媒過冷却の熱交換器に送水する冷水の温度が7℃の場合の何れの場合も,圧縮膨張方式の空調装置エリア比が大きくなるほど,空調システム全体のCOPは悪くなる。これは,ポンプも含めたセントラル方式の空調装置の蓄熱槽のCOP(COP=4.0)に比べて,圧縮膨張方式の空調装置のCOP(COPまたはCOPP−SC)が悪いことに依る。同一の圧縮膨張方式の空調装置エリア比において,空調システム全体のCOPの冷媒過冷却に依る向上効果は,冷水の温度が低いほど大きい。また,圧縮膨張方式の空調装置エリアが大きくなるほど,空調システム全体のCOPの冷媒過冷却に依る向上効果は大きくなることが読み取れる。 As shown in Table 4 and FIG. 5, in the case of a compression / expansion type air conditioner without a refrigerant supercooling heat exchanger, when the temperature of the chilled water sent to the refrigerant supercooling heat exchanger is 12 ° C., the refrigerant In any case where the temperature of the chilled water sent to the supercooling heat exchanger is 7 ° C., the COP of the entire air conditioning system becomes worse as the area ratio of the compression / expansion air conditioner increases. This is because the COP (COP P or COP P-SC ) of the compression / expansion type air conditioner is worse than the COP (COP C = 4.0) of the heat storage tank of the central type air conditioner including the pump. It depends. In the same compression / expansion air conditioner area ratio, the improvement effect due to the COP refrigerant supercooling of the entire air conditioning system increases as the temperature of the cold water decreases. It can also be seen that the larger the air conditioning system area of the compression / expansion system, the greater the improvement effect due to the COP refrigerant supercooling of the entire air conditioning system.

図6は,同一の圧縮膨張方式の空調装置エリア比βにおける,空調システム全体のCOPの冷媒過冷却に依る向上比を示す。β=0.4で12℃冷水の場合には5%のCOP向上,また,β=0.4で12℃冷水の場合には5%のCOP向上が読み取れる。   FIG. 6 shows the improvement ratio due to the COP refrigerant supercooling of the entire air conditioning system in the same compression / expansion air conditioning system area ratio β. When β = 0.4 and 12 ° C. cold water, a 5% COP improvement can be read. When β = 0.4 and 12 ° C. cold water, a 5% COP improvement can be read.

図7は,冷媒か冷却の熱交換器を有さず,全館圧縮膨張方式の空調装置とした場合のCOP(COP=2.50)と比較した,空調システム全体のCOPの冷媒過冷却に依る向上比を示す。β=0.4で12℃冷水の場合には35%のCOP向上,またβ=0.4で12℃冷水の場合には38%のCOP向上が読み取れる。 FIG. 7 shows the COP refrigerant supercooling of the entire air conditioning system compared to the COP (COP P = 2.50) in the case where the entire building compression / expansion type air conditioner is not provided with a refrigerant or cooling heat exchanger. The improvement ratio depends. In the case of β = 0.4 and 12 ° C. cold water, a 35% COP improvement can be read, and in the case of β = 0.4 and 12 ° C. cold water, a 38% COP improvement can be read.

本発明は,事務所ビル,商業ビルなどといった業務用ビルの他,ホール,設備等の他の建築物にも適用できる。   The present invention can be applied to other buildings such as halls and facilities in addition to business buildings such as office buildings and commercial buildings.

本発明の実施の形態にかかる空調システムを適用した建築物の説明図である。It is explanatory drawing of the building to which the air conditioning system concerning embodiment of this invention is applied. 図1とは異なる本発明の実施の形態にかかる空調システムを適用した建築物の説明図である。It is explanatory drawing of the building to which the air-conditioning system concerning embodiment of this invention different from FIG. 1 is applied. 冷媒過冷却による冷房能力向上を示すモリエル線図である。It is a Mollier diagram which shows the cooling capacity improvement by refrigerant | coolant supercooling. 空調システム全体のCOPの計算結果を示す表である。It is a table | surface which shows the calculation result of COP of the whole air conditioning system. 空調システム全体のCOPの計算結果を示すグラフである。It is a graph which shows the calculation result of COP of the whole air conditioning system. 同一の圧縮膨張方式の空調装置エリア比における,空調システム全体のCOPの計算結果を示すグラフである。It is a graph which shows the calculation result of COP of the whole air conditioning system in the air-conditioner area ratio of the same compression / expansion system. 全館圧縮膨張方式の空調装置とした場合のCOPと比較した,空調システム全体のCOPの計算結果を示すグラフである。It is a graph which shows the calculation result of COP of the whole air conditioning system compared with COP at the time of setting it as a whole-building compression-expansion-type air conditioner.

符号の説明Explanation of symbols

1 建築物
a,b,c 空調空間
d 地下空間
10,15 圧縮膨張方式の空調装置
11,16 室内器
12 セントラル方式の空調装置
13,17 ファンコイルユニット
20,40 室外器
32,52 熱交換器
60 蓄熱槽
61 冷水
63 冷凍機
DESCRIPTION OF SYMBOLS 1 Building a, b, c Air-conditioned space d Underground space 10, 15 Compressive expansion type air conditioner 11, 16 Indoor unit 12 Central type air conditioner 13, 17 Fan coil unit 20, 40 Outdoor unit 32, 52 Heat exchanger 60 thermal storage tank 61 cold water 63 refrigerator

Claims (7)

室外器と室内器の間で冷媒を循環させ,冷凍サイクルを行うことにより建築物内の空調空間を冷房する圧縮膨張方式の空調装置と,熱源設備の冷水を空調空間内に設置した室内器に循環供給して,建築物内の空調空間を冷房するセントラル方式の空調装置を有する建築物の空調システムであって,
前記圧縮膨張方式の空調装置の室外器から室内器に送られる冷媒と,前記セントラル方式の空調装置の室内器から熱源設備に送られる冷水とを熱交換させる熱交換器を設けたことを特徴とする,空調システム。
A refrigerant system is circulated between the outdoor unit and the indoor unit, and a refrigeration cycle is performed to cool the air-conditioned space in the building. A building air conditioning system having a central type air conditioner that circulates and cools the air-conditioned space in the building,
A heat exchanger for exchanging heat between the refrigerant sent from the outdoor unit of the compression / expansion type air conditioner to the indoor unit and the cold water sent from the indoor unit of the central type air conditioner to a heat source facility; Air conditioning system.
室外器と室内器の間で冷媒を循環させ,冷凍サイクルを行うことにより建築物内の空調空間を冷房する圧縮膨張方式の空調装置と,熱源設備の冷水を空調空間内に設置した室内器に循環供給して,建築物内の空調空間を冷房するセントラル方式の空調装置を有する建築物の空調システムであって,
前記圧縮膨張方式の空調装置の室外器から室内器に送られる冷媒と,前記セントラル方式の空調装置の熱源設備から熱源設備に送られる冷水とを熱交換させる熱交換器を設けたことを特徴とする,空調システム。
A refrigerant system is circulated between the outdoor unit and the indoor unit, and a refrigeration cycle is performed to cool the air-conditioned space in the building, and an indoor unit in which the chilled water of the heat source equipment is installed in the air-conditioned space. A building air conditioning system having a central type air conditioner that circulates and cools the air-conditioned space in the building,
A heat exchanger is provided that exchanges heat between the refrigerant sent from the outdoor unit of the compression / expansion air conditioner to the indoor unit and the cold water sent from the heat source facility of the central type air conditioner to the heat source facility. Air conditioning system.
前記圧縮膨張方式の空調装置は,前記熱交換器を経た冷媒を室内器を経ずに室外器に戻すバイパス配管を備えることを特徴とする,請求項1または2に記載の空調システム。   The air conditioning system according to claim 1 or 2, wherein the compression-expansion type air conditioner includes a bypass pipe that returns the refrigerant that has passed through the heat exchanger to the outdoor unit without passing through the indoor unit. 前記セントラル方式の空調装置の室内器が前記建築物内に複数配置され,それら複数の室内器に,共通の熱源設備から冷水が循環供給されることを特徴とする,請求項1,2または3に記載の空調システム。   A plurality of indoor units of the central type air conditioner are arranged in the building, and cold water is circulated and supplied to the plurality of indoor units from a common heat source facility. The air conditioning system described in. 前記セントラル方式の空調装置は,熱源設備から室内器に冷水を送液する配管と,室内器から熱交換器に冷水を送液する配管と,熱交換器から熱源設備に冷水を送液する配管とを備え,熱源設備,室内器,熱交換器の順に冷水が循環することを特徴とする,請求項1,2,3または4に記載の空調システム。   The central type air conditioner has a pipe for sending cold water from the heat source equipment to the indoor unit, a pipe for sending cold water from the indoor unit to the heat exchanger, and a pipe for sending cold water from the heat exchanger to the heat source equipment. 5. The air conditioning system according to claim 1, wherein cold water circulates in the order of a heat source facility, an indoor unit, and a heat exchanger. 前記セントラル方式の空調装置は,熱源設備から室内器と熱交換器とに冷水を送液する配管と,室内器と熱交換器から熱源設備に冷水を送液する配管とを備え,熱源設備と室内器の間で冷水が循環すると共に,熱源設備と熱交換器の間で冷水が循環することを特徴とする,請求項1,2,3または4に記載の空調システム。   The central type air conditioner includes a pipe for supplying cold water from the heat source equipment to the indoor unit and the heat exchanger, and a pipe for sending cold water from the indoor unit and the heat exchanger to the heat source equipment. 5. The air conditioning system according to claim 1, wherein the cold water circulates between the indoor units and the cold water circulates between the heat source facility and the heat exchanger. 前記圧縮膨張方式の空調装置により非定常の冷房負荷を処理し,前記セントラル方式の空調装置により定常の冷房負荷を処理することを特徴とする,請求項1,2,3,4,5または6に記載の空調システム。   The unsteady cooling load is processed by the compression / expansion air conditioner, and the steady cooling load is processed by the central air conditioner. The air conditioning system described in.
JP2004055975A 2004-03-01 2004-03-01 Air conditioning system Expired - Lifetime JP4472383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004055975A JP4472383B2 (en) 2004-03-01 2004-03-01 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004055975A JP4472383B2 (en) 2004-03-01 2004-03-01 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2005249221A true JP2005249221A (en) 2005-09-15
JP4472383B2 JP4472383B2 (en) 2010-06-02

Family

ID=35029857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055975A Expired - Lifetime JP4472383B2 (en) 2004-03-01 2004-03-01 Air conditioning system

Country Status (1)

Country Link
JP (1) JP4472383B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002770A (en) * 2011-06-20 2013-01-07 Takasago Thermal Eng Co Ltd Operation method and construction method of air conditioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07317930A (en) * 1994-05-27 1995-12-08 Nippon P-Mac Kk Three way valve having blocking mechanism, and air-conditioning equipment
JPH11287523A (en) * 1998-02-09 1999-10-19 Mitsubishi Electric Corp Composite type refrigerant circuit equipment
JP2001099514A (en) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd Heat storage type air-conditioning and refrigerating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07317930A (en) * 1994-05-27 1995-12-08 Nippon P-Mac Kk Three way valve having blocking mechanism, and air-conditioning equipment
JPH11287523A (en) * 1998-02-09 1999-10-19 Mitsubishi Electric Corp Composite type refrigerant circuit equipment
JP2001099514A (en) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd Heat storage type air-conditioning and refrigerating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002770A (en) * 2011-06-20 2013-01-07 Takasago Thermal Eng Co Ltd Operation method and construction method of air conditioning system

Also Published As

Publication number Publication date
JP4472383B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
US9528713B2 (en) Combined hot water supply and air-conditioning device
US10101043B2 (en) HVAC system and method of operation
JP5295481B2 (en) Air conditioning system
US20150369498A1 (en) Air-conditioning apparatus
JP2006313034A (en) Geothermal unit
KR101773946B1 (en) Energy saving type air conditioning apparatus for data combined ess associated ice thermal storage system and outside air cooling
JP2006292313A (en) Geothermal unit
WO2017119137A1 (en) Air-conditioning device
JP2009103453A (en) Air conditioning facility
KR20190087196A (en) Hybrid air conditioning apparatus and method for controlling the same
JP2004211998A (en) Air conditioning system
JP5373959B2 (en) Air conditioner
KR20220169042A (en) Data center local cooling system with pre-cooling chiller
JP2008070004A (en) Heat source system
JP2006010137A (en) Heat pump system
JP5911675B2 (en) Air conditioning system operation method, air conditioning system construction method, and air conditioning system
JP4472383B2 (en) Air conditioning system
KR101844581B1 (en) Heat source integrated air conditioner
JP2009109086A (en) Air conditioning system
JP4631857B2 (en) Heat source system for high temperature cold water application
JP6047381B2 (en) air conditioner
Surroop et al. Technical and economic assessment of seawater air conditioning in hotels
JPH11344240A (en) Air conditioning heat source
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
JP2014194301A (en) Air conditioning system and air conditioning system operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4472383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

EXPY Cancellation because of completion of term