JPH05118696A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH05118696A
JPH05118696A JP28453991A JP28453991A JPH05118696A JP H05118696 A JPH05118696 A JP H05118696A JP 28453991 A JP28453991 A JP 28453991A JP 28453991 A JP28453991 A JP 28453991A JP H05118696 A JPH05118696 A JP H05118696A
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
water supply
refrigerant
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28453991A
Other languages
Japanese (ja)
Inventor
Takashi Shiga
隆司 志賀
Kazuhiro Ueda
和弘 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28453991A priority Critical patent/JPH05118696A/en
Publication of JPH05118696A publication Critical patent/JPH05118696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve the efficiency of a heat pump device by a method wherein a plurality of solenoid valves are operated to switch a refrigerating cycle, constituted of respective heat exchangers of utilizing side, non-utilizing air side and hot-water supplying side, to effect a plurality of operation modes such as individual cooling mode, individual heating mode, individual hot-water supplying mode, both of heating and hot-water supplying mode and the like. CONSTITUTION:Operation mode is controlled by the combination of opening and/or closing of solenoid valves 13a-13g. A refrigerant cycle, connecting a non-utilizing air side heat exchanger 3, an utilizing water side heat exchanger 4, a heat accumulating tank 37 and a heat radiator 39, is formed upon cooling operation. The circuit of the utilizing water side heat exchanger 4, the non-utilizing air side heat exchanger 3, the heat accumulating tank 37 and the heat radiator 39 is formed upon heating operation. The circuit of a hot-water supplying heat exchanger 3 and the non-utilizing air side heat exchanger 3 is formed upon hot-water supplying operation while the circuit of the hot-water supplying heat exchanger 2, the utilizing water side heat exchanger 4, the heat accumulating tank, 37 and the heat radiator 39 is formed upon cooling and hot-water supplying operation. The circuit of the hot-water supplying heat exchanger 2, the utilizing water side heat exchanger 41 and the heat accumulating tank 37 is formed upon heat accumulating and hot-water supplying operation. Waste heat can be utilized effectively by the hot-water supplying operation under slight load of cooling especially in such a manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電磁開閉弁を操作する
だけで、冷凍サイクルを切換え、冷房単独、暖房単独、
給湯単独、冷房給湯併用あるいは氷蓄熱併用の5つの運
転を行なえるヒートポンプ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention changes the refrigerating cycle by operating an electromagnetic on-off valve, and cools only air, heats only,
The present invention relates to a heat pump device capable of performing five operations including hot water supply alone, cooling hot water supply combined use, and ice heat storage combined use.

【0002】[0002]

【従来の技術】従来より、冷房、給湯併用運転が行える
装置としては、例えば実公昭48−17102号、実公
平1−24503号公報等において開示される。
2. Description of the Related Art Conventionally, devices capable of performing both cooling and hot water supply operation have been disclosed in, for example, Japanese Utility Model Publication No. 48-17102 and Japanese Utility Model Publication No. 1-24503.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの従来
の装置においては、冷房単独、冷房給湯併用、給湯単独
運転のためには、四方切換弁、三方切換弁、膨張弁をそ
れぞれ2個必要とするので、価格の上昇を招くという課
題がある。また、給湯熱交換器への移行させるべき熱の
一部が室外の非利用空気側熱交換器へ移行するので、温
水の温度が充分に高くできず、運転効率が低下する。即
ち、冷房排熱の回収による給湯運転が効率よく実施でき
ないという問題がある。冷房負荷が給湯負荷より小さい
場合、実質的に冷房排熱の回収は少ないので給湯専用運
転となり、給湯運転における排熱が回収できず、エネル
ギーの無駄が生じるという課題がある。
However, in these conventional devices, two four-way switching valves, three-way switching valves, and two expansion valves are required for cooling alone, combined use of cooling hot water, and independent hot water supply operation. Therefore, there is a problem that the price is increased. Further, since a part of the heat to be transferred to the hot water supply heat exchanger is transferred to the outdoor non-use air side heat exchanger, the temperature of the hot water cannot be sufficiently increased, and the operation efficiency is reduced. That is, there is a problem that the hot water supply operation cannot be efficiently performed by collecting the cooling exhaust heat. When the cooling load is smaller than the hot water supply load, there is a problem that the cooling heat exhaustion is practically small and the operation is dedicated to hot water supply, so that the exhaust heat in the hot water supply operation cannot be recovered and energy is wasted.

【0004】更には、給湯が要求されることが多い夜間
においては、冷房負荷は少ないので、給湯専用運転にな
り、給湯運転における排熱が回収できず、エネルギーの
無駄が生じるという課題がある。従って、夏期の冷房給
湯運転の運転率は実質的に低く、効率が悪かった。本発
明は、上記課題を解決するためになされたもので、冷房
負荷の低いときの給湯運転によって得られる排熱を、冷
房負荷の高いときの熱源として利用できるようにするこ
とにより、ヒートポンプ装置の効率を向上させることを
目的とする。
Further, at night when hot water supply is often required, since the cooling load is small, the operation becomes a hot water supply dedicated operation, and exhaust heat in the hot water supply operation cannot be recovered, resulting in a waste of energy. Therefore, the operation rate of the cooling hot water supply operation in the summer was substantially low and the efficiency was poor. The present invention has been made in order to solve the above problems, and exhaust heat obtained by the hot water supply operation when the cooling load is low can be used as a heat source when the cooling load is high, so that The purpose is to improve efficiency.

【0005】[0005]

【課題を解決するための手段】この発明にかかるヒート
ポンプ装置は、給湯用熱交換器、空調用水熱交換器、お
よび空気熱交換器の3つの熱交換器と複数の電磁開閉弁
とを用いて、冷房、暖房、給湯、冷房給湯運転をおこな
い、給湯運転によって利用水側熱交換器において作られ
る冷水を蓄熱する蓄熱槽を設け、蓄熱給湯運転ができる
ように構成した。なお、前記蓄熱給湯運転時において、
利用水側熱交換器の冷水の出口の温度を検出し、利用水
側交換器において作る冷水の温度を零下に保つための、
冷水温度検出素子と冷水温度制御装置とを備えると良
い。
A heat pump device according to the present invention uses three heat exchangers, a hot water supply heat exchanger, an air conditioning water heat exchanger, and an air heat exchanger, and a plurality of electromagnetic on-off valves. , A cooling, heating, hot water supply, and cooling hot water supply operation are performed, and a heat storage tank for storing the cold water produced in the utilization water side heat exchanger by the hot water supply operation is provided so that the heat storage hot water supply operation can be performed. During the heat storage hot water supply operation,
In order to detect the temperature of the cold water outlet of the used water side heat exchanger and keep the temperature of the cold water made in the used water side exchanger below zero,
It is preferable to include a cold water temperature detecting element and a cold water temperature control device.

【0006】[0006]

【作用】上記手段を講じた本発明においては、電磁弁の
開閉により、冷房運転は非利用空気側熱交換器と利用水
側熱交換器、暖房運転は利用水側熱交換器と非利用空気
側熱交換器、給湯運転は給湯用熱交換器と非利用空気側
熱交換器、冷房給湯運転および蓄熱給湯運転時には給湯
用熱交換器と利用水側熱交換器が接続され、冷房運転、
暖房運転、給湯運転、冷房給湯併行運転、蓄熱給湯運転
の5通りの運転を行う。
In the present invention having the above-described means, the air-cooling operation is performed by opening and closing the non-use air side heat exchanger and the water-use side heat exchanger, and the heating operation is used by the water-use side heat exchanger and the non-use air. Side heat exchanger, hot water supply operation for hot water supply heat exchanger and non-use air side heat exchanger, during cooling hot water supply operation and heat storage hot water supply operation, the hot water supply heat exchanger and use water side heat exchanger are connected, cooling operation,
There are five operations: heating operation, hot water supply operation, cooling hot water supply parallel operation, and heat storage hot water supply operation.

【0007】即ち、冷房運転時には、蓄熱槽の冷水を冷
房に供しつつ、該蓄熱槽の冷水は利用水側熱交換器にお
いて冷却し、非利用空気側熱交換器においては放熱す
る。暖房運転時には、非利用空気側熱交換器において吸
熱して利用水熱交換器において温水を作る。給湯運転時
には、非利用空気側熱交換器において吸熱して給湯用熱
交換器において温水を作る。冷房給湯併行運転時には、
給湯用熱交換器において温水を作り利用水が熱交換器に
て冷水を作り、この冷水を蓄熱槽に蓄えつつ冷房に供す
る。このとき冷媒は非利用空気側熱交換器には送らな
い。
That is, during the cooling operation, while the cold water in the heat storage tank is being used for cooling, the cold water in the heat storage tank is cooled in the used water side heat exchanger and radiated in the non-used air side heat exchanger. During heating operation, heat is absorbed in the non-use air side heat exchanger to generate hot water in the use water heat exchanger. During hot water supply operation, heat is absorbed in the unused air side heat exchanger to generate hot water in the hot water supply heat exchanger. During parallel operation of cooling and hot water supply,
Hot water is made in the heat exchanger for hot water supply, the used water makes cold water in the heat exchanger, and this cold water is stored in the heat storage tank and used for cooling. At this time, the refrigerant is not sent to the unused air side heat exchanger.

【0008】蓄熱給湯側には、給湯用熱交換器において
温水を作り利用水側熱交換器にて冷水を作り、この冷水
を蓄熱槽に蓄える。このとき冷媒は非利用空気側熱交換
器には送らない。なお、前記蓄熱給湯時において、利用
水側熱交換器の冷水の出口の温度を検出し温度制御する
ことによって、利用水側熱交換器において作る冷水の温
度を零下に保つようにすれば、氷の潜熱を利用すること
によって蓄熱槽の熱容量がより大きくなる。
On the heat storage hot water supply side, hot water is produced in the hot water supply heat exchanger and cold water is produced in the utilization water side heat exchanger, and the cold water is stored in the heat storage tank. At this time, the refrigerant is not sent to the unused air side heat exchanger. During the hot water supply, the temperature of the cold water outlet of the used water side heat exchanger is detected and the temperature is controlled to keep the temperature of the cold water produced in the used water side heat exchanger below zero. The heat capacity of the heat storage tank becomes larger by utilizing the latent heat of.

【0009】[0009]

【実施例】【Example】

実施例1.以下、この発明のヒートポンプ装置の実施例
を図について説明する。図1はその一実施例の冷媒系統
図を示したものであり、圧縮機1、四方切換弁5、圧縮
機1からの吐出ガス冷媒と給湯用水との間を熱交換する
給湯用熱交換器2、蓄熱槽に蓄える温水もしくは冷水を
作る利用水側熱交換器4、ファン16により室外の空気
との間で強制熱交換する非利用空気側熱交換器3等から
構成されている。
Example 1. Embodiments of a heat pump device of the present invention will be described below with reference to the drawings. FIG. 1 shows a refrigerant system diagram of one embodiment of the present invention, in which a compressor 1, a four-way switching valve 5, a hot-water supply heat exchanger for exchanging heat between a gas refrigerant discharged from the compressor 1 and hot-water supply water. 2. It is composed of a used water side heat exchanger 4 for producing hot water or cold water to be stored in a heat storage tank, a non-use air side heat exchanger 3 for forcibly exchanging heat with the outdoor air by a fan 16.

【0010】図2は前記実施例のヒートポンプ装置の全
体構成を示すシステム図である。この図2において、3
1は給湯用熱交換器2において作られる温水を取り出す
給湯ポンプ、36は取り出した温水を貯留する貯湯槽、
32は貯湯槽36の温水を消費系配管に循環させる給湯
水循環ポンプ、37は利用水側熱交換器4において作ら
れた冷水もしくは温水を貯留する蓄熱槽、33は利用水
側熱交換器4と蓄熱槽37との間を冷水もしくは温水を
循環させる蓄熱槽ポンプ、34は蓄熱槽37の冷水もし
くは温水を空調用の放熱器39へ供給す空調循環ポンプ
である。前記放熱器39において、冷水もしくは温水と
空気との間で熱交換が行なわれるのである。
FIG. 2 is a system diagram showing the overall construction of the heat pump device of the above embodiment. In FIG. 2, 3
1 is a hot water supply pump for taking out hot water produced in the hot water supply heat exchanger 2, 36 is a hot water storage tank for storing the taken out hot water,
Reference numeral 32 denotes a hot water supply water circulation pump for circulating the hot water in the hot water storage tank 36 to the consumption system pipe, 37 denotes a heat storage tank for storing cold water or hot water made in the use water side heat exchanger 4, and 33 denotes the use water side heat exchanger 4. A heat storage tank pump that circulates cold water or hot water between the heat storage tank 37 and 34 is an air conditioning circulation pump that supplies the cold water or hot water of the heat storage tank 37 to a radiator 39 for air conditioning. In the radiator 39, heat is exchanged between cold water or hot water and air.

【0011】また、6は逆止弁7a,7b,7c,7d
と電磁弁9、電磁式膨張弁10、毛細管8a,8b,8
cなどより構成される減圧膨張装置であり、条件に応じ
てそれぞれ開閉し、きめ細かに流通する冷媒量を制御す
る。11はドライヤ、12はアキュームレータである。
Further, 6 is a check valve 7a, 7b, 7c, 7d.
And solenoid valve 9, solenoid expansion valve 10, capillaries 8a, 8b, 8
It is a decompression / expansion device composed of c, etc., and opens / closes in accordance with the conditions to finely control the amount of refrigerant flowing. Reference numeral 11 is a dryer, and 12 is an accumulator.

【0012】逆止弁7aと7b,7cと7dがそれぞれ
直列に連結されており、この逆止弁7aと7b,7cと
7dとの連結点間に、ドライヤ11と電磁弁9、毛細管
8cが直列にして連結され、さらに、逆止弁7aと7c
との接続点と、ドライヤ11と伝磁弁9との接続点間に
毛細管8aが連結されている。この電磁弁9に並列に、
電磁式膨張弁10が接続されており、電磁弁9とドライ
ヤ11との接続点は毛細管8bを介して、また、逆止弁
7dはそれぞれ液留14に連結されている。さらに、逆
止弁7aと7cとの接続点は電磁弁13fを介して非利
用空気側熱交換器3に連結されている。
The check valves 7a and 7b, 7c and 7d are connected in series, and the dryer 11 and the solenoid valve 9 and the capillary tube 8c are provided between the check points 7a and 7b, 7c and 7d. Connected in series, and also check valves 7a and 7c
A capillary tube 8a is connected between a connection point of the dryer 11 and the connection point of the dryer 11 and the magnetic transmission valve 9. In parallel with this solenoid valve 9,
The electromagnetic expansion valve 10 is connected, the connection point between the electromagnetic valve 9 and the dryer 11 is connected via the capillary tube 8b, and the check valve 7d is connected to the liquid sump 14, respectively. Further, the connection point between the check valves 7a and 7c is connected to the unused air side heat exchanger 3 via the electromagnetic valve 13f.

【0013】一方、13c,13gは給湯用熱交換器2
の両側に接続され開閉する電磁弁であり、給湯、冷房給
湯、および蓄熱給湯運転時に開放される。電磁弁13c
は四方切換弁5に連結され、電磁弁13gは液留14に
連結されている。
On the other hand, 13c and 13g are hot water heat exchanger 2
Is a solenoid valve that is connected to both sides of and opens and closes, and is opened during hot water supply, cooling hot water supply, and heat storage hot water supply operation. Solenoid valve 13c
Is connected to the four-way switching valve 5, and the solenoid valve 13g is connected to the liquid sump 14.

【0014】13a,13bは利用水側熱交換器4の片
方側に接続される電磁弁であり、電磁弁13bは四方切
換弁5との間に、また電磁弁13aは四方切換弁5と非
利用空気側熱交換器3との間に接続される。
Reference numerals 13a and 13b are solenoid valves connected to one side of the water-side heat exchanger 4, and the solenoid valve 13b is between the four-way switching valve 5 and the solenoid valve 13a is not connected to the four-way switching valve 5. It is connected between the utilization air side heat exchanger 3.

【0015】電磁弁13dは給湯用熱交換器2の電磁弁
13gと利用水側熱交換器4との間に接続され、電磁弁
13eは非利用空気側熱交換器3の電磁弁13fと利用
水側熱交換器4との間に接続される。
The solenoid valve 13d is connected between the solenoid valve 13g of the hot water supply heat exchanger 2 and the water side heat exchanger 4 used, and the solenoid valve 13e is used together with the solenoid valve 13f of the unused air side heat exchanger 3. It is connected between the water side heat exchanger 4.

【0016】この電磁弁13fは減圧膨張装置6と非利
用空気側熱交換器3との間に接続される電磁弁であり、
冷房、暖房、給湯運転時に開放される。
The solenoid valve 13f is a solenoid valve connected between the decompression / expansion device 6 and the unused air side heat exchanger 3,
It is opened during cooling, heating, and hot water supply operations.

【0017】なお、上記液留14は冷凍装置内の余剰冷
媒を溜める役目をなし、バイパス回路18は逆止弁18
aとキャピラリーチューブ18bからなり、給湯用熱交
換器2内に閉じ込められた冷媒を低圧側に逃し、溜まら
ないようにするようになっている。
It should be noted that the above-mentioned liquid sump 14 serves to store the excess refrigerant in the refrigeration system, and the bypass circuit 18 is provided with the check valve 18
It is composed of a and a capillary tube 18b, and the refrigerant trapped in the hot water supply heat exchanger 2 escapes to the low pressure side and is prevented from accumulating.

【0018】以下に、本実施例のヒートポンプ装置の動
作について、(1)冷房運転、(2)暖房運転、(3)
給湯運転、(4)冷房給湯併行運転、(5)蓄熱給湯運
転の各運転モード別に説明する。
The operation of the heat pump device of this embodiment will be described below (1) cooling operation, (2) heating operation, (3)
Each operation mode of the hot water supply operation, (4) cooling hot water supply parallel operation, and (5) heat storage hot water supply operation will be described.

【0019】(1)冷房運転 冷房運転の場合の冷媒の流れを図3に示した。図3の圧
縮機1から吐出される高温、高圧のガス冷媒は四方切換
弁5を通って非利用空気側熱交換器3へ行き、ここでフ
ァン16によって強制熱交換され、ガス冷媒は凝縮され
て高圧の液冷媒となり、さらに電磁弁13fを経て減圧
膨張装置6へ入り、逆止弁7a,ドライヤ11を通って
冷媒は電磁式膨張弁10、冷却用毛細管8b,8cで減
圧され、逆止弁7aと電磁弁13dを通って利用水側熱
交換器4で蒸発し、ここで熱交換して冷水を作り、冷水
は、図2の蓄熱槽37に蓄えられつつ、空調循環ポンプ
34によって負荷の空調用の放熱器39へ供給される。
この利用水側熱交換器4で蒸発されたガス冷媒は電磁弁
13b、四方切換弁5を介して圧縮機1へ戻り、冷房運
転が繰り返される。
(1) Cooling Operation The flow of the refrigerant in the cooling operation is shown in FIG. The high-temperature, high-pressure gas refrigerant discharged from the compressor 1 of FIG. 3 goes through the four-way switching valve 5 to the unused air side heat exchanger 3, where it is forcibly heat-exchanged by the fan 16 and the gas refrigerant is condensed. Becomes a high-pressure liquid refrigerant, further enters the decompression expansion device 6 through the solenoid valve 13f, passes through the check valve 7a and the dryer 11, and the refrigerant is decompressed by the electromagnetic expansion valve 10 and the cooling capillaries 8b and 8c, and the check valve is stopped. It evaporates in the utilization water side heat exchanger 4 through the valve 7a and the solenoid valve 13d, and heat is exchanged here to make cold water. The cold water is stored in the heat storage tank 37 of FIG. Is supplied to the radiator 39 for air conditioning.
The gas refrigerant evaporated in the utilization water side heat exchanger 4 returns to the compressor 1 via the electromagnetic valve 13b and the four-way switching valve 5, and the cooling operation is repeated.

【0020】このときの開放される電磁弁は電磁弁13
f,13d,13bであり、他の電磁弁13a,13
c,13e,13gは閉じられる。給湯用熱交換器2は
両端の電磁弁13g,13cにより閉じられており、こ
こへ冷媒が寝込んで冷凍サイクルの運転が不安定になる
ことはない。
At this time, the opened solenoid valve is the solenoid valve 13
f, 13d, 13b and other solenoid valves 13a, 13
c, 13e and 13g are closed. The hot-water supply heat exchanger 2 is closed by the solenoid valves 13g and 13c at both ends, so that the refrigerant does not lie therein and the operation of the refrigeration cycle is not unstable.

【0021】(2)暖房運転 暖房運転の場合の冷媒の流れを図4に示した。このとき
は、冷房運転とは逆の冷凍サイクルで運転され、図4の
圧縮機1、四方切換弁5、電磁弁13b、利用水側熱交
換器4、電磁弁13d、液留14、減圧膨張装置6の逆
止弁7b、ドライヤ11、毛細管8a、膨張弁10、毛
細管8c、逆止弁7c、電磁弁13f、非利用空気側熱
交換器3、アキュムレータ12、図2の蓄熱槽37、放
熱器39の順で構成される。圧縮機1から出た高圧ガス
冷媒は利用水側熱交換器4で熱交換し、温水を作る。こ
の温水は、蓄熱槽37に蓄えられつつ、空気循環ポンプ
37によって負荷の空調用の放熱器39へ供給される。
(2) Heating operation The flow of the refrigerant in the heating operation is shown in FIG. At this time, the compressor is operated in a refrigeration cycle opposite to the cooling operation, and the compressor 1, the four-way switching valve 5, the solenoid valve 13b, the water side heat exchanger 4, the solenoid valve 13d, the liquid distillation 14, and the decompression expansion shown in FIG. Check valve 7b of device 6, dryer 11, capillary tube 8a, expansion valve 10, capillary tube 8c, check valve 7c, solenoid valve 13f, unused air side heat exchanger 3, accumulator 12, heat storage tank 37 of FIG. 2, heat dissipation It is configured in the order of the container 39. The high-pressure gas refrigerant discharged from the compressor 1 exchanges heat with the utilization water side heat exchanger 4 to produce hot water. The hot water is stored in the heat storage tank 37 and is supplied to the radiator 39 for air conditioning of the load by the air circulation pump 37.

【0022】この利用水側熱交換器4で凝縮された冷媒
は液留14に溜められ、ここで暖房運転における余剰冷
媒を収容するとともに、逆止弁7b、ドライヤ11を通
って膨張弁10、過熱用毛細管8aで減圧される。
The refrigerant condensed in the utilization water side heat exchanger 4 is accumulated in the liquid distillation 14, where the excess refrigerant in the heating operation is accommodated, and the expansion valve 10, passing through the check valve 7b and the dryer 11, The pressure is reduced by the capillary tube 8a for overheating.

【0023】このとき開放される電磁弁は13b,13
d,13fであり、他の電磁弁13a,13c,13
e,は閉じられる。給湯用熱交換器2は両端の電磁弁1
3c,13gにより閉じられており、ここへ冷媒が寝込
んで冷凍サイクルの運転が不安定になることはない。
The solenoid valves opened at this time are 13b, 13
d, 13f and other solenoid valves 13a, 13c, 13
e, is closed. Heat exchanger 2 for hot water supply is solenoid valve 1 at both ends
It is closed by 3c and 13g, and the refrigerant does not fall into this and the operation of the refrigeration cycle does not become unstable.

【0024】(3)給湯運転 給湯運転の場合の冷媒の流れを図5に示した。暖房運転
と同様の冷凍サイクルで運転され、図5の圧縮機1、四
方切換弁5、電磁弁13c、給湯用熱交換器2、電磁弁
13g、液留14、減圧膨張装置6、電磁弁13f、非
利用空気側熱交換器3、アキュムレータ12の順で構成
される。
(3) Hot Water Supply Operation FIG. 5 shows the flow of the refrigerant in the hot water supply operation. Operated in the same refrigeration cycle as the heating operation, the compressor 1, the four-way switching valve 5, the solenoid valve 13c, the hot water supply heat exchanger 2, the solenoid valve 13g, the liquid sump 14, the decompression expansion device 6, and the solenoid valve 13f in FIG. The unused air side heat exchanger 3 and the accumulator 12 are arranged in this order.

【0025】この場合、圧縮機1から出た高圧ガス冷媒
は給湯用熱交換器2で熱交換し、給湯用温水を供給す
る。この給湯用熱交換器2で凝縮された冷媒は液留14
に溜められ、ここで給湯運転における余剰冷媒を収容す
る。
In this case, the high pressure gas refrigerant discharged from the compressor 1 exchanges heat with the hot water supply heat exchanger 2 to supply hot water for hot water supply. The refrigerant condensed in the hot water supply heat exchanger 2 is a liquid fraction 14
The excess refrigerant in the hot water supply operation is stored therein.

【0026】さらに、液留14に溜められた冷媒は逆止
弁7b、ドライヤ11を通って膨張弁10、加熱用の毛
細管8aで減圧される。減圧膨張装置6へ流入する冷媒
はすべてドライヤ11を通って同一経路で減圧される。
Further, the refrigerant accumulated in the liquid distillate 14 passes through the check valve 7b, the dryer 11 and is decompressed by the expansion valve 10 and the heating capillary tube 8a. All the refrigerant flowing into the decompression / expansion device 6 is decompressed through the dryer 11 in the same path.

【0027】このとき、電磁弁13c,13g,13f
は開放され、他の電磁弁13a,13b,13d,13
eは閉じられる。
At this time, the solenoid valves 13c, 13g, 13f
Is opened and the other solenoid valves 13a, 13b, 13d, 13
e is closed.

【0028】このとき、利用水側熱交換器4は両端の電
磁弁13a,13b,13eにより閉じられており、こ
こへ冷媒が寝込んで冷凍サイクルの運転が不安定になる
ことはない。
At this time, the utilization water side heat exchanger 4 is closed by the solenoid valves 13a, 13b, 13e at both ends, so that the refrigerant does not lie therein and the operation of the refrigeration cycle is not unstable.

【0029】次に、給湯用熱交換器2により熱交換され
た貯湯槽36の水温は上昇し、設定温度になると圧縮機
1は停止する。
Next, the water temperature of the hot water storage tank 36 that has undergone heat exchange by the hot water supply heat exchanger 2 rises, and when the temperature reaches the set temperature, the compressor 1 stops.

【0030】(4)冷房給湯併行運転 冷房給湯併行運転の場合の冷媒の流れを図6に示した。
図6の圧縮機1,四方切換弁5,電磁弁13c,給湯用
熱交換器2,電磁弁13g,液留14,減圧膨張装置
6,電磁弁13e,利用水側熱交換器4,電磁弁13
a,四方切換弁5,アキュムレータ12,図2の蓄熱槽
37,放熱器39で構成される。
(4) Cooling Hot Water Supply Parallel Operation The refrigerant flow in the cooling hot water supply parallel operation is shown in FIG.
The compressor 1, the four-way switching valve 5, the solenoid valve 13c, the hot water heat exchanger 2, the solenoid valve 13g, the liquid sump 14, the decompression expansion device 6, the solenoid valve 13e, the used water side heat exchanger 4, the solenoid valve in FIG. Thirteen
a, a four-way switching valve 5, an accumulator 12, a heat storage tank 37 in FIG. 2, and a radiator 39.

【0031】このとき、圧縮機1から出た高圧のガス冷
媒は、給湯用熱交換器2で熱交換し、給湯用の温水を作
る。ここで凝縮された高圧液冷媒は液留14で余剰分が
溜められ、さらに逆止弁7b,ドライヤ11を通って減
圧膨張装置6へ行き、膨張弁10,加熱用の毛細管8a
で減圧される。
At this time, the high-pressure gas refrigerant discharged from the compressor 1 exchanges heat with the hot water supply heat exchanger 2 to produce hot water for hot water supply. The surplus of the high-pressure liquid refrigerant condensed here is accumulated in the liquid distillation 14, and further passes through the check valve 7b and the dryer 11 to the decompression expansion device 6, and the expansion valve 10 and the heating capillary tube 8a.
It is decompressed with.

【0032】この減圧された蒸発冷媒は電磁弁13eを
通って利用水側熱交換器4で熱交換され、蒸発して冷水
を作る。このとき、利用水側熱交換器4の冷水出口から
取り出される冷水の温度を冷水温度検出素子40によっ
て検出する。そして、冷水温度制御装置41において
は、この冷水温度が零度に保たれるように蓄熱槽ポンプ
33の運転を制御する。次に氷生成の動作について説明
する。利用水側熱交換器4で熱交換し、零下数度(マイ
ナス2℃程度)まで過冷却された冷水は、配管を通って
蓄熱槽37の上部より水平上に落下し、水面上に落下す
るときに衝突して零下数度の冷水の過冷却状態が破られ
て過冷却熱量分に相当する少片の氷を生成し、零度とな
って残りの水と共に蓄熱槽37中に流入する。以後、こ
の繰返し運転を行なって蓄熱槽37中に次第に氷を生成
する。尚、過冷却による氷生成を安定化させるため、循
環水回路内に過冷却安定剤を混入する。この添付する安
定剤としては、腐食性その他多くの観点から見て、最も
実用的な添付物は燐酸水素ニカリウム(K2HPO4)で
あり、また、その最適添加濃度はおよそ0.1〜0.3
%の範囲である。このように温度制御することによっ
て、零度の冷氷水が蓄熱槽37に蓄えられつつ、空気循
環ポンプ34によって負荷の空調用の放熱器39へ供給
される。
The depressurized evaporative refrigerant is heat-exchanged in the utilization water side heat exchanger 4 through the electromagnetic valve 13e and evaporated to produce cold water. At this time, the temperature of the cold water taken out from the cold water outlet of the utilization water side heat exchanger 4 is detected by the cold water temperature detecting element 40. Then, in the cold water temperature control device 41, the operation of the heat storage tank pump 33 is controlled so that the cold water temperature is maintained at zero degree. Next, the operation of ice generation will be described. The cold water that has undergone heat exchange in the used water side heat exchanger 4 and is supercooled to a few degrees below zero (about minus 2 ° C.) drops horizontally from the upper part of the heat storage tank 37 through the pipe and drops to the water surface. Occasionally, the supercooled state of the cold water at several degrees below zero is broken and a small amount of ice corresponding to the amount of heat of supercooling is generated, and it becomes zero and flows into the heat storage tank 37 together with the remaining water. After that, this repeated operation is performed to gradually generate ice in the heat storage tank 37. In addition, in order to stabilize the ice generation due to supercooling, a supercooling stabilizer is mixed in the circulating water circuit. From the viewpoint of corrosiveness and many other aspects, the most practical additive is dipotassium hydrogen phosphate (K 2 HPO 4 ), and its optimum addition concentration is about 0.1 to 0. .3
% Range. By controlling the temperature in this manner, the cold ice water of zero degree is stored in the heat storage tank 37 and is supplied to the radiator 39 for air conditioning of the load by the air circulation pump 34.

【0033】なお、減圧膨張装置6に供給される冷媒は
全てドライヤ11を通って減圧される。減圧膨張装置6
中の電磁弁9は冷凍負荷が増大し、冷媒循環量を多く必
要とする際に開放される。このように、必要冷凍負荷に
応じて、減圧膨張装置6内の構成部品は細かく開閉制御
される。
All the refrigerant supplied to the decompression / expansion device 6 is decompressed through the dryer 11. Decompression expansion device 6
The solenoid valve 9 therein is opened when the refrigeration load increases and a large amount of refrigerant circulation is required. In this way, the components in the decompression / expansion device 6 are finely opened / closed according to the required refrigeration load.

【0034】このとき、電磁弁13c,13g,13
e,13aは開放され、他の電磁弁13b,13d,1
3fは閉じられる。従って、非利用空気側熱交換器3は
冷媒が循環しておらず、ここへ冷媒が溜まることもな
い。非利用空気側熱交換器3の減圧膨張装置6側は電磁
弁13fで閉じられており、他端は四方切換弁5と接続
されているが、ここは低圧回路側であるのでガス冷媒で
あり冷媒の寝込みはない。
At this time, the solenoid valves 13c, 13g, 13
e, 13a is opened and the other solenoid valves 13b, 13d, 1
3f is closed. Therefore, the non-use air side heat exchanger 3 does not circulate the refrigerant, and the refrigerant does not accumulate there. The decompression expansion device 6 side of the non-use air side heat exchanger 3 is closed by a solenoid valve 13f, and the other end is connected to the four-way switching valve 5, but since this is the low pressure circuit side, it is a gas refrigerant. There is no stagnation of refrigerant.

【0035】また、冷房給湯併行運転時は、非利用空気
側熱交換器3は不要であるので、ファン16の運転も停
止させ、従来の課題であった冷媒の寝込みによる冷凍サ
イクルの不安定運転を解消することが可能となる。
Further, since the non-use air side heat exchanger 3 is not necessary during the cooling hot water supply concurrent operation, the operation of the fan 16 is also stopped, and the unstable operation of the refrigeration cycle due to the stagnation of the refrigerant, which has been a problem in the past. Can be eliminated.

【0036】(5)蓄熱給湯運転 蓄熱給湯運転の場合の冷媒の流れを図7に示した。図7
の圧縮機1,四方切換弁5,電磁弁13c,給湯用熱交
換器2,電磁弁13g,液留14,減圧膨張装置6,電
磁弁13e,利用水側熱交換器4,電磁弁13a,四方
切換弁5,アキュムレータ12,図2の蓄熱槽37の順
で構成される。
(5) Heat Storage Hot Water Supply Operation The refrigerant flow in the heat storage hot water supply operation is shown in FIG. Figure 7
Compressor 1, four-way switching valve 5, solenoid valve 13c, hot water supply heat exchanger 2, solenoid valve 13g, liquid sump 14, decompression expansion device 6, solenoid valve 13e, utilization water side heat exchanger 4, solenoid valve 13a, The four-way switching valve 5, the accumulator 12, and the heat storage tank 37 shown in FIG.

【0037】このとき、圧縮機1から出た高圧のガス冷
媒は、給湯用熱交換器2で熱交換し、給湯用の温水を作
る。ここで凝縮された高圧液冷媒は液留14で余剰分が
溜められ、さらに逆止弁7b,ドライヤ11を通って減
圧膨張装置6へ行き、膨張弁10,加熱用の毛細管8a
で減圧される。
At this time, the high-pressure gas refrigerant discharged from the compressor 1 exchanges heat with the hot water supply heat exchanger 2 to produce hot water for hot water supply. The surplus of the high-pressure liquid refrigerant condensed here is accumulated in the liquid distillation 14, and further passes through the check valve 7b and the dryer 11 to the decompression expansion device 6, and the expansion valve 10 and the heating capillary tube 8a.
It is decompressed with.

【0038】この減圧された蒸発冷媒は電磁弁13eを
通って利用水側熱交換器4で熱交換され、蒸発して冷水
を作る。このとき、利用水側熱交換器4の冷水出口から
取り出される冷水の温度を冷水温度検出素子40によっ
て検出する。そして、冷水温度制御装置41において
は、この冷水温度が零下数度に保たれるように蓄熱槽ポ
ンプ33の運転を制御する。よって、蓄熱槽37におい
ては零度の冷氷水が貯留される。
The depressurized evaporative refrigerant is heat-exchanged in the utilization water side heat exchanger 4 through the electromagnetic valve 13e and evaporated to produce cold water. At this time, the temperature of the cold water taken out from the cold water outlet of the utilization water side heat exchanger 4 is detected by the cold water temperature detecting element 40. Then, in the cold water temperature control device 41, the operation of the heat storage tank pump 33 is controlled so that the cold water temperature is maintained at several degrees below zero. Therefore, cold ice water of zero degree is stored in the heat storage tank 37.

【0039】このとき、電磁弁13c,13g,13
e,13aは開放され、他の電磁弁13b,13d,1
3fは閉じられる。従って、非利用空気側熱交換器3は
冷媒が循環しておらず、ここへ冷媒が溜まることもな
い。非利用空気側熱交換器3の減圧膨張装置6側は電磁
弁13fで閉じられており、他端は四方切換弁5と接続
されているが、ここは低圧回路側であるのでガス冷媒で
あり冷媒の寝込まない。
At this time, the solenoid valves 13c, 13g, 13
e, 13a is opened and the other solenoid valves 13b, 13d, 1
3f is closed. Therefore, the non-use air side heat exchanger 3 does not circulate the refrigerant, and the refrigerant does not accumulate there. The decompression expansion device 6 side of the non-use air side heat exchanger 3 is closed by a solenoid valve 13f, and the other end is connected to the four-way switching valve 5, but since this is the low pressure circuit side, it is a gas refrigerant. Refrigerant does not fall asleep.

【0040】また、蓄熱給湯運転時は、非利用空気側熱
交換器3は不要であるので、ファン16の運転も停止さ
せ、冷媒の寝込みによる冷凍サイクルの不安定運転は生
じない。
In addition, since the non-use air side heat exchanger 3 is not required during the heat storage hot water supply operation, the operation of the fan 16 is also stopped, and the unstable operation of the refrigeration cycle due to the stagnation of the refrigerant does not occur.

【0041】以上のように、この実施例によれば、給湯
用熱交換器2,利用水側熱交換器4,非利用空気側熱交
換器3の三つの熱交換器と複数の電磁弁を、各運転モー
ドに応じて切り換えるようにして、不使用の熱交換器に
は冷媒を流通させないように冷凍サイクルを構成したの
である。
As described above, according to this embodiment, the three heat exchangers of the hot water supply heat exchanger 2, the used water side heat exchanger 4, the non-used air side heat exchanger 3 and the plurality of solenoid valves are provided. The refrigeration cycle is configured so that the refrigerant is not passed through the unused heat exchanger by switching according to each operation mode.

【0042】これらの冷凍サイクルの運転をすべて同一
の減圧膨張機構で制御させるようにしたので、次のよう
な利点が得られる。
Since the operations of these refrigeration cycles are all controlled by the same decompression / expansion mechanism, the following advantages can be obtained.

【0043】冷房給湯併行運転時と蓄熱給湯運転時に、
非利用空気側熱交換器3には、高圧冷媒が流れなく、冷
媒が凝縮して寝込むこともなく、冷房または蓄熱用の冷
水を作ることによる排熱を100%給湯に回収できて、
給湯用の加熱量を大きくできる。
During the cooling hot water supply parallel operation and the heat storage hot water supply operation,
The high-pressure refrigerant does not flow into the non-use air side heat exchanger 3, the refrigerant does not condense and lie down, and exhaust heat generated by producing cold water for cooling or heat storage can be recovered to 100% hot water supply.
The heating amount for hot water supply can be increased.

【0044】また、低外気温時、非利用空気側熱交換器
において熱交換されないので、凝縮温度が低下すること
による給湯温度の低下もなく、給湯用熱交換器2の凝縮
温度に相当した給湯用の温水を得ることができる。
Further, since heat is not exchanged in the unused air side heat exchanger at a low outside air temperature, there is no decrease in the hot water supply temperature due to a decrease in the condensation temperature, and there is no hot water supply corresponding to the condensation temperature of the hot water supply heat exchanger 2. You can get hot water for.

【0045】そして、汎用の構造が簡単な開閉弁のみを
使用する回路であって、切り換え不能を起こしやすい三
路切換弁などの複雑な制御弁を省略し得るので制御面で
の信頼性は高い。
Further, since the circuit is of a general-purpose structure and uses only the on-off valve, and a complicated control valve such as a three-way switching valve which easily causes switching failure can be omitted, the reliability of the control is high. ..

【0046】そして、各モード共一ヶの減圧膨張装置6
を使用するようにしたので、装置の価格を抑えることが
可能となる。
Then, one decompression / expansion device 6 is provided for each mode.
Since it is used, the price of the device can be suppressed.

【0047】冷房給湯運転において、冷房負荷がなくな
ったり減少したときには、給湯による排熱を氷蓄熱槽3
7において蓄熱するようにした。この氷蓄熱槽37は主
として翌日の冷房運転に利用するので、氷による潜熱を
利用した効率の良い蓄熱が可能となる。即ち、夜間等に
おいて冷房の要求が無くても給湯運転が可能となり、翌
日の冷房を補助することも可能となり、効率がよく経済
的であるという効果が得られる。しかも、このような氷
蓄熱給湯運転は主として夜間に行うので、電力会社の夜
間割引料金が適用でき、割引料金で翌日の昼間の冷房運
転を補助することになり、ランニングコストが安くで
き、経済的であるという効果が得られる。また、従来の
空調システムに比べ、氷蓄熱により空調負荷側へ供給す
る冷水の温度を従来の7℃から0℃へと下げられるの
で、空調用のファンコイル等の放熱器機器容量を1ラン
ク小さくするとともに、空調用の循環ポンプの流量低下
や空調配管径の縮小が可能となり、イニシャルコストを
下げることができる等の経済的効果も得られる。
In the cooling hot water supply operation, when the cooling load disappears or decreases, the waste heat from the hot water supply is used to cool the ice storage tank 3
It was made to store heat in 7. Since the ice heat storage tank 37 is mainly used for the cooling operation of the next day, it is possible to store heat efficiently by utilizing the latent heat of ice. That is, the hot water supply operation can be performed even at night or the like without the need for cooling, and the cooling of the next day can be assisted, and the effect of being efficient and economical can be obtained. Moreover, since such ice storage hot water supply operation is mainly performed at night, the night discount rate of the electric power company can be applied, and the discount rate will assist the cooling operation in the daytime of the next day, which can reduce the running cost and make it economical. The effect of being is obtained. In addition, compared to the conventional air conditioning system, the temperature of the cold water supplied to the air conditioning load side due to ice heat storage can be reduced from the conventional 7 ℃ to 0 ℃, so the radiator device capacity such as the fan coil for air conditioning can be reduced by one rank. At the same time, the flow rate of the air-conditioning circulation pump can be reduced and the diameter of the air-conditioning piping can be reduced, and the economic effect such as the reduction of initial cost can be obtained.

【0048】[0048]

【発明の効果】冷房給湯併行運転時と蓄熱給湯運転時
に、非利用空気側熱交換器に高圧冷媒を流通させないの
で無駄な放熱がなく、特に、低外気温時であっても凝縮
温度が低下することによる給湯温度の低下もなく、高温
の給湯用の温水を得ることができるという効果が得られ
る。そして、汎用の構造が簡単な開閉弁のみを使用する
回路であって、切り換え不能を起こしやすい三路切換弁
などの複雑な制御弁を省略し得るので制御面での信頼性
は高く、各モードにおいても共通の減圧膨張装置を使用
するようにしたので、装置の価格を抑えることができる
という経済的な効果も得られる。
EFFECTS OF THE INVENTION During the cooling hot water supply parallel operation and the heat storage hot water supply operation, since the high pressure refrigerant is not passed through the unused air side heat exchanger, wasteful heat dissipation does not occur, and in particular, the condensation temperature decreases even at a low outdoor temperature. By doing so, it is possible to obtain the effect that hot water for hot water supply can be obtained without lowering the hot water supply temperature. Moreover, since it is a circuit that uses only an on-off valve with a simple general-purpose structure, and a complicated control valve such as a three-way switching valve that easily causes switching failure can be omitted, reliability in terms of control is high and each mode Also in this case, since a common decompression / expansion device is used, there is an economical effect that the cost of the device can be suppressed.

【0049】そして、冷房給湯運転において、夜間等に
おいて冷房負荷がなくなったり減少したときには、給湯
による排熱を蓄熱層において蓄熱するようにしたので、
この蓄熱槽の冷水を翌日の冷房運転に利用することによ
り、冷房運転の効率がよく経済的であるという効果が得
られる。しかも、このような蓄熱給湯運転を夜間に行う
ことにより、電力会社の夜間割引料金が適用でき、割引
料金で翌日の昼間の冷房運転を補助することになり、ラ
ンニングコストが安くでき、経済的であるという効果が
得られる。
In the cooling hot water supply operation, when the cooling load disappears or decreases at night, the exhaust heat from the hot water supply is stored in the heat storage layer.
By utilizing the cold water of the heat storage tank for the cooling operation of the next day, the effect of the cooling operation being efficient and economical can be obtained. Moreover, by performing such heat storage hot water supply operation at night, the night discount rate of the electric power company can be applied, and the discount rate will assist the air conditioning operation in the daytime on the next day. The effect that there is is obtained.

【0050】また、利用水側熱交換器から蓄熱槽へ循環
する冷水の温度を、零度以下に制御することにより、蓄
熱槽から空調負荷側へ供給する冷水の温度を従来より下
げられるので、空調用のファンコイル等の放熱器機器容
量を1ランク小さくするとともに、空調用の循環ポンプ
の流量低下や空調配管径の縮小が可能となり、空調シス
テムのイニシャルコストを従来より下げることができる
という経済的効果も得られる。
Further, by controlling the temperature of the cold water circulating from the heat exchanger on the utilization water side to the heat storage tank to be equal to or lower than 0 degree, the temperature of the cold water supplied from the heat storage tank to the air conditioning load side can be lowered as compared with the conventional air conditioner. It is possible to reduce the capacity of the radiator device such as fan coil by one rank, reduce the flow rate of the air-conditioning circulation pump, and reduce the diameter of the air-conditioning piping, and reduce the initial cost of the air-conditioning system compared to the past. The effect is also obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のヒートポンプ装置の一実施例の要部の
冷媒系統図である。
FIG. 1 is a refrigerant system diagram of a main part of an embodiment of a heat pump device of the present invention.

【図2】本発明のヒートポンプ装置の一実施例のシステ
ム図である。
FIG. 2 is a system diagram of an embodiment of a heat pump device of the present invention.

【図3】上記実施例の冷房運転時の冷媒の流れを説明す
る説明図である。
FIG. 3 is an explanatory diagram illustrating a refrigerant flow during a cooling operation of the above embodiment.

【図4】上記実施例の暖房運転時の冷媒の流れを説明す
る説明図である。
FIG. 4 is an explanatory diagram illustrating a flow of a refrigerant during a heating operation of the above embodiment.

【図5】上記実施例の給湯運転時の冷媒の流れを説明す
る説明図である。
FIG. 5 is an explanatory diagram illustrating the flow of the refrigerant during the hot water supply operation of the above embodiment.

【図6】上記実施例の冷房給湯運転時の冷媒の流れを説
明する説明図である。
FIG. 6 is an explanatory diagram illustrating the flow of the refrigerant during the cooling hot water supply operation of the above embodiment.

【図7】上記実施例の蓄熱給湯運転時の冷媒の流れを説
明する説明図である。
FIG. 7 is an explanatory diagram illustrating the flow of the refrigerant during the heat storage hot water supply operation of the above embodiment.

【図8】本発明の構成部品の各運転モードにおける状態
を示す図である。
FIG. 8 is a diagram showing a state of each component of the present invention in each operation mode.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 給湯用熱交換器 3 非利用空気側熱交換器 4 利用水側熱交換器 5 四方切換弁 6 減圧膨張装置 12 アキュムレータ 13c 第1の電磁弁 13f 第2の電磁弁 13b 第3の電磁弁 13a,13d,13e,13g 電磁弁 36 貯湯槽 37 蓄熱槽 39 放熱器 40 冷水温度検出素子 41 冷水温度制御装置 DESCRIPTION OF SYMBOLS 1 Compressor 2 Heat exchanger for hot water supply 3 Non-use air side heat exchanger 4 Use water side heat exchanger 5 Four-way switching valve 6 Decompression expansion device 12 Accumulator 13c First solenoid valve 13f Second solenoid valve 13b Third Solenoid valve 13a, 13d, 13e, 13g Solenoid valve 36 Hot water storage tank 37 Heat storage tank 39 Radiator 40 Cold water temperature detection element 41 Cold water temperature control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷房運転時に四方切換弁を介して導入さ
れた圧縮機からの高温高圧ガス冷媒を外気と熱交換して
高圧液冷媒に変換し、かつ暖房運転時と給湯運転時には
液冷媒を蒸発させて上記四方切換弁を介して上記圧縮機
に戻す非利用空気側熱交換器と、冷房運転時、冷房給湯
併行運転時および蓄熱給湯運転時に冷媒を蒸発して冷水
を作り、かつ暖房運転時には上記四方切換弁を介して導
入された上記圧縮機からの高温高圧ガス冷媒を凝縮して
温水を作る利用水側熱交換器と、冷房運転時、冷房給湯
併行運転時および蓄熱給湯運転時に上記四方切換弁を介
して導入された上記圧縮機からの高温高圧ガス冷媒を凝
縮して給湯温水を作る給湯用熱交換器と、前記利用水側
熱交換器において作られた冷水もしくは温水を保温しつ
つ貯留する蓄熱槽と、上記冷房運転時と上記暖房運転時
に開弁して上記給湯用熱交換器に冷媒の流通を阻止しか
つ上記給湯運転時と上記冷房給湯運転時と蓄熱給湯運転
時に開弁して上記給湯用熱交換器に冷媒を流通させる第
1の電磁弁と、上記冷房運転時と上記暖房運転時と上記
給湯運転時には開弁して上記非利用空気側熱交換器に冷
媒を流通させかつ上記冷房給湯運転時と上記蓄熱給湯運
転時に開弁して上記非利用空気側熱交換器に冷媒の流通
を阻止する第2の電磁弁と、上記冷房運転時と上記暖房
運転時に開弁して上記利用水側熱交換器に冷媒を流通さ
せかつ上記給湯運転時と冷房給湯運転時と上記蓄熱給湯
運転時に開弁して上記利用水側熱交換器への冷媒の流通
を阻止する第3の電磁弁と、上記圧縮機の吸入側と上記
四方切換弁との間に設けられたアキュムレータと、上記
非利用空気側熱交換器と上記給湯用熱交換器および上記
利用水側熱交換器との間に位置して流通する冷媒を減圧
膨張させる減圧膨張装置とを備えたヒートポンプ装置。
1. A high-temperature high-pressure gas refrigerant from a compressor, which is introduced through a four-way switching valve during a cooling operation, exchanges heat with outside air to convert it into a high-pressure liquid refrigerant, and a liquid refrigerant is supplied during a heating operation and a hot water supply operation. A non-use air-side heat exchanger that evaporates and returns to the compressor via the four-way switching valve, and makes cooling water by evaporating the refrigerant during cooling operation, cooling hot water supply parallel operation and heat storage hot water supply operation, and heating operation Occasionally, a utilization water side heat exchanger that condenses high-temperature high-pressure gas refrigerant from the compressor introduced through the four-way switching valve to produce hot water, and during cooling operation, cooling hot water supply concurrent operation and heat storage hot water supply operation A heat exchanger for hot water supply that condenses the high-temperature high-pressure gas refrigerant from the compressor introduced through a four-way switching valve to produce hot water for hot water supply, and keeps cold water or hot water made in the heat exchanger on the use water side warm. And a heat storage tank that stores During the cooling operation and the heating operation, the valve is opened to block the flow of the refrigerant in the hot water supply heat exchanger, and to be opened during the hot water supply operation, the cooling hot water supply operation, and the stored hot water supply operation to supply the hot water. A first solenoid valve that allows a refrigerant to flow through the heat exchanger, and a valve that opens during the cooling operation, the heating operation, and the hot water supply operation to allow the refrigerant to flow through the non-use air side heat exchanger and the cooling hot water supply. A second solenoid valve that is opened during operation and during the heat storage hot water supply operation to block the flow of the refrigerant to the non-use air side heat exchanger; and during the cooling operation and the heating operation, the use water is opened. A third solenoid valve that allows the refrigerant to flow through the side heat exchanger and opens during the hot water supply operation, the cooling hot water supply operation, and the heat storage hot water supply operation to prevent the refrigerant from flowing into the utilization water side heat exchanger. , An accumulator provided between the suction side of the compressor and the four-way switching valve. Heat pump system comprising a regulator, a pressure reducing expansion device the refrigerant circulating located is decompressed and expanded between the non-use air-side heat exchanger and the hot water supply heat exchanger and the utilization of water-side heat exchanger.
【請求項2】 冷房運転時に四方切換弁を介して導入さ
れた圧縮機からの高温高圧ガス冷媒を外気と熱交換して
高圧液冷媒に変換し、かつ暖房運転時と給湯運転時には
液冷媒を蒸発させて上記四方切換弁を介して上記圧縮機
に戻す非利用空気側熱交換器と、冷房運転時、冷房給湯
併行運転時および蓄熱給湯運転時に冷媒を蒸発して冷水
を作り、かつ暖房運転時には上記四方切換弁を介して導
入された上記圧縮機からの高温高圧ガス冷媒を凝縮して
温水を作る利用水側熱交換器と、冷房運転時、冷房給湯
併行運転時および蓄熱給湯運転時に上記四方切換弁を介
して導入された上記圧縮機からの高温高圧ガス冷媒を凝
縮して給湯温水を作る給湯用熱交換器と、前記利用水側
熱交換器において作られた冷水もしくは温水を保温しつ
つ貯留する蓄熱槽と、上記冷房運転時と上記暖房運転時
に開弁して上記給湯用熱交換器に冷媒の流通を阻止しか
つ上記給湯運転時と上記冷房給湯運転時と蓄熱給湯運転
時に開弁して上記給湯用熱交換器に冷媒を流通させる第
1の電磁弁と、上記冷房運転時と上記暖房運転時と上記
給湯運転時には開弁して上記非利用空気側熱交換器に冷
媒を流通させかつ上記冷房給湯運転時と上記蓄熱給湯運
転時に開弁して上記非利用空気側熱交換器に冷媒の流通
を阻止する第2の電磁弁と、上記冷房運転時と上記暖房
運転時に開弁して上記利用水側熱交換器に冷媒を流通さ
せかつ上記給湯運転時と冷房給湯運転時と上記蓄熱給湯
運転時に開弁して上記利用水側熱交換器への冷媒の流通
を阻止する第3の電磁弁と、上記圧縮機の吸入側と上記
四方切換弁との間に設けられたアキュムレータと、上記
非利用空気側熱交換器と上記給湯用熱交換器および上記
利用水側熱交換器との間に位置して流通する冷媒を減圧
膨張させる減圧膨張装置と、利用側水熱交換器の冷水出
口温度を検出する冷水温度検出素子と、蓄熱給湯運転時
における前記冷水出口温度を零下に維持するように制御
する冷水温度制御装置とを備えたヒートポンプ装置。
2. The high-temperature high-pressure gas refrigerant from the compressor introduced through the four-way switching valve during the cooling operation is heat-exchanged with the outside air to convert it into a high-pressure liquid refrigerant, and the liquid refrigerant is changed during the heating operation and the hot water supply operation. A non-use air-side heat exchanger that evaporates and returns to the compressor via the four-way switching valve, and makes cooling water by evaporating the refrigerant during cooling operation, cooling hot water supply parallel operation and heat storage hot water supply operation, and heating operation Occasionally, a utilization water side heat exchanger that condenses high-temperature high-pressure gas refrigerant from the compressor introduced through the four-way switching valve to produce hot water, and during cooling operation, cooling hot water supply concurrent operation and heat storage hot water supply operation A heat exchanger for hot water supply that condenses the high-temperature high-pressure gas refrigerant from the compressor introduced through a four-way switching valve to produce hot water for hot water supply, and keeps cold water or hot water made in the heat exchanger on the use water side warm. And a heat storage tank that stores During the cooling operation and the heating operation, the valve is opened to block the flow of the refrigerant in the hot water supply heat exchanger, and to be opened during the hot water supply operation, the cooling hot water supply operation, and the stored hot water supply operation to supply the hot water. A first solenoid valve that allows a refrigerant to flow through the heat exchanger, and a valve that opens during the cooling operation, the heating operation, and the hot water supply operation to allow the refrigerant to flow through the non-use air side heat exchanger and the cooling hot water supply. A second solenoid valve that is opened during operation and during the heat storage hot water supply operation to block the flow of the refrigerant to the non-use air side heat exchanger; and during the cooling operation and the heating operation, the use water is opened. A third solenoid valve that allows the refrigerant to flow through the side heat exchanger and opens during the hot water supply operation, the cooling hot water supply operation, and the heat storage hot water supply operation to prevent the refrigerant from flowing into the utilization water side heat exchanger. , An accumulator provided between the suction side of the compressor and the four-way switching valve. And a decompression expansion device for decompressing and expanding the refrigerant flowing between the non-use air side heat exchanger, the hot water supply heat exchanger and the use water side heat exchanger, and the use side water heat exchange A heat pump device comprising: a cold water temperature detecting element for detecting a cold water outlet temperature of a water cooler; and a cold water temperature control device for controlling the cold water outlet temperature during storage hot water supply operation so as to maintain the temperature below zero.
JP28453991A 1991-10-30 1991-10-30 Heat pump device Pending JPH05118696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28453991A JPH05118696A (en) 1991-10-30 1991-10-30 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28453991A JPH05118696A (en) 1991-10-30 1991-10-30 Heat pump device

Publications (1)

Publication Number Publication Date
JPH05118696A true JPH05118696A (en) 1993-05-14

Family

ID=17679771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28453991A Pending JPH05118696A (en) 1991-10-30 1991-10-30 Heat pump device

Country Status (1)

Country Link
JP (1) JPH05118696A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867619B1 (en) * 2007-08-28 2008-11-10 오은영 Cooling/Heating and hot water supply system by using heat pump
KR100869971B1 (en) * 2008-02-12 2008-11-21 브이에스에너지 주식회사 Freeze, refrigeration and warm water accumulation system using heatpump
CN114427760A (en) * 2020-10-29 2022-05-03 深圳麦克维尔空调有限公司 Air conditioning unit and control method thereof
CN114872446A (en) * 2022-04-12 2022-08-09 东南大学 Energy storage heat recovery system of thermal printer group

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278869A (en) * 1988-09-16 1990-03-19 Hitachi Ltd Multi-purpose room heating and cooling device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278869A (en) * 1988-09-16 1990-03-19 Hitachi Ltd Multi-purpose room heating and cooling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867619B1 (en) * 2007-08-28 2008-11-10 오은영 Cooling/Heating and hot water supply system by using heat pump
KR100869971B1 (en) * 2008-02-12 2008-11-21 브이에스에너지 주식회사 Freeze, refrigeration and warm water accumulation system using heatpump
CN114427760A (en) * 2020-10-29 2022-05-03 深圳麦克维尔空调有限公司 Air conditioning unit and control method thereof
CN114427760B (en) * 2020-10-29 2023-08-22 深圳麦克维尔空调有限公司 Air conditioning unit and control method thereof
CN114872446A (en) * 2022-04-12 2022-08-09 东南大学 Energy storage heat recovery system of thermal printer group

Similar Documents

Publication Publication Date Title
KR100227878B1 (en) Combined multi-modal air conditioning apparatus and negative energy storage system
JP2004257586A (en) Refrigerator using carbon dioxide as refrigerant
JP2000179970A (en) Air conditioning system
JP2004003801A (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2006023006A (en) Refrigeration facility
JP5246891B2 (en) Heat pump system
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
JPH10223442A (en) Transforming apparatus cooling system and operation method thereof
JPH05118696A (en) Heat pump device
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP3370501B2 (en) Cooling system
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP3015560B2 (en) Heat storage type cooling device
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
JP2007147133A (en) Air conditioner
JP2004156805A (en) Heat pump system
JP2006162086A (en) Heat pump water heater
JP2833339B2 (en) Thermal storage type air conditioner
KR200310320Y1 (en) Heat storage heat storage pump
JPH0510168Y2 (en)
JP2751695B2 (en) Heat storage type cooling device
JP2000257921A (en) Air conditioner equipped with ice storage tank
JP2004028374A (en) Refrigerating equipment combined with absorption type and compression type
JPH07269983A (en) Air conditioner for shop
JPH0457933B2 (en)