JP4188461B2 - Complex refrigerant circuit equipment - Google Patents

Complex refrigerant circuit equipment Download PDF

Info

Publication number
JP4188461B2
JP4188461B2 JP24201898A JP24201898A JP4188461B2 JP 4188461 B2 JP4188461 B2 JP 4188461B2 JP 24201898 A JP24201898 A JP 24201898A JP 24201898 A JP24201898 A JP 24201898A JP 4188461 B2 JP4188461 B2 JP 4188461B2
Authority
JP
Japan
Prior art keywords
refrigeration
refrigerant circuit
air conditioning
heat
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24201898A
Other languages
Japanese (ja)
Other versions
JPH11287523A (en
Inventor
敏明 山口
浩 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24201898A priority Critical patent/JP4188461B2/en
Publication of JPH11287523A publication Critical patent/JPH11287523A/en
Application granted granted Critical
Publication of JP4188461B2 publication Critical patent/JP4188461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、大規模小売店等に設置される冷媒回路設備であって、冷凍装置、冷蔵装置、空気調和装置及び冷熱を蓄熱する蓄熱槽とによって構成される複合型冷媒回路設備に関する。
【0002】
【従来の技術】
図11は、例えば特開平6−241591号公報に示された従来の複合型冷媒回路設備を示す冷媒回路図である。図において、1は冷蔵側圧縮機、2は冷蔵側凝縮器、3は後述する冷蔵側蒸発器へ供給する冷媒を制御する冷蔵側電磁弁、4は膨張弁からなる冷蔵側絞り装置、5は冷蔵側蒸発器、6は環状をなし冷蔵側圧縮機1、冷蔵側凝縮器2、冷蔵側電磁弁3、冷蔵側絞り装置4及び冷蔵側蒸発器5を管路により順次接続した冷蔵側冷媒回路である。
【0003】
7は冷蔵側蓄熱用蒸発器からなる冷蔵側蓄熱用熱交換器、8は冷蔵側蓄熱用熱交換器7へ供給する冷媒を制御する冷蔵側蓄熱用電磁弁、9は冷蔵側蓄熱用膨張弁からなる冷蔵側蓄熱用絞り装置、10は冷蔵側冷媒回路6に接続されて並列に配置され、冷蔵側蓄熱用熱交換器7へ冷媒を送る冷媒管路である。
【0004】
11は冷凍側圧縮機、12は冷凍側凝縮器、13は後述する冷凍側蒸発器へ供給する冷媒を制御する冷凍側電磁弁、14は冷凍側膨張弁からなる冷凍側絞り装置、15は冷凍側蒸発器、16は冷凍側圧縮機11、冷凍側凝縮器12、冷凍側電磁弁13、冷凍側絞り装置14及び冷凍側蒸発器15を管路により接続した冷凍側冷媒回路である。
【0005】
17は冷凍側過冷却用熱交換器からなる冷凍側冷熱供給用熱交換器、18は水などの蓄熱剤を収容した蓄熱槽、19は冷媒管路で、冷凍側冷媒回路16の一部をなし冷凍側凝縮器12と冷凍側電磁弁13との間に、蓄熱槽18内に配置された冷凍側冷熱供給用熱交換器17を直列に接続する。
【0006】
すなわち、冷凍側冷媒回路16には冷凍側冷熱供給用熱交換器17と冷媒管路19が設けられる。また、図11に示す複合型冷媒回路設備では、冷蔵側冷媒回路6に接続された冷蔵側蓄熱用熱交換器7が、蓄熱剤を介して冷凍側冷熱供給用熱交換器17に対して熱移動できるように蓄熱槽18内に配置されている。
【0007】
従来の複合型冷媒回路設備は上記のように構成され、冷蔵側冷媒回路6において冷蔵側圧縮機1や冷蔵側凝縮器2はショーケース等の冷蔵側冷却環境について予め設定されている最大冷凍能力に対する最大負荷に対応できるように設計されている。このため、冷蔵側冷却環境における負荷が減少すると、前述の最大負荷とそのときの冷蔵側冷却環境における負荷との差からなる余剰の冷凍能力が発生する。
【0008】
この余剰冷凍能力に対応する量の冷媒液が冷蔵側蓄熱用電磁弁8、冷蔵側蓄熱用膨張弁からなる冷蔵側蓄熱用絞り装置9を経て冷蔵側蓄熱用熱交換器7に供給される。これによって、前述の余剰冷凍能力が冷熱として蓄熱槽18内の蓄熱剤に蓄冷される。また、冷凍側冷媒回路16においては冷凍側圧縮機11で発生した高温、高圧のガス冷媒が、冷凍側凝縮器12で液化された後に冷媒管路19を経て蓄熱槽18内の冷凍側冷熱供給用熱交換器17に供給されて蓄熱剤により冷却される。
【0009】
これによって、より低い温度に冷却された冷媒が冷凍側電磁弁13等を経て冷凍側蒸発器15に供給される。このように、余剰の冷凍能力として冷蔵側冷媒回路6から蓄熱槽18内の蓄熱剤に蓄えられた冷熱が、冷蔵側冷媒回路6及び冷凍側冷媒回路16に共用される蓄熱槽18内の蓄熱剤を介して冷凍側冷媒回路16で消費される。
【0010】
したがって、冷蔵側蒸発器5での冷媒の蒸発温度が高い、すなわち運転効率の高い冷蔵側冷媒回路6で余剰になった冷熱が蓄冷される。また、蓄冷された冷熱は冷凍側蒸発器15での冷媒の蒸発温度が低い、すなわち運転効率の低い冷凍側冷媒回路16で利用される。これにより、冷蔵側冷媒回路6及び冷凍側冷媒回路16を含めた設備全体としての総合的な冷凍効率を向上させることができ、冷凍側冷媒回路16の容量が11kW、15kWと大きいほど、その冷凍効率向上作用が増大する。
【0011】
【発明が解決しようとする課題】
上記のような従来の複合型冷媒回路設備において、冷却状況の異なる複数の冷却環境をそれぞれ冷却する複数の冷媒回路相互間で、冷凍効率の高い高冷却温度側冷媒回路からの余剰の冷熱を蓄熱槽18の蓄熱剤を介して、冷凍効率の低い低冷却温度側冷媒回路へ移動させる。これによって、設備全体として総合的な冷凍効率の向上が図られている。そして、冷凍側冷媒回路16の容量が11kW、15kWと大きいほど、その冷凍効率向上作用が増大する。
【0012】
しかし、冷凍側冷媒回路16の容量が1.5kWと小さい場合には、この容量よりも冷凍側冷媒回路16の出力を低減させることが難しいため、総合的な冷凍効率の向上作用が得られないという問題点があった。
なお、契約受電容量に制限がある複合型冷媒回路設備の場合に、設備全体の容量によっては契約受電容量が超過するので、契約受電容量を増す必要があって費用が増加することになる。
【0013】
また、冷蔵側冷媒回路の余剰冷凍能力が非常に大きい場合、蓄熱槽内の氷の量が多くなって蓄熱槽内の配管又は蓄熱槽自体が損傷する恐れがあるという問題点があった。
【0014】
また、空調側冷媒回路が暖房運転している場合、冷蔵側冷媒回路で余剰になった冷熱を蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換することによって消費されても暖房能力が向上しないという問題点があった。
【0015】
また、冷蔵側冷媒回路で余剰となった冷熱を蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換することによって消費される場合、空調側冷媒回路の空調側熱交換器と熱交換する冷熱供給回路の配管温度が所定値以上になると、空調側冷媒回路の液温が上昇して冷房能力が逆に低下するという問題点があった。
【0016】
また、冷蔵側冷媒回路で余剰となった冷熱を蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換することによって消費される場合、空調側冷媒回路の温度が低下して空調側熱交換器が凍結する恐れがあるという問題点があった。
【0017】
この発明は、かかる問題点を解消するためになされたものであり、冷凍側冷媒回路の容量が小さい場合であっても、冷蔵側冷媒回路の余剰能力により蓄熱槽に蓄えられた冷熱を効率よく利用でき、少ない費用で運転できる複合型冷媒回路設備を得ることを目的とする。
【0018】
【課題を解決するための手段】
この発明に係る複合型冷媒回路設備においては、冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成された冷蔵側蓄熱用冷媒回路と、冷蔵側冷媒回路の最大冷凍能力と冷蔵側冷媒回路の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄熱槽と、空調側圧縮機、空調側凝縮器、空調側熱交換器、空調側絞り装置及び空調側冷却環境を冷却する空調側蒸発器を主要機器として構成された空調側冷媒回路と、この蓄熱槽の蓄熱剤からの冷熱を空調側熱交換器を介し空調側冷媒回路に供給する冷熱供給用熱交換器が設けられた冷熱供給回路と、空調側冷媒回路の空調側熱交換器と直列に接続された空調側放熱用電磁弁と、空調側熱交換器及び上記空調側放熱用電磁弁と並列に接続された空調側放熱バイパス電磁弁と、空調側冷媒回路の運転モードを設定する運転モード決定手段と、運転モード決定手段の設定による暖房運転時に空調側放熱用電磁弁を閉成し、かつ上記空調側放熱バイパス電磁弁を開放する制御回路とが設けられる。
【0019】
また、この発明に係る複合型冷媒回路設備においては、冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成された冷蔵側蓄熱用冷媒回路と、冷蔵側冷媒回路の最大冷凍能力と冷蔵側冷媒回路の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄熱槽と、空調側圧縮機、空調側凝縮器、空調側熱交換器、空調側絞り装置及び空調側冷却環境を冷却する空調側蒸発器を主要機器として構成された空調側冷媒回路と、この蓄熱槽の蓄熱剤からの冷熱を空調側熱交換器を介し空調側冷媒回路に供給する冷熱供給用熱交換器が設けられた冷熱供給回路と、空調側冷媒回路の空調側熱交換器と直列に接続された空調側放熱用電磁弁と、空調側熱交換器及び空調側放熱用電磁弁と並列に接続された空調側放熱バイパス電磁弁と、空調側冷媒回路の四方弁の出力接点の閉成時に空調側放熱用電磁弁を閉成し、かつ空調側放熱バイパス電磁弁を開放する制御回路とが設けられる。
【0021】
また、この発明に係る複合型冷媒回路設備においては、蓄熱槽内の氷の温度を検知する氷温検知手段と、この氷温検知手段の出力値が所定値以下になると冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制御回路とが設けられる。
【0022】
また、この発明に係る複合型冷媒回路設備においては、蓄熱槽内の氷の温度を検知する氷温検知手段と、蓄熱槽内の水位を検知する水位検知手段と、氷温検知手段の出力値が所定値以下、水位検知手段の出力値が所定値以上のいずれかになると冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制御回路とが設けられる。
【0026】
また、この発明に係る複合型冷媒回路設備においては、冷凍側圧縮機、冷凍側凝縮器、冷凍側熱交換器、冷凍側絞り装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主要機器として構成された冷凍側冷媒回路と、この蓄熱槽の蓄熱剤からの冷熱を空調側熱交換器を介し空調側冷媒回路に供給する空調側冷熱供給用熱交換器と、この蓄熱槽の蓄熱剤からの冷熱を冷凍側熱交換器を介し冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器が設けられた冷凍側冷熱供給回路とが設けられる。
【0027】
また、この発明に係る複合型冷媒回路設備においては、冷凍側熱交換器を介し蓄熱槽の蓄熱剤からの冷熱を冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器が常時付勢される
【0028】
【発明の実施の形態】
実施の形態1.
図1は、この発明の実施の形態の一例を示す冷媒回路図である。図において、1は冷蔵側圧縮機、2は冷蔵側凝縮器、3は後述する冷蔵側蒸発器へ供給する冷媒を制御する冷蔵側電磁弁、4は膨張弁からなる冷蔵側絞り装置、5は冷蔵側蒸発器、6は環状をなし冷蔵側圧縮機1、冷蔵側凝縮器2、冷蔵側電磁弁3、冷蔵側絞り装置4及び冷蔵側蒸発器5を管路により順次接続した冷蔵側冷媒回路である。
【0029】
7は冷蔵側蓄熱用蒸発器からなる冷蔵側蓄熱用熱交換器、8は冷蔵側蓄熱用熱交換器7へ供給する冷媒を制御する冷蔵側蓄熱用電磁弁、9は冷蔵側蓄熱用膨張弁からなる冷蔵側蓄熱用絞り装置、10は冷蔵側冷媒回路6に連通して並列に設けられて、冷蔵側蓄熱用電磁弁8、冷蔵側蓄熱用絞り装置9及び冷蔵側蓄熱用熱交換器7を接続し、冷蔵側蓄熱用熱交換器7へ冷媒を送る冷蔵側蓄熱用冷媒回路である。
【0030】
11は冷凍側圧縮機、12は冷凍側凝縮器、13は後述する冷凍側蒸発器へ供給する冷媒を制御する冷凍側電磁弁、14は冷凍側膨張弁からなる冷凍側絞り装置、15は冷凍側蒸発器、16は冷凍側圧縮機11、冷凍側凝縮器12、冷凍側電磁弁13、冷凍側絞り装置14及び冷凍側蒸発器15を管路により順次接続した冷凍側冷媒回路である。
【0031】
18は水などの蓄熱剤を収容した蓄熱槽、20は空調側圧縮機、21は空調側凝縮器、22は空調側減圧装置からなる空調側絞り装置、23は空調側凝縮器21と空調側絞り装置22の間に配置された空調側過冷却用熱交換器からなる空調側熱交換器、24は空調側蒸発器、25は空調側圧縮機20、空調側凝縮器21、空調側熱交換器23、空調側絞り装置22、空調側蒸発器24を管路により順次接続した空調側冷媒回路である。
【0032】
26は蓄熱槽18の蓄熱剤からの冷熱を冷熱供給用熱交換器27に供給する冷熱供給管路である。
28は蓄熱槽18の蓄熱剤からの冷熱を循環させるポンプである。
なお、空調側熱交換器23と冷熱供給用熱交換器27は互いに熱交換できるように構成されている。
【0033】
そして、特に図1における複合型冷媒回路設備では、冷蔵側冷媒回路6の冷蔵側蓄熱用熱交換器7が、蓄熱剤を介して空調側熱交換器23に対して熱移動できるように蓄熱槽18内に設けられている。また、冷凍側冷媒回路16は独立して配置されて、冷蔵側冷媒回路6及び空調側冷媒回路25に対して熱移動できる管路が設けられていない。
【0034】
上記のように構成された複合型冷媒回路設備において、冷蔵側冷媒回路6において冷蔵側圧縮機1や冷蔵側凝縮器2はショーケース等の冷蔵側冷却環境について予め設定されている最大冷凍能力に対する最大負荷に対応できるように設計されている。このため、冷蔵側冷却環境における負荷が減少すると、前述の最大負荷とそのときの冷蔵側冷却環境における負荷との差からなる余剰の冷凍能力が発生する。
【0035】
この余剰冷凍能力に対応する量の冷媒液が冷蔵側蓄熱用電磁弁8、冷蔵側蓄熱用膨張弁からなる冷蔵側蓄熱用絞り装置9を経て冷蔵側蓄熱用熱交換器7に供給される。これによって、前述の余剰冷凍能力が冷熱として蓄熱槽18内の蓄熱剤に蓄冷される。また、空調側冷媒回路25においては空調側圧縮機20で発生した高温、高圧のガス冷媒が、空調側凝縮器21で液化された後に空調側熱交換器23に送出される。
【0036】
そして、蓄熱槽18からの冷熱供給管路26により送出される蓄熱剤によって冷熱供給用熱交換器27と空調側熱交換器23の間で熱交換されて液化した冷媒が冷却される。これにより、より低い温度に冷却された冷媒が空調側絞り装置22、空調側蒸発器24に供給される。このようにして、余剰の冷凍能力として冷蔵側冷媒回路6から蓄熱槽18に蓄熱剤に蓄えられた冷熱が、冷蔵側冷媒回路6及び空調側冷媒回路25に共用される蓄熱槽18の蓄熱剤を介して空調側冷媒回路25によって消費される。
【0037】
すなわち、冷蔵側冷媒回路6で余剰となった冷熱が蓄冷されて、蓄冷された冷熱は空調側冷媒回路25で利用される。このため、冷凍側冷媒回路16の容量が小さく設備全体とし総合的な冷凍効率の向上作用が得られ難い場合と比較して、総合的な冷凍効率を向上させることができる。また、空調側熱交換器23において液冷媒がさらに低い温度に冷却されて、過冷却度を大きくする。したがって、空調側冷媒回路25の能力が向上するので、例えば、空調側冷媒回路25の容量が7.5kWであった場合に、5.5kWとすることができる。
【0038】
このため、電力の低減が可能になり設備全体の契約受電容量を増すことなく、少ない費用で運転できる複合型冷媒回路設備を実現することができる。
なお、図1の実施の形態において、蓄熱槽18に蓄熱剤に蓄えられた冷熱が、冷熱供給用熱交換器27と空調側熱交換器23の間で熱交換されるものとした。しかし、冷熱供給回路26を介して蓄熱槽18の蓄熱剤からの冷熱を冷蔵側冷却環境に関連した空調冷却環境に対し直接的に熱交換することも可能である。
【0039】
実施の形態2.
図2は、この発明の他の実施の形態の一例を示す冷媒回路図である。図において、前述の図1と同符号は相当部分を示し、29は空調用熱交換器である。
【0040】
上記のように構成された複合型冷媒回路設備において、前述の図1における空調側冷媒回路25の機器が省略される。そして、冷蔵側冷媒回路6、冷凍側冷媒回路16が基本的には図1の実施の形態と同様に冷凍サイクル動作し、蓄熱槽18内の蓄熱剤に蓄えられた冷熱が、蓄熱剤を介して冷熱供給管路26を通じて送出される。この蓄熱剤によって空調用熱交換器29部にて冷蔵側冷媒回路6の冷蔵側冷却環境に関連した空調冷却環境における空調負荷、例えば店舗内空気と熱交換される。
【0041】
これにより、店舗内を25°C等の快適な温度に保持することができ、冷蔵側冷媒回路6で余剰となった冷熱が蓄冷されて、蓄冷された冷熱は空調冷却環境における空調負荷のために利用される。したがって、冷凍側冷媒回路16の容量が小さく設備全体とし総合的な冷凍効率の向上作用が得られ難い場合と比較して、総合的な冷凍効率を向上させることができる。
【0042】
実施の形態3.
図3も、この発明の他の実施の形態の一例を示す冷媒回路図である。図において、前述の図1と同符号は相当部分を示し、30は空調側凝縮器、32は空調側減圧装置からなる空調側絞り装置、31は空調側凝縮器30と空調側絞り装置32の間に配置された空調側過冷却用熱交換器からなる空調側熱交換器、33は空調側蒸発器、34は空調側圧縮機、35は空調側圧縮機34、空調側凝縮器30、空調側熱交換器31、空調側絞り装置32、空調側蒸発器33を管路により順次接続した空調側冷媒回路である。
【0043】
36は600〜700W程度の小型の第一圧縮機、37は第一凝縮器、38は絞り装置、39は第一蒸発器であり空調側熱交換器31と熱交換できるようになっている。40は第一圧縮機36、第一凝縮器37、絞り装置38、第一蒸発器39を管路により順次接続した小型冷凍機冷媒回路である。
【0044】
上記のように構成された複合型冷媒回路設備において、前述の冷蔵側冷媒回路6、冷凍側冷媒回路16の基本的な冷凍サイクル動作は、図1の実施の形態及び図2の実施の形態とほぼ同じである。ただし、冷蔵側冷媒回路6においては蓄熱槽18内の蓄冷剤に冷熱を蓄えない部分のみ図1の実施の形態及び図2の実施の形態と相違する。
【0045】
すなわち、空調側冷媒回路35においては、空調側圧縮機34で圧縮された高温、高圧ガス冷媒が空調側凝縮器30で液化され、その後空調側冷媒回路35を経て空調側熱交換器31へ送出される。ここで、第一圧縮機36、第一凝縮器37、絞り装置38、第一蒸発器39からなる小型冷凍機における第一蒸発器39で蒸発する冷媒の潜熱により液化された冷媒が冷却される。
【0046】
これによって、より低い温度に冷却された冷媒が空調側絞り装置32、空調側蒸発器33に供給される。以上のように構成された小型冷凍機は蓄熱槽18に比べ小形であって安価に製造できる。また、空気調和負荷が増加した場合に、機器を入れ替えることなく、前述の小型冷凍機を追加することにより能力増加が可能であって、容易に空気調和負荷増加に対処することができる。
【0047】
実施の形態4.
図4及び図5も、この発明の他の実施の形態の一例を示す図で、図4は冷媒回路図、図5は図4の冷媒回路に係わる制御回路図である。図において、前述の図1と同符号は相当部分を示し、41は空調側冷媒回路25の空調側熱交換器23と直列に接続された空調側放熱用電磁弁、42は空調側放熱用電磁弁41及び空調側熱交換器23と並列に接続された空調側放熱バイパス電磁弁である。
【0048】
43は空調側放熱バイパス電磁弁42と並列に接続された逆止弁、44は蓄熱槽18内の氷の温度を検知する氷温検知手段、45は蓄熱槽18内の水位を検知する水位検知手段、49は冷熱供給回路26の配管温度を検出する配管温度検出装置である。440は氷温検知手段44及び冷蔵側蓄熱用電磁弁8を主要部として構成された制御回路である。
【0049】
上記のように構成された複合型冷媒回路設備において、氷温検知手段44は例えばサーモスタットであって蓄熱槽18内の氷の温度を検知して、氷の温度が所定値以下になると接点が開放する。これによって、冷蔵側冷媒回路6内の冷蔵側冷媒回路6内の冷蔵側蓄熱用電磁弁8を閉成する制御回路440が形成されている。
【0050】
したがって、冷蔵側冷媒回路6の余剰冷凍能力が非常に大きい場合には、氷温検知手段44によって蓄熱槽18内の氷の温度を検知する。そして、氷の温度が所定温度以下になると冷蔵側冷媒回路6内の冷蔵側蓄熱用電磁弁8が閉成し、蓄熱槽18内の氷の量が多くならず蓄熱槽18内の配管又は蓄熱槽18自体の損傷の発生を未然に防止することができる。
【0051】
実施の形態5.
図6も、この発明の他の実施の形態の一例を示す制御回路図である。図において、前述の図4と同符号は相当部分を示し、氷温検知手段44は例えばサーモスタットであって蓄熱槽18内の氷の温度を検知して、氷の温度が所定値以下になると接点が開放する。また、水位検知手段45は蓄熱槽18内の水位が所定値以上になると接点が開放し、氷の温度が所定温度以下となるか又は蓄熱槽18内の水位が所定値以上になると、冷蔵側冷媒回路6内の冷蔵側蓄熱用電磁弁8を閉成する制御回路440が形成されている。
【0052】
したがって、冷蔵側冷媒回路6の余剰冷凍能力が非常に大きい場合には、氷温検知手段44によって蓄熱槽18内の氷の温度を検知する。そして、氷の温度が所定温度以下になるか又は水位検知手段45によって蓄熱槽18内の水位が所定値以上になると冷蔵側冷媒回路6内の冷蔵側蓄熱用電磁弁8を閉成する。このため、蓄熱槽18内の氷の量が多くならず蓄熱槽18内の配管又は蓄熱槽18自体の損傷の発生を未然に防止することができる。
【0053】
実施の形態6.
図7も、この発明の他の実施の形態の一例を示す制御回路図である。図において、前述の図4と同符号は相当部分を示し、46は空調側冷媒回路25の運転モードを決定する運転モード決定手段で、例えばスイッチからなり運転モード決定手段46によって暖房運転となった場合、空調側放熱用電磁弁41を閉成し、空調側放熱バイパス電磁弁42を開放する制御回路440が形成されている。
【0054】
したがって、空調側冷媒回路25が暖房運転している場合、空調側放熱用電磁弁41を閉成し、空調側放熱バイパス電磁弁42を開放する。これにより冷蔵側冷媒回路6で余剰となった冷熱を蓄熱槽18内の蓄熱剤に蓄える。そして、その冷熱を空調側熱交換器23により冷蔵側冷却環境に関連した空調冷却環境において熱交換することがなくなり蓄熱槽18内の氷を余分に消費しないようにすることができる。
【0055】
実施の形態7.
図8も、この発明の他の実施の形態の一例を示す制御回路図である。図において、前述の図4と同符号は相当部分を示し、47は空調側冷媒回路25の四方弁の出力接点、48は補助リレーである。そして、四方弁の出力接点47が閉成すると空調側放熱用電磁弁41を閉成し、空調側放熱バイパス電磁弁42を開放する制御回路440が形成されている。
【0056】
したがって、空調側冷媒回路25の四方弁の出力接点47が閉成した場合、空調側放熱用電磁弁41を閉成し、空調側放熱バイパス電磁弁42を開放する。これにより冷蔵側冷媒回路6で余剰となった冷熱を蓄熱槽18内の蓄熱剤に蓄える。そして、その冷熱を空調側熱交換器23により冷蔵側冷却環境に関連した空調冷却環境において熱交換することがなくなり蓄熱槽18内の氷を余分に消費しないようにすることができる。
【0057】
実施の形態8.
図9も、この発明の他の実施の形態の一例を示す制御回路図である。図において、前述の図4と同符号は相当部分を示し、49は配管温度検出装置で、例えばサーモスタットからなり冷熱供給回路26の配管温度を検知する。そして、配管温度が所定温度以上になると接点が閉成し、補助リレー50が動作して空調側放熱用電磁弁41を閉成し、空調側放熱バイパス電磁弁42を開放する制御回路440が形成されている。
【0058】
したがって、冷蔵側冷媒回路6で余剰となった冷熱を蓄熱槽18内の蓄熱剤に蓄える。そして、その冷熱が空調側熱交換器23により冷蔵側冷却環境に関連した空調冷却環境において熱交換して消費される場合、空調側冷媒回路25の空調側熱交換器23と熱交換する冷熱供給回路26の配管温度が所定値以上になると、空調側放熱用電磁弁41を閉成し、空調側放熱バイパス電磁弁42を開放する。これにより、空調側熱交換器23で熱交換せず、空調側冷媒回路25の液温が上昇しなくなって冷房能力が逆に低下しないようにすることができる。
【0059】
実施の形態9.
図10も、この発明の他の実施の形態の一例を示す冷媒回路図である。図において、前述の図4と同符号は相当部分を示し、51は冷凍側熱交換器、52は冷凍側冷熱供給回路で、蓄熱槽18の蓄熱剤から冷熱を冷凍側冷熱供給用熱交換器53に供給する。
【0060】
上記のように構成された複合型冷媒回路設備において、蓄熱槽18から冷凍側冷熱供給回路52により送出される蓄熱剤によって、冷凍側冷熱供給用熱交換器53と冷凍側熱交換器51の間で熱交換されることにより冷媒が冷却される。これにより、より低い温度に冷却された冷媒が冷凍側絞り装置14、冷凍側蒸発器15に供給される。
【0061】
このようにして、余剰の冷凍能力として冷蔵側冷媒回路6から蓄熱槽18の蓄熱剤に蓄えられた冷熱が、冷蔵側冷媒回路6、空調側冷媒回路25及び冷凍側冷媒回路16に共用される蓄熱槽18の蓄熱剤を介して、空調側冷媒回路25及び冷凍側冷媒回路16によって消費される。
【0062】
これにより、冷蔵側冷媒回路6で余剰となった冷熱が蓄熱槽18内の蓄熱剤に蓄えられる。そして、その冷熱が空調側熱交換器23により冷蔵側冷却環境に関連した空調冷却環境において熱交換して消費される場合、冷凍側冷媒回路16に供給する冷凍側冷熱供給用熱交換器53を有する冷凍側冷熱供給回路52が設けられている。このため、空調側冷媒回路25の温度低下が抑制されて空調側熱交換器23の凍結を防ぐことができる。
【0063】
また、蓄熱槽18の蓄熱剤から冷熱を空調側熱交換器23に供給する空調側冷熱供給用熱交換器27及び冷凍側熱交換器51を介して冷凍側冷媒回路16に供給する冷凍側冷熱供給用熱交換器53を有する冷凍側冷熱供給回路52が設けられて、冷凍側熱交換器51を介し冷凍側冷媒回路16に供給する冷凍側冷熱供給用熱交換器53が常時付勢されるように構成されている。
【0064】
これにより、冷蔵側冷媒回路6で余剰となった冷熱を蓄熱槽18内の蓄熱剤に蓄えられる。そして、その冷熱が空調側熱交換器23により冷蔵側冷却環境に関連した空調冷却環境において熱交換して消費される場合、冷凍側冷媒回路16に供給する冷凍側冷熱供給用熱交換器53を有する冷凍側冷熱供給回路52が設けられている。このため、空調側冷媒回路25の温度低下が抑制されて空調側熱交換器23が凍結を防ぐことができる。
【0065】
【発明の効果】
この発明は以上説明したように、冷凍側圧縮機、冷凍側凝縮器、冷凍側絞り装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主要機器として構成された冷凍側冷媒回路と、この冷凍側冷媒回路と並列に形成された冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成された冷蔵側蓄熱用冷媒回路と、冷蔵側冷媒回路の最大冷凍能力と冷蔵側冷媒回路の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄熱槽と、この蓄熱槽の蓄熱剤からの冷熱を冷蔵側冷却環境に関連した空調冷却環境に対し直接的に熱交換する冷熱供給回路とを設けたものである。
【0066】
これによって、冷蔵側冷媒回路で余剰になった冷熱を冷蔵側冷媒回路及び空調側冷媒回路に共用される蓄熱槽内の蓄熱剤に蓄えて、その冷熱が冷蔵側冷媒回路の冷蔵側冷却環境に関連した空調冷却環境における空調負荷によって消費される。したがって、冷凍側冷媒回路の容量が小さくて設備全体とし総合的な冷凍効率の向上作用が得られ難い場合であっても、総合的な冷凍効率を向上する効果がある。
【0067】
また、この発明は以上説明したように、冷凍側圧縮機、冷凍側凝縮器、冷凍側絞り装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主要機器として構成された冷凍側冷媒回路と、この冷凍側冷媒回路と並列に形成された冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成された冷蔵側蓄熱用冷媒回路と、冷蔵側冷媒回路の最大冷凍能力と冷蔵側冷媒回路の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄熱槽と、空調側圧縮機、空調側凝縮器、空調側熱交換器、空調側絞り装置及び空調側冷却環境を冷却する空調側蒸発器を主要機器として構成された空調側冷媒回路と、蓄熱槽の蓄熱剤からの冷熱を空調側熱交換器を介し空調側冷媒回路に供給する冷熱供給用熱交換器が設けられた冷熱供給回路とを設けたものである。
【0068】
これによって、冷蔵側冷媒回路で余剰になった冷熱を冷蔵側冷媒回路及び空調側冷媒回路に共用される蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調側熱交換器及び冷熱供給用熱交換器を介し空調側冷媒回路によって消費される。したがって、冷凍側冷媒回路の容量が小さく設備全体とし総合的な冷凍効率の向上作用が得られ難い場合であっても、総合的な冷凍効率を向上する効果がある。
また、空調側熱交換器において液冷媒がさらに低い温度に冷却されて、過冷却度を大きくすることができ、空調側冷媒回路の能力が向上するので、空調側冷媒回路の容量を小さくすることができる。このため、電力の低減が可能になり設備全体の契約受電容量増を要せず、運転費を低減する効果がある。
【0069】
また、この発明は以上説明したように、冷凍側圧縮機、冷凍側凝縮器、冷凍側絞り装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主要機器として構成された冷凍側冷媒回路と、この冷凍側冷媒回路と並列に形成された冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成された冷蔵側蓄熱用冷媒回路と、冷蔵側冷媒回路の最大冷凍能力と冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄熱槽と、この蓄熱槽の蓄熱剤からの冷熱を冷蔵側冷却環境に関連した空調冷却環境に対して、熱交換する空調用熱交換器が設けられた冷熱供給回路とを設けたものである。
【0070】
これによって、冷蔵側冷媒回路で余剰になった冷熱を冷蔵側冷媒回路及び空調側冷媒回路に共用される蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調用熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換することによって消費される。したがって、冷凍側冷媒回路の容量が小さく設備全体とし総合的な冷凍効率の向上作用が得られ難い場合であっても、総合的な冷凍効率を向上する効果がある。
【0071】
また、この発明は以上説明したように、蓄熱槽内の氷の温度を検知する氷温検知手段と、この氷温検知手段の出力値が所定値以下になると冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制御回路とを設けたものである。
【0072】
これによって、冷蔵側冷媒回路の余剰冷凍能力が非常に大きい場合に、氷温検知手段によって蓄熱槽内の氷の温度を検知する。そして、氷の温度が所定温度以下になると冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁が閉成されるので、蓄熱槽内の氷の量が多くならず蓄熱槽内の配管又は蓄熱槽自体の損傷発生を未然に防止する効果がある。
【0073】
また、この発明は以上説明したように、蓄熱槽内の氷の温度を検知する氷温検知手段と、蓄熱槽内の水位を検知する水位検知手段と、氷温検知手段の出力値が所定値以下、水位検知手段の出力値が所定値以上のいずれかになると冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制御回路とを設けたものである。
【0074】
これによって、冷蔵側冷媒回路の余剰冷凍能力が非常に大きい場合に、氷温検知手段によって蓄熱槽の氷の温度を検知する。そして、氷の温度が所定温度以下になるか又は水位検知手段による蓄熱槽内の水位が所定値以上になると冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁が閉成されるので、蓄熱槽内の氷の量が多くならず蓄熱槽内の配管又は蓄熱槽自体の損傷発生を未然に防止する効果がある。
【0075】
また、この発明は以上説明したように、空調側冷媒回路の空調側熱交換器と直列に接続された空調側放熱用電磁弁と、空調側熱交換器及び空調側放熱用電磁弁と並列に接続された空調側放熱バイパス電磁弁と、空調側冷媒回路の運転モードを設定する運転モード決定手段と、この運転モード決定手段の設定による暖房運転時に空調側放熱用電磁弁を閉成し、かつ空調側放熱バイパス電磁弁を開放する制御回路とを設けたものである。
【0076】
これによって、空調側冷媒回路の暖房運転時に、空調側放熱用電磁弁が閉成されて空調側放熱バイパス電磁弁が開放される。これにより冷蔵側冷媒回路で余剰となった冷熱が蓄熱槽内の蓄熱剤に蓄えられる。そして、その冷熱を空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換することがなくなり、蓄熱槽内の氷の浪費を抑制する効果がある。
【0077】
また、この発明は以上説明したように、空調側冷媒回路の空調側熱交換器と直列に接続された空調側放熱用電磁弁と、空調側熱交換器及び空調側放熱用電磁弁と並列に接続された空調側放熱バイパス電磁弁と、空調側冷媒回路の四方弁の出力接点の閉成時に空調側放熱用電磁弁を閉成し、かつ空調側放熱バイパス電磁弁を開放する制御回路とを設けたものである。
【0078】
これによって、空調側冷媒回路の四方弁の出力接点の閉成時に、空調側放熱用電磁弁が閉成され、空調側放熱バイパス電磁弁が開放される。これにより冷蔵側冷媒回路で余剰となった冷熱が蓄熱槽内の蓄熱剤に蓄えられる。そして、その冷熱を空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換することがなくなり、蓄熱槽内の氷の浪費を抑制する効果がある。
【0079】
また、この発明は以上説明したように、空調側冷媒回路の空調側熱交換器と直列に接続された空調側放熱用電磁弁と、空調側熱交換器及び空調側放熱用電磁弁と並列に接続された空調側放熱バイパス電磁弁と、冷熱供給回路の配管温度を検出する配管温度検出装置と、この配管温度検出装置の出力値が所定値以上になると空調側放熱用電磁弁を閉成し、かつ空調側放熱バイパス電磁弁を開放する制御回路とを設けたものである。
【0080】
これによって、冷蔵側冷媒回路で余剰となった冷熱が蓄熱槽内の蓄熱剤に蓄えられる。そして、その冷熱が空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換して消費される場合、空調側冷媒回路の空調側熱交換器と熱交換する冷熱供給回路の配管温度が所定値以上になると、空調側放熱用電磁弁を閉成し、空調側放熱バイパス電磁弁を開放する。これにより、空調側熱交換器で熱交換せず、空調側冷媒回路の液温が上昇しなくなって冷房能力が逆に低下することを防ぐ効果がある。
【0081】
また、この発明は以上説明したように、蓄熱槽の蓄熱剤からの冷熱を空調側熱交換器を介して空調側冷媒回路に供給する空調側冷熱供給用熱交換器と、蓄熱槽の蓄熱剤からの冷熱を冷凍側熱交換器を介し冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器を有する冷凍側冷熱供給回路とを設けたものである。
【0082】
これによって、冷蔵側冷媒回路で余剰となった冷熱を蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換して消費される場合、冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器を有する冷凍側冷熱供給回路が設けられているので、空調側冷媒回路の温度低下が抑制されて空調側熱交換器の凍結発生を防止する効果がある。
【0083】
また、この発明は以上説明したように、蓄熱槽の蓄熱剤からの冷熱を空調側熱交換器を介して空調側冷媒回路に供給する空調側冷熱供給用熱交換器と、蓄熱槽の蓄熱剤からの冷熱を冷凍側熱交換器を介し冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器が設けられた冷凍側冷熱供給回路とを設けたものである。そして、冷凍側熱交換器を介して冷熱を冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器を常時付勢するものである。
【0084】
これによって、冷蔵側冷媒回路で余剰となった冷熱が蓄熱槽内の蓄熱剤に蓄えられる。そして、その冷熱が空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換して消費される場合に、冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器を有する冷凍側冷熱供給回路が設けられているので、空調側冷媒回路の温度低下が抑制されて空調側熱交換器の凍結を防止する効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1を示す冷媒回路図。
【図2】 この発明の実施の形態2を示す冷媒回路図。
【図3】 この発明の実施の形態3を示す冷媒回路図。
【図4】 この発明の実施の形態4を示す冷媒回路図。
【図5】 図4の冷媒回路に係わる制御回路図。
【図6】 この発明の実施の形態5を示す制御回路図。
【図7】 この発明の実施の形態6を示す制御回路図。
【図8】 この発明の実施の形態7を示す制御回路図。
【図9】 この発明の実施の形態8を示す制御回路図。
【図10】 この発明の実施の形態9を示す冷媒回路図。
【図11】 従来の複合型冷媒回路設備を示す冷媒回路図。
【符号の説明】
6 冷蔵側冷媒回路、7 冷蔵側蓄熱用熱交換器、8 冷蔵側蓄熱用電磁弁、9 冷蔵側蓄熱用絞り装置、10 冷蔵側蓄熱用冷媒回路、11 冷凍側圧縮機、12 冷凍側凝縮器、14 冷凍側絞り装置、15 冷凍側蒸発器、16 冷凍側冷媒回路、18 蓄熱槽、20 空調側圧縮機、21 空調側凝縮器、22空調側絞り装置、23 空調側熱交換器、24 空調側蒸発器、25 空調側冷媒回路、26 冷熱供給回路、27 空調側冷熱供給用熱交換器、29 空調用熱交換器、41 空調側放熱用電磁弁、42 空調側放熱バイパス電磁弁、44 氷温検知手段、45 水位検知手段、46 運転モード決定手段、47 空調側冷媒回路の四方弁の出力接点、49 配管温度検出装置、51 冷凍側熱交換器、52 冷凍側冷熱供給回路、53 冷凍側冷熱供給用熱交換器、440制御回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerant circuit facility installed in a large-scale retail store or the like, and relates to a composite refrigerant circuit facility including a refrigeration apparatus, a refrigeration apparatus, an air conditioner, and a heat storage tank that stores cold heat.
[0002]
[Prior art]
FIG. 11 is a refrigerant circuit diagram showing a conventional composite refrigerant circuit facility disclosed in, for example, Japanese Patent Application Laid-Open No. 6-241491. In the figure, 1 is a refrigeration side compressor, 2 is a refrigeration side condenser, 3 is a refrigeration side solenoid valve for controlling refrigerant supplied to a refrigeration side evaporator, which will be described later, 4 is a refrigeration side expansion device comprising an expansion valve, A refrigeration side evaporator, 6 has an annular shape, and a refrigeration side refrigerant circuit in which a refrigeration side compressor 1, a refrigeration side condenser 2, a refrigeration side solenoid valve 3, a refrigeration side expansion device 4, and a refrigeration side evaporator 5 are sequentially connected by pipes. It is.
[0003]
7 is a refrigeration-side heat storage heat exchanger composed of a refrigeration-side heat storage evaporator, 8 is a refrigeration-side heat storage electromagnetic valve that controls refrigerant supplied to the refrigeration-side heat storage heat exchanger 7, and 9 is a refrigeration-side heat storage expansion valve. The refrigerating-side heat storage expansion device 10 is a refrigerant pipe connected to the refrigerating-side refrigerant circuit 6 and arranged in parallel to send the refrigerant to the refrigerating-side heat storage heat exchanger 7.
[0004]
11 is a refrigeration side compressor, 12 is a refrigeration side condenser, 13 is a refrigeration side solenoid valve for controlling refrigerant supplied to a refrigeration side evaporator, which will be described later, 14 is a refrigeration side expansion device comprising a refrigeration side expansion valve, and 15 is refrigeration. A side evaporator 16 is a refrigeration side refrigerant circuit in which a refrigeration side compressor 11, a refrigeration side condenser 12, a refrigeration side solenoid valve 13, a refrigeration side expansion device 14, and a refrigeration side evaporator 15 are connected by a pipe line.
[0005]
Reference numeral 17 denotes a refrigeration-side cold supply heat exchanger composed of a refrigeration-side subcooling heat exchanger, 18 a heat storage tank containing a heat storage agent such as water, 19 a refrigerant pipe, and a part of the refrigeration-side refrigerant circuit 16 None The freezing side cold heat supply heat exchanger 17 arranged in the heat storage tank 18 is connected in series between the freezing side condenser 12 and the freezing side solenoid valve 13.
[0006]
That is, the refrigeration side refrigerant circuit 16 is provided with a refrigeration side cold heat supply heat exchanger 17 and a refrigerant pipe 19. In the combined refrigerant circuit facility shown in FIG. 11, the refrigeration-side heat storage heat exchanger 7 connected to the refrigeration-side refrigerant circuit 6 heats the refrigeration-side cold supply heat exchanger 17 via the heat storage agent. It arrange | positions in the thermal storage tank 18 so that it can move.
[0007]
The conventional composite refrigerant circuit equipment is configured as described above, and the refrigeration side compressor circuit 1 and the refrigeration side condenser 2 in the refrigeration side refrigerant circuit 6 have a preset maximum refrigeration capacity for the refrigeration side cooling environment such as a showcase. Designed to handle the maximum load for For this reason, when the load in the refrigeration side cooling environment decreases, an extra refrigeration capacity is generated which is the difference between the aforementioned maximum load and the load in the refrigeration side cooling environment at that time.
[0008]
An amount of the refrigerant liquid corresponding to the surplus refrigeration capacity is supplied to the refrigeration side heat storage heat exchanger 7 via the refrigeration side heat storage expansion valve 9 including the refrigeration side heat storage electromagnetic valve 8 and the refrigeration side heat storage expansion valve. Thereby, the above-mentioned surplus refrigeration capacity is stored in the heat storage agent in the heat storage tank 18 as cold. In the refrigeration side refrigerant circuit 16, the high-temperature and high-pressure gas refrigerant generated in the refrigeration side compressor 11 is liquefied by the refrigeration side condenser 12 and then supplied through the refrigerant line 19 to the refrigeration side cold heat supply in the heat storage tank 18. It is supplied to the heat exchanger 17 and cooled by the heat storage agent.
[0009]
As a result, the refrigerant cooled to a lower temperature is supplied to the refrigeration evaporator 15 via the refrigeration solenoid valve 13 and the like. In this way, the cold storage stored in the heat storage agent in the heat storage tank 18 from the refrigeration side refrigerant circuit 6 as the extra refrigeration capacity is the heat storage in the heat storage tank 18 shared by the refrigeration side refrigerant circuit 6 and the refrigeration side refrigerant circuit 16. It is consumed in the refrigeration side refrigerant circuit 16 via the agent.
[0010]
Therefore, the excessive cold heat is stored in the refrigeration side refrigerant circuit 6 having a high refrigerant evaporation temperature in the refrigeration side evaporator 5, that is, having high operating efficiency. The stored cold heat is used in the refrigeration-side refrigerant circuit 16 having a low refrigerant evaporation temperature in the refrigeration-side evaporator 15, that is, low operating efficiency. As a result, the overall refrigeration efficiency of the entire facility including the refrigeration side refrigerant circuit 6 and the refrigeration side refrigerant circuit 16 can be improved. The larger the capacity of the refrigeration side refrigerant circuit 16 is 11 kW and 15 kW, the more Increases efficiency.
[0011]
[Problems to be solved by the invention]
In the conventional combined refrigerant circuit equipment as described above, excess chill from the high cooling temperature side refrigerant circuit with high refrigeration efficiency is stored between the plurality of refrigerant circuits that respectively cool a plurality of cooling environments with different cooling conditions. It moves to the low cooling temperature side refrigerant circuit with low refrigeration efficiency through the heat storage agent of the tank 18. As a result, overall refrigeration efficiency is improved as a whole facility. And the effect | action which improves the refrigerating efficiency increases, so that the capacity | capacitance of the freezing side refrigerant circuit 16 is as large as 11 kW and 15 kW.
[0012]
However, when the capacity of the refrigeration-side refrigerant circuit 16 is as small as 1.5 kW, it is difficult to reduce the output of the refrigeration-side refrigerant circuit 16 from this capacity, so that the effect of improving the overall refrigeration efficiency cannot be obtained. There was a problem.
Note that, in the case of a combined refrigerant circuit facility with a limited contract power receiving capacity, the contract power receiving capacity may be exceeded depending on the capacity of the entire facility, so that it is necessary to increase the contract power receiving capacity, which increases costs.
[0013]
Moreover, when the excessive refrigerating capacity of the refrigeration side refrigerant circuit is very large, there is a problem that the amount of ice in the heat storage tank increases and the piping in the heat storage tank or the heat storage tank itself may be damaged.
[0014]
In addition, when the air-conditioning side refrigerant circuit is in heating operation, excess cold heat in the refrigeration-side refrigerant circuit is stored in the heat storage agent in the heat storage tank, and the cold energy is related to the refrigeration-side cooling environment by the air-conditioning side heat exchanger. However, there is a problem that the heating capacity is not improved even if it is consumed by exchanging heat in the air-conditioning cooling environment.
[0015]
In addition, excess cold heat in the refrigeration side refrigerant circuit is stored in the heat storage agent in the heat storage tank, and the cold heat is consumed by heat exchange in the air conditioning cooling environment related to the refrigeration side cooling environment by the air conditioning side heat exchanger. When the piping temperature of the cold supply circuit that exchanges heat with the air conditioning side heat exchanger of the air conditioning side refrigerant circuit exceeds a predetermined value, the liquid temperature of the air conditioning side refrigerant circuit rises and the cooling capacity decreases There was a point.
[0016]
In addition, excess cold heat in the refrigeration side refrigerant circuit is stored in the heat storage agent in the heat storage tank, and the cold heat is consumed by heat exchange in the air conditioning cooling environment related to the refrigeration side cooling environment by the air conditioning side heat exchanger. In such a case, there is a problem that the temperature of the air-conditioning side refrigerant circuit decreases and the air-conditioning side heat exchanger may freeze.
[0017]
The present invention has been made to solve such a problem, and even when the capacity of the refrigeration side refrigerant circuit is small, the cold energy stored in the heat storage tank by the surplus capacity of the refrigeration side refrigerant circuit is efficiently obtained. The purpose is to obtain a combined refrigerant circuit facility that can be used and operated at low cost.
[0018]
[Means for Solving the Problems]
  In the combined refrigerant circuit facility according to the present invention,Refrigeration-side heat storage refrigerant circuit connected to the refrigeration-side refrigerant circuit and configured mainly as a refrigeration-side heat storage expansion device and a refrigeration-side heat storage heat exchanger, and the maximum refrigeration capacity of the refrigeration-side refrigerant circuit and the refrigeration-side refrigerant circuit Cooling heat storage tank that stores cold energy corresponding to the difference in required refrigeration capacity of the refrigeration side cooling environment, air conditioning side compressor, air conditioning side condenser, air conditioning side heat exchanger, air conditioning side expansion device, and air conditioning side cooling environment An air conditioning side refrigerant circuit configured with an air conditioning side evaporator as a main device, and a cold heat supply heat exchanger for supplying cold heat from the heat storage agent of the heat storage tank to the air conditioning side refrigerant circuit through the air conditioning side heat exchanger are provided. The air conditioning side heat radiation solenoid circuit connected in series with the air conditioning side heat exchanger of the air conditioning side refrigerant circuit, the air conditioning side heat exchanger and the air conditioning side heat radiation solenoid valve connected in parallel Air conditioning side heat radiation bypass solenoid valve and air conditioning side refrigerant circuit And operation mode determining means for setting the operation mode, it closes the solenoid valve for air-conditioning side radiator during the heating operation by setting the operation mode determining means, and for opening the air-conditioning side radiator bypass solenoid valve control circuitAnd are provided.
[0019]
  In the combined refrigerant circuit facility according to the present invention,Refrigeration-side heat storage refrigerant circuit connected to the refrigeration-side refrigerant circuit and configured mainly as a refrigeration-side heat storage expansion device and a refrigeration-side heat storage heat exchanger, and the maximum refrigeration capacity of the refrigeration-side refrigerant circuit and the refrigeration-side refrigerant circuit Cooling heat storage tank that stores cold energy corresponding to the difference in required refrigeration capacity of the refrigeration side cooling environment, air conditioning side compressor, air conditioning side condenser, air conditioning side heat exchanger, air conditioning side expansion device, and air conditioning side cooling environment An air conditioning side refrigerant circuit configured with an air conditioning side evaporator as a main device, and a cold heat supply heat exchanger for supplying cold heat from the heat storage agent of the heat storage tank to the air conditioning side refrigerant circuit through the air conditioning side heat exchanger are provided. Air conditioning side heat radiation solenoid valve connected in series with the air conditioning side heat exchanger of the air conditioning side refrigerant circuit, air conditioning side heat exchanger and air conditioning side heat radiation electromagnetic valve connected in parallel Side heat radiation bypass solenoid valve and air conditioning side refrigerant circuit It closes the air conditioning for heat dissipation on the side of the solenoid valve during closing of the output contact of the valve, and a control circuit to open the air-conditioning side radiator bypass solenoid valveIs provided.
[0021]
  In the combined refrigerant circuit facility according to the present invention,An ice temperature detection means for detecting the temperature of ice in the heat storage tank, and a control circuit for closing the refrigeration side heat storage electromagnetic valve in the refrigeration side refrigerant circuit when the output value of the ice temperature detection means falls below a predetermined value. Provided.
[0022]
  In the combined refrigerant circuit facility according to the present invention,Ice temperature detection means for detecting the temperature of ice in the heat storage tank, water level detection means for detecting the water level in the heat storage tank, the output value of the ice temperature detection means is less than a predetermined value, and the output value of the water level detection means is a predetermined value A control circuit that closes the refrigeration-side heat storage solenoid valve in the refrigeration-side refrigerant circuit when any of the above occursIs provided.
[0026]
  In the combined refrigerant circuit facility according to the present invention,A refrigeration side refrigerant circuit composed mainly of a refrigeration side compressor, a refrigeration side condenser, a refrigeration side heat exchanger, a refrigeration side expansion device, and a refrigeration side evaporator that cools the refrigeration side cooling environment, and heat storage of this heat storage tank Air conditioner side cold heat supply heat exchanger for supplying cold heat from the refrigerant to the air conditioner side refrigerant circuit via the air conditioner side heat exchanger, and the refrigeration side refrigerant circuit via the refrigeration side heat exchanger for cooling air from the heat storage agent of the heat storage tank A refrigeration-side cold supply circuit provided with a heat exchanger for supplying the refrigeration-side coldIs provided.
[0027]
  In the combined refrigerant circuit facility according to the present invention,The refrigeration-side cold supply heat exchanger that supplies cold heat from the heat storage agent in the heat storage tank to the refrigeration-side refrigerant circuit via the refrigeration-side heat exchanger is always energized..
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram showing an example of an embodiment of the present invention. In the figure, 1 is a refrigeration side compressor, 2 is a refrigeration side condenser, 3 is a refrigeration side solenoid valve for controlling refrigerant supplied to a refrigeration side evaporator, which will be described later, 4 is a refrigeration side expansion device comprising an expansion valve, A refrigeration side evaporator, 6 has an annular shape, and a refrigeration side refrigerant circuit in which a refrigeration side compressor 1, a refrigeration side condenser 2, a refrigeration side solenoid valve 3, a refrigeration side expansion device 4, and a refrigeration side evaporator 5 are sequentially connected by pipes. It is.
[0029]
7 is a refrigeration-side heat storage heat exchanger composed of a refrigeration-side heat storage evaporator, 8 is a refrigeration-side heat storage electromagnetic valve that controls refrigerant supplied to the refrigeration-side heat storage heat exchanger 7, and 9 is a refrigeration-side heat storage expansion valve. The refrigerating side heat storage expansion device 10 is provided in parallel with the refrigerating side refrigerant circuit 6, and is provided with a refrigerating side heat storage electromagnetic valve 8, a refrigerating side heat storage expansion device 9, and a refrigerating side heat storage heat exchanger 7. Is connected to the refrigeration side heat storage heat exchanger 7 to send the refrigerant to the refrigeration side heat storage heat exchanger 7.
[0030]
11 is a refrigeration side compressor, 12 is a refrigeration side condenser, 13 is a refrigeration side solenoid valve for controlling refrigerant supplied to a refrigeration side evaporator, which will be described later, 14 is a refrigeration side expansion device comprising a refrigeration side expansion valve, and 15 is refrigeration. A side evaporator 16 is a refrigeration side refrigerant circuit in which a refrigeration side compressor 11, a refrigeration side condenser 12, a refrigeration side solenoid valve 13, a refrigeration side expansion device 14, and a refrigeration side evaporator 15 are sequentially connected by a pipe line.
[0031]
18 is a heat storage tank containing a heat storage agent such as water, 20 is an air conditioning side compressor, 21 is an air conditioning side condenser, 22 is an air conditioning side expansion device including an air conditioning side decompression device, and 23 is an air conditioning side condenser 21 and an air conditioning side. An air conditioning side heat exchanger composed of an air conditioning side subcooling heat exchanger disposed between the expansion devices 22, 24 is an air conditioning side evaporator, 25 is an air conditioning side compressor 20, an air conditioning side condenser 21, and an air conditioning side heat exchange. This is an air conditioning side refrigerant circuit in which the air conditioner 23, the air conditioning side expansion device 22, and the air conditioning side evaporator 24 are sequentially connected by a pipe line.
[0032]
Reference numeral 26 denotes a cold supply line for supplying cold heat from the heat storage agent in the heat storage tank 18 to the cold heat supply heat exchanger 27.
A pump 28 circulates cold heat from the heat storage agent in the heat storage tank 18.
The air conditioning side heat exchanger 23 and the cold heat supply heat exchanger 27 are configured to exchange heat with each other.
[0033]
In particular, in the combined refrigerant circuit facility in FIG. 1, the heat storage tank so that the refrigeration side heat storage heat exchanger 7 of the refrigeration side refrigerant circuit 6 can transfer heat to the air conditioning side heat exchanger 23 via the heat storage agent. 18 is provided. Further, the refrigeration side refrigerant circuit 16 is arranged independently, and a pipe line that can transfer heat to the refrigeration side refrigerant circuit 6 and the air conditioning side refrigerant circuit 25 is not provided.
[0034]
In the combined refrigerant circuit equipment configured as described above, in the refrigeration-side refrigerant circuit 6, the refrigeration-side compressor 1 and the refrigeration-side condenser 2 correspond to the maximum refrigeration capacity set in advance for the refrigeration-side cooling environment such as a showcase. Designed to handle the maximum load. For this reason, when the load in the refrigeration side cooling environment decreases, an extra refrigeration capacity is generated which is the difference between the aforementioned maximum load and the load in the refrigeration side cooling environment at that time.
[0035]
An amount of the refrigerant liquid corresponding to the surplus refrigeration capacity is supplied to the refrigeration side heat storage heat exchanger 7 via the refrigeration side heat storage expansion valve 9 including the refrigeration side heat storage electromagnetic valve 8 and the refrigeration side heat storage expansion valve. Thereby, the above-mentioned surplus refrigeration capacity is stored in the heat storage agent in the heat storage tank 18 as cold. In the air conditioning side refrigerant circuit 25, the high-temperature and high-pressure gas refrigerant generated by the air conditioning side compressor 20 is liquefied by the air conditioning side condenser 21 and then sent to the air conditioning side heat exchanger 23.
[0036]
And the refrigerant | coolant which was heat-exchanged between the heat exchanger 27 for cold heat supply and the air-conditioning side heat exchanger 23 with the thermal storage agent sent out by the cold heat supply pipe 26 from the heat storage tank 18 is cooled. Thereby, the refrigerant cooled to a lower temperature is supplied to the air conditioning side expansion device 22 and the air conditioning side evaporator 24. In this way, the heat storage agent of the heat storage tank 18 in which the cold stored in the heat storage agent 18 from the refrigeration side refrigerant circuit 6 as the surplus refrigeration capacity is shared by the refrigeration side refrigerant circuit 6 and the air conditioning side refrigerant circuit 25. Is consumed by the air-conditioning side refrigerant circuit 25.
[0037]
That is, the excess cold heat stored in the refrigeration side refrigerant circuit 6 is stored, and the cold stored heat is used in the air conditioning side refrigerant circuit 25. For this reason, compared with the case where the capacity | capacitance of the freezing side refrigerant circuit 16 is small, and it is difficult to obtain the improvement effect of comprehensive refrigeration efficiency as the whole installation, comprehensive refrigeration efficiency can be improved. In addition, the liquid refrigerant is cooled to a lower temperature in the air conditioning side heat exchanger 23 to increase the degree of supercooling. Therefore, since the capability of the air conditioning side refrigerant circuit 25 is improved, for example, when the capacity of the air conditioning side refrigerant circuit 25 is 7.5 kW, the capacity can be 5.5 kW.
[0038]
Therefore, it is possible to realize a composite refrigerant circuit facility that can be operated at a low cost without reducing the power and increasing the contract power receiving capacity of the entire facility.
In the embodiment of FIG. 1, the cold heat stored in the heat storage agent in the heat storage tank 18 is assumed to be heat exchanged between the cold heat supply heat exchanger 27 and the air conditioning side heat exchanger 23. However, it is also possible to directly exchange heat from the heat storage agent in the heat storage tank 18 to the air conditioning cooling environment related to the refrigeration side cooling environment via the cold heat supply circuit 26.
[0039]
Embodiment 2. FIG.
FIG. 2 is a refrigerant circuit diagram showing an example of another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the corresponding parts, and 29 is a heat exchanger for air conditioning.
[0040]
In the combined refrigerant circuit facility configured as described above, the air conditioning side refrigerant circuit 25 in FIG. 1 is omitted. Then, the refrigeration side refrigerant circuit 6 and the refrigeration side refrigerant circuit 16 basically operate in the refrigeration cycle similarly to the embodiment of FIG. 1, and the cold energy stored in the heat storage agent in the heat storage tank 18 passes through the heat storage agent. Then, it is sent out through the cold heat supply pipe 26. The heat storage agent exchanges heat with the air-conditioning load in the air-conditioning / cooling environment related to the refrigeration-side cooling environment of the refrigeration-side refrigerant circuit 6, for example, store air, in the air-conditioning heat exchanger 29.
[0041]
Thereby, the inside of the store can be maintained at a comfortable temperature such as 25 ° C., and the excess cold heat stored in the refrigeration side refrigerant circuit 6 is stored, and the stored cold heat is due to the air conditioning load in the air conditioning cooling environment. Used for Therefore, compared with the case where the capacity | capacitance of the refrigerating side refrigerant circuit 16 is small, and it is difficult to obtain the improvement effect of comprehensive refrigeration efficiency as the whole installation, comprehensive refrigeration efficiency can be improved.
[0042]
Embodiment 3 FIG.
FIG. 3 is also a refrigerant circuit diagram showing an example of another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the corresponding parts, 30 is an air conditioning side condenser, 32 is an air conditioning side expansion device comprising an air conditioning side decompression device, and 31 is an air conditioning side condenser 30 and an air conditioning side expansion device 32. An air conditioning side heat exchanger composed of an air conditioning side subcooling heat exchanger disposed therebetween, 33 is an air conditioning side evaporator, 34 is an air conditioning side compressor, 35 is an air conditioning side compressor 34, an air conditioning side condenser 30, and air conditioning. This is an air conditioning side refrigerant circuit in which the side heat exchanger 31, the air conditioning side expansion device 32, and the air conditioning side evaporator 33 are sequentially connected by a pipe line.
[0043]
36 is a small first compressor of about 600 to 700 W, 37 is a first condenser, 38 is a throttling device, and 39 is a first evaporator, which can exchange heat with the air conditioning side heat exchanger 31. Reference numeral 40 denotes a small refrigerator refrigerant circuit in which a first compressor 36, a first condenser 37, a throttling device 38, and a first evaporator 39 are sequentially connected by a pipe line.
[0044]
In the combined refrigerant circuit equipment configured as described above, the basic refrigeration cycle operations of the refrigeration side refrigerant circuit 6 and the refrigeration side refrigerant circuit 16 described above are the same as the embodiment of FIG. 1 and the embodiment of FIG. It is almost the same. However, the refrigeration side refrigerant circuit 6 is different from the embodiment of FIG. 1 and the embodiment of FIG. 2 only in the portion where cold heat is not stored in the cold storage agent in the heat storage tank 18.
[0045]
That is, in the air-conditioning side refrigerant circuit 35, the high-temperature and high-pressure gas refrigerant compressed by the air-conditioning side compressor 34 is liquefied by the air-conditioning side condenser 30 and then sent to the air-conditioning side heat exchanger 31 via the air-conditioning side refrigerant circuit 35. Is done. Here, the liquefied refrigerant is cooled by the latent heat of the refrigerant evaporated in the first evaporator 39 in the small refrigerator composed of the first compressor 36, the first condenser 37, the expansion device 38, and the first evaporator 39. .
[0046]
Thus, the refrigerant cooled to a lower temperature is supplied to the air conditioning side expansion device 32 and the air conditioning side evaporator 33. The small refrigerator configured as described above is smaller than the heat storage tank 18 and can be manufactured at a low cost. Further, when the air conditioning load increases, the capacity can be increased by adding the above-described small refrigerator without replacing the devices, and the increase in the air conditioning load can be easily dealt with.
[0047]
Embodiment 4 FIG.
4 and 5 are also diagrams showing an example of another embodiment of the present invention. FIG. 4 is a refrigerant circuit diagram, and FIG. 5 is a control circuit diagram relating to the refrigerant circuit of FIG. In the figure, the same reference numerals as those in FIG. 1 denote the corresponding parts, 41 is an air conditioning side heat radiation solenoid valve connected in series with the air conditioning side heat exchanger 23 of the air conditioning side refrigerant circuit 25, and 42 is an air conditioning side heat radiation electromagnetic. The air conditioning side heat radiation bypass solenoid valve is connected in parallel with the valve 41 and the air conditioning side heat exchanger 23.
[0048]
43 is a check valve connected in parallel with the air conditioning side heat radiation bypass electromagnetic valve 42, 44 is an ice temperature detecting means for detecting the temperature of ice in the heat storage tank 18, and 45 is a water level detection for detecting the water level in the heat storage tank 18. Means 49 is a pipe temperature detecting device for detecting the pipe temperature of the cold supply circuit 26. Reference numeral 440 denotes a control circuit composed mainly of the ice temperature detection means 44 and the refrigeration side heat storage electromagnetic valve 8.
[0049]
In the combined refrigerant circuit equipment configured as described above, the ice temperature detecting means 44 is, for example, a thermostat, detects the temperature of ice in the heat storage tank 18, and the contact is opened when the ice temperature falls below a predetermined value. To do. As a result, a control circuit 440 for closing the refrigeration side heat storage electromagnetic valve 8 in the refrigeration side refrigerant circuit 6 in the refrigeration side refrigerant circuit 6 is formed.
[0050]
Therefore, when the excessive refrigeration capacity of the refrigeration side refrigerant circuit 6 is very large, the ice temperature detection means 44 detects the temperature of ice in the heat storage tank 18. When the ice temperature falls below a predetermined temperature, the refrigeration-side heat storage electromagnetic valve 8 in the refrigeration-side refrigerant circuit 6 is closed, and the amount of ice in the heat-storage tank 18 does not increase, so that the piping or heat storage in the heat-storage tank 18 does not increase. Generation | occurrence | production of the damage of tank 18 itself can be prevented beforehand.
[0051]
Embodiment 5 FIG.
FIG. 6 is also a control circuit diagram showing an example of another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 4 indicate the corresponding parts, and the ice temperature detecting means 44 is, for example, a thermostat, detects the ice temperature in the heat storage tank 18, and contacts when the ice temperature falls below a predetermined value. Will be released. The water level detection means 45 opens the contact when the water level in the heat storage tank 18 becomes equal to or higher than a predetermined value, and when the ice temperature becomes lower than the predetermined temperature or the water level in the heat storage tank 18 becomes higher than the predetermined value, A control circuit 440 for closing the refrigeration-side heat storage electromagnetic valve 8 in the refrigerant circuit 6 is formed.
[0052]
Therefore, when the excessive refrigeration capacity of the refrigeration side refrigerant circuit 6 is very large, the ice temperature detection means 44 detects the temperature of ice in the heat storage tank 18. When the ice temperature falls below a predetermined temperature or when the water level in the heat storage tank 18 exceeds a predetermined value by the water level detection means 45, the refrigeration side heat storage electromagnetic valve 8 in the refrigeration side refrigerant circuit 6 is closed. For this reason, the amount of ice in the heat storage tank 18 does not increase, and it is possible to prevent the piping in the heat storage tank 18 or the heat storage tank 18 itself from being damaged.
[0053]
Embodiment 6 FIG.
FIG. 7 is also a control circuit diagram showing an example of another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 4 indicate the corresponding parts, and 46 is an operation mode determining means for determining the operation mode of the air-conditioning refrigerant circuit 25. In this case, a control circuit 440 that closes the air conditioning side heat radiation electromagnetic valve 41 and opens the air conditioning side heat radiation bypass electromagnetic valve 42 is formed.
[0054]
Therefore, when the air-conditioning side refrigerant circuit 25 is in the heating operation, the air-conditioning side heat radiation electromagnetic valve 41 is closed and the air-conditioning side heat radiation bypass electromagnetic valve 42 is opened. As a result, the excess cold heat in the refrigeration side refrigerant circuit 6 is stored in the heat storage agent in the heat storage tank 18. Then, the cold heat is not exchanged by the air conditioning side heat exchanger 23 in the air conditioning cooling environment related to the refrigeration side cooling environment, so that the ice in the heat storage tank 18 can be prevented from being consumed excessively.
[0055]
Embodiment 7 FIG.
FIG. 8 is also a control circuit diagram showing an example of another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 4 denote the corresponding parts, 47 is an output contact of the four-way valve of the air conditioning side refrigerant circuit 25, and 48 is an auxiliary relay. When the output contact 47 of the four-way valve is closed, a control circuit 440 is formed that closes the air conditioning side heat radiation electromagnetic valve 41 and opens the air conditioning side heat radiation bypass electromagnetic valve 42.
[0056]
Therefore, when the output contact 47 of the four-way valve of the air conditioning side refrigerant circuit 25 is closed, the air conditioning side heat radiation electromagnetic valve 41 is closed, and the air conditioning side heat radiation bypass electromagnetic valve 42 is opened. As a result, the excess cold heat in the refrigeration side refrigerant circuit 6 is stored in the heat storage agent in the heat storage tank 18. Then, the cold heat is not exchanged by the air conditioning side heat exchanger 23 in the air conditioning cooling environment related to the refrigeration side cooling environment, so that the ice in the heat storage tank 18 can be prevented from being consumed excessively.
[0057]
Embodiment 8 FIG.
FIG. 9 is also a control circuit diagram showing an example of another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 4 indicate the corresponding parts, and 49 is a pipe temperature detecting device, which is composed of, for example, a thermostat and detects the pipe temperature of the cold heat supply circuit 26. When the pipe temperature becomes equal to or higher than the predetermined temperature, the contact is closed, the auxiliary relay 50 is operated, the air conditioning side heat radiation electromagnetic valve 41 is closed, and the control circuit 440 that opens the air conditioning side heat radiation bypass electromagnetic valve 42 is formed. Has been.
[0058]
Therefore, the excess cold heat in the refrigeration side refrigerant circuit 6 is stored in the heat storage agent in the heat storage tank 18. And when the cold heat is heat-exchanged and consumed in the air-conditioning cooling environment related to the refrigeration-side cooling environment by the air-conditioning-side heat exchanger 23, cold supply for heat exchange with the air-conditioning-side heat exchanger 23 of the air-conditioning-side refrigerant circuit 25 When the piping temperature of the circuit 26 reaches a predetermined value or more, the air conditioning side heat radiation electromagnetic valve 41 is closed and the air conditioning side heat radiation bypass electromagnetic valve 42 is opened. As a result, heat exchange is not performed by the air conditioning side heat exchanger 23, and the liquid temperature of the air conditioning side refrigerant circuit 25 does not increase and the cooling capacity does not decrease.
[0059]
Embodiment 9 FIG.
FIG. 10 is also a refrigerant circuit diagram showing an example of another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 4 denote the corresponding parts, 51 is a refrigeration side heat exchanger, 52 is a refrigeration side cold heat supply circuit, and heat from the heat storage agent in the heat storage tank 18 is supplied to the refrigeration side cold heat supply heat exchanger. 53.
[0060]
In the combined refrigerant circuit equipment configured as described above, the heat storage agent delivered from the heat storage tank 18 by the refrigeration side cold heat supply circuit 52 is used between the refrigeration side cold heat supply heat exchanger 53 and the refrigeration side heat exchanger 51. The refrigerant is cooled by heat exchange at. Thereby, the refrigerant cooled to a lower temperature is supplied to the refrigeration side expansion device 14 and the refrigeration side evaporator 15.
[0061]
In this way, the cold energy stored in the heat storage agent of the heat storage tank 18 from the refrigeration side refrigerant circuit 6 as an extra refrigeration capacity is shared by the refrigeration side refrigerant circuit 6, the air conditioning side refrigerant circuit 25, and the refrigeration side refrigerant circuit 16. It is consumed by the air conditioning side refrigerant circuit 25 and the refrigeration side refrigerant circuit 16 via the heat storage agent in the heat storage tank 18.
[0062]
Thereby, the cold heat which became surplus in the refrigeration side refrigerant circuit 6 is stored in the thermal storage agent in the thermal storage tank 18. And when the cold heat is heat-exchanged and consumed in the air-conditioning cooling environment related to the refrigeration-side cooling environment by the air-conditioning-side heat exchanger 23, the refrigeration-side cold heat supply heat exchanger 53 supplied to the refrigeration-side refrigerant circuit 16 is provided. A freezing-side cold heat supply circuit 52 is provided. For this reason, the temperature fall of the air-conditioning side refrigerant circuit 25 is suppressed, and freezing of the air-conditioning side heat exchanger 23 can be prevented.
[0063]
In addition, the refrigeration side cold heat supplied to the refrigeration side refrigerant circuit 16 through the air conditioner side cold heat supply heat exchanger 27 and the refrigeration side heat exchanger 51 that supply cold heat from the heat storage agent of the heat storage tank 18 to the air conditioning side heat exchanger 23. A refrigeration-side cold supply circuit 52 having a supply heat exchanger 53 is provided, and the refrigeration-side cold supply heat exchanger 53 that supplies the refrigeration-side refrigerant circuit 16 via the refrigeration-side heat exchanger 51 is always energized. It is configured as follows.
[0064]
Thereby, the cold heat which became surplus in the refrigeration side refrigerant circuit 6 is stored in the thermal storage agent in the thermal storage tank 18. And when the cold heat is heat-exchanged and consumed in the air-conditioning cooling environment related to the refrigeration-side cooling environment by the air-conditioning-side heat exchanger 23, the refrigeration-side cold heat supply heat exchanger 53 supplied to the refrigeration-side refrigerant circuit 16 is provided. A freezing-side cold heat supply circuit 52 is provided. For this reason, the temperature fall of the air-conditioning side refrigerant circuit 25 is suppressed, and the air-conditioning side heat exchanger 23 can prevent freezing.
[0065]
【The invention's effect】
As described above, the present invention includes a refrigeration side refrigerant circuit configured mainly with a refrigeration side compressor, a refrigeration side condenser, a refrigeration side expansion device, and a refrigeration side evaporator that cools the refrigeration side cooling environment, and the refrigeration side refrigerant circuit. Refrigeration-side heat storage refrigerant circuit connected to a refrigeration-side refrigerant circuit formed in parallel with the side-side refrigerant circuit, and comprising a refrigeration-side heat storage expansion device and a refrigeration-side heat storage heat exchanger as main devices, and a refrigeration-side refrigerant circuit Storage tank that stores cold energy corresponding to the difference between the maximum refrigeration capacity of the refrigerator and the required refrigeration capacity of the refrigeration side cooling environment of the refrigeration side refrigerant circuit, and the air conditioning that relates the refrigeration from the heat storage agent of the heat storage tank to the refrigeration side cooling environment A cooling supply circuit that directly exchanges heat with respect to the cooling environment is provided.
[0066]
As a result, the excess cold heat in the refrigeration side refrigerant circuit is stored in the heat storage agent in the heat storage tank shared by the refrigeration side refrigerant circuit and the air conditioning side refrigerant circuit, and the cold heat enters the refrigeration side cooling environment of the refrigeration side refrigerant circuit. Consumed by the air conditioning load in the associated air conditioning cooling environment. Therefore, even if the capacity of the refrigeration-side refrigerant circuit is small and it is difficult to obtain an overall effect of improving the overall refrigeration efficiency for the entire facility, there is an effect of improving the overall refrigeration efficiency.
[0067]
In addition, as described above, the present invention includes a refrigeration side refrigerant circuit configured mainly with a refrigeration side compressor, a refrigeration side condenser, a refrigeration side expansion device, and a refrigeration side evaporator that cools the refrigeration side cooling environment, A refrigeration side heat storage refrigerant circuit connected to a refrigeration side refrigerant circuit formed in parallel with the refrigeration side refrigerant circuit, and comprising a refrigeration side heat storage expansion device and a refrigeration side heat storage heat exchanger as main devices, and a refrigeration side A heat storage tank for storing cold heat corresponding to the difference between the maximum refrigeration capacity of the refrigerant circuit and the required refrigeration capacity of the refrigeration side cooling environment of the refrigeration side refrigerant circuit, an air conditioning side compressor, an air conditioning side condenser, an air conditioning side heat exchanger, The air conditioning side refrigerant circuit, which is mainly composed of the air conditioning side expansion device and the air conditioning side evaporator for cooling the air conditioning side cooling environment, and the cold heat from the heat storage agent of the heat storage tank to the air conditioning side refrigerant circuit via the air conditioning side heat exchanger A heat exchanger for supplying cold power is installed. It was is provided with a the cold supply circuit.
[0068]
As a result, the excess cold heat in the refrigeration side refrigerant circuit is stored in the heat storage agent in the heat storage tank shared by the refrigeration side refrigerant circuit and the air conditioning side refrigerant circuit, and the cold heat is stored in the air conditioning side heat exchanger and the heat for supplying cold heat. It is consumed by the air conditioning side refrigerant circuit via the exchanger. Therefore, even if the capacity of the refrigeration-side refrigerant circuit is small and it is difficult to obtain an overall effect of improving the overall refrigeration efficiency for the entire facility, there is an effect of improving the overall refrigeration efficiency.
In addition, the liquid refrigerant is cooled to a lower temperature in the air conditioning side heat exchanger, the degree of supercooling can be increased, and the capacity of the air conditioning side refrigerant circuit is improved, so the capacity of the air conditioning side refrigerant circuit is reduced. Can do. For this reason, it is possible to reduce the electric power, and it is not necessary to increase the contract power receiving capacity of the entire equipment, and there is an effect of reducing the operation cost.
[0069]
In addition, as described above, the present invention is a refrigeration side refrigerant circuit composed mainly of a refrigeration side compressor, a refrigeration side condenser, a refrigeration side expansion device, and a refrigeration side evaporator for cooling a refrigeration side cooling environment, and A refrigeration side heat storage refrigerant circuit connected to a refrigeration side refrigerant circuit formed in parallel with the refrigeration side refrigerant circuit, and comprising a refrigeration side heat storage expansion device and a refrigeration side heat storage heat exchanger as main devices, and a refrigeration side A heat storage tank that stores cold energy corresponding to the difference between the maximum refrigeration capacity of the refrigerant circuit and the required refrigeration capacity of the refrigeration side cooling environment, and cool air from the heat storage agent of this heat storage tank into the air conditioning cooling environment related to the refrigeration side cooling environment On the other hand, a cold supply circuit provided with an air conditioning heat exchanger for heat exchange is provided.
[0070]
As a result, the excess cold heat in the refrigeration side refrigerant circuit is stored in the heat storage agent in the heat storage tank shared by the refrigeration side refrigerant circuit and the air conditioning side refrigerant circuit, and the cold heat is stored in the refrigeration side cooling environment by the heat exchanger for air conditioning. It is consumed by exchanging heat in the air-conditioning cooling environment associated with the. Therefore, even if the capacity of the refrigeration-side refrigerant circuit is small and it is difficult to obtain an overall effect of improving the overall refrigeration efficiency for the entire facility, there is an effect of improving the overall refrigeration efficiency.
[0071]
In addition, as described above, the present invention is an ice temperature detecting means for detecting the temperature of ice in the heat storage tank, and when the output value of the ice temperature detecting means is a predetermined value or less, the refrigeration side heat storage in the refrigeration side refrigerant circuit. And a control circuit for closing the electromagnetic valve.
[0072]
Thereby, when the excessive freezing capacity of the refrigeration side refrigerant circuit is very large, the ice temperature detection means detects the temperature of ice in the heat storage tank. And when the temperature of ice falls below a predetermined temperature, the refrigeration side heat storage electromagnetic valve in the refrigeration side refrigerant circuit is closed, so the amount of ice in the heat storage tank does not increase and the piping in the heat storage tank or the heat storage tank itself This is effective in preventing the occurrence of damage.
[0073]
Further, as described above, the present invention provides an ice temperature detecting means for detecting the temperature of ice in the heat storage tank, a water level detecting means for detecting the water level in the heat storage tank, and the output values of the ice temperature detecting means are predetermined values. In the following, a control circuit is provided that closes the refrigeration-side heat storage electromagnetic valve in the refrigeration-side refrigerant circuit when the output value of the water level detection means is any value greater than or equal to a predetermined value.
[0074]
Thereby, when the excessive freezing capacity of the refrigeration side refrigerant circuit is very large, the ice temperature detecting means detects the ice temperature in the heat storage tank. When the ice temperature falls below a predetermined temperature or when the water level in the heat storage tank by the water level detection means exceeds a predetermined value, the refrigeration side heat storage electromagnetic valve in the refrigeration side refrigerant circuit is closed. The amount of ice is not increased, and there is an effect of preventing the occurrence of damage to the piping in the heat storage tank or the heat storage tank itself.
[0075]
In addition, as described above, the present invention, in parallel with the air conditioning side heat radiation solenoid valve connected in series with the air conditioning side heat exchanger of the air conditioning side refrigerant circuit, the air conditioning side heat exchanger and the air conditioning side heat radiation electromagnetic valve. The connected air conditioning side heat radiation bypass solenoid valve, the operation mode determining means for setting the operation mode of the air conditioning side refrigerant circuit, and closing the air conditioning side heat radiation solenoid valve during the heating operation by the setting of the operation mode determination means, and And a control circuit for opening the air-conditioning side heat radiation bypass solenoid valve.
[0076]
As a result, during the heating operation of the air conditioning side refrigerant circuit, the air conditioning side heat radiation solenoid valve is closed and the air conditioning side heat radiation bypass solenoid valve is opened. Thereby, the cold heat which became surplus in the refrigeration side refrigerant circuit is stored in the thermal storage agent in a thermal storage tank. Then, the cold heat is not exchanged by the air conditioning side heat exchanger in the air conditioning cooling environment related to the refrigeration side cooling environment, and there is an effect of suppressing waste of ice in the heat storage tank.
[0077]
In addition, as described above, the present invention, in parallel with the air conditioning side heat radiation solenoid valve connected in series with the air conditioning side heat exchanger of the air conditioning side refrigerant circuit, the air conditioning side heat exchanger and the air conditioning side heat radiation electromagnetic valve. A connected air conditioning side heat radiation bypass solenoid valve, and a control circuit that closes the air conditioning side heat radiation solenoid valve and opens the air conditioning side heat radiation bypass solenoid valve when the output contact of the four-way valve of the air conditioning side refrigerant circuit is closed. It is provided.
[0078]
Thus, when the output contact of the four-way valve of the air conditioning side refrigerant circuit is closed, the air conditioning side heat radiation solenoid valve is closed and the air conditioning side heat radiation bypass solenoid valve is opened. Thereby, the cold heat which became surplus in the refrigeration side refrigerant circuit is stored in the thermal storage agent in a thermal storage tank. Then, the cold heat is not exchanged by the air conditioning side heat exchanger in the air conditioning cooling environment related to the refrigeration side cooling environment, and there is an effect of suppressing waste of ice in the heat storage tank.
[0079]
In addition, as described above, the present invention, in parallel with the air conditioning side heat radiation solenoid valve connected in series with the air conditioning side heat exchanger of the air conditioning side refrigerant circuit, the air conditioning side heat exchanger and the air conditioning side heat radiation electromagnetic valve. The connected air conditioning side heat radiation bypass solenoid valve, the piping temperature detection device that detects the piping temperature of the cooling / heating supply circuit, and the air conditioning side heat radiation solenoid valve are closed when the output value of the piping temperature detection device exceeds a predetermined value. And a control circuit for opening the air-conditioning side heat radiation bypass solenoid valve.
[0080]
Thereby, the cold heat which became surplus in the refrigeration side refrigerant circuit is stored in the thermal storage agent in a thermal storage tank. And when the cold heat is heat-exchanged and consumed in the air-conditioning cooling environment related to the refrigeration-side cooling environment by the air-conditioning side heat exchanger, the piping of the cold-heating supply circuit that exchanges heat with the air-conditioning side heat exchanger of the air-conditioning side refrigerant circuit When the temperature exceeds a predetermined value, the air conditioning side heat radiation solenoid valve is closed and the air conditioning side heat radiation bypass solenoid valve is opened. Thereby, heat exchange is not performed by the air conditioning side heat exchanger, and the liquid temperature of the air conditioning side refrigerant circuit is not increased, and the cooling capacity is prevented from decreasing.
[0081]
In addition, as described above, the present invention provides an air conditioning side cold heat supply heat exchanger that supplies cold air from the heat storage agent of the heat storage tank to the air conditioning side refrigerant circuit via the air conditioning side heat exchanger, and a heat storage agent of the heat storage tank. And a refrigeration-side cold supply circuit having a refrigeration-side cold supply heat exchanger for supplying cold heat from the refrigeration-side refrigerant circuit via the refrigeration-side heat exchanger.
[0082]
As a result, excess cold heat in the refrigeration side refrigerant circuit is stored in the heat storage agent in the heat storage tank, and the cold heat is exchanged and consumed in the air conditioning cooling environment related to the refrigeration side cooling environment by the air conditioning side heat exchanger. In this case, since the refrigeration-side cold supply circuit having the refrigeration-side cold supply heat exchanger that supplies the refrigeration-side refrigerant circuit is provided, the temperature drop of the air-conditioning-side refrigerant circuit is suppressed, and the air-conditioning-side heat exchanger is frozen. There is an effect to prevent the occurrence.
[0083]
In addition, as described above, the present invention provides a heat exchanger for supplying air conditioning side cold heat for supplying cold air from the heat storage agent of the heat storage tank to the refrigerant circuit for air conditioning side through the air conditioning side heat exchanger, and a heat storage agent for the heat storage tank. And a refrigeration-side cold supply circuit provided with a refrigeration-side cold supply heat exchanger for supplying cold heat from the refrigeration-side refrigerant circuit via the refrigeration-side heat exchanger. The refrigeration-side cold supply heat exchanger that supplies cold to the refrigeration-side refrigerant circuit via the refrigeration-side heat exchanger is always energized.
[0084]
Thereby, the cold heat which became surplus in the refrigeration side refrigerant circuit is stored in the thermal storage agent in a thermal storage tank. Then, when the cold heat is consumed by exchanging heat in the air-conditioning cooling environment related to the refrigeration-side cooling environment by the air-conditioning side heat exchanger, the refrigeration having the refrigeration-side cold heat supply heat exchanger that supplies the refrigeration-side refrigerant circuit Since the side cold heat supply circuit is provided, the temperature drop of the air conditioning side refrigerant circuit is suppressed, and there is an effect of preventing the air conditioning side heat exchanger from freezing.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram showing a first embodiment of the present invention.
FIG. 2 is a refrigerant circuit diagram showing a second embodiment of the present invention.
FIG. 3 is a refrigerant circuit diagram showing Embodiment 3 of the present invention.
FIG. 4 is a refrigerant circuit diagram showing Embodiment 4 of the present invention.
FIG. 5 is a control circuit diagram relating to the refrigerant circuit of FIG. 4;
FIG. 6 is a control circuit diagram showing a fifth embodiment of the present invention.
FIG. 7 is a control circuit diagram showing Embodiment 6 of the present invention.
FIG. 8 is a control circuit diagram showing a seventh embodiment of the invention.
FIG. 9 is a control circuit diagram showing an eighth embodiment of the invention.
FIG. 10 is a refrigerant circuit diagram showing Embodiment 9 of the present invention.
FIG. 11 is a refrigerant circuit diagram showing a conventional composite refrigerant circuit facility.
[Explanation of symbols]
6 Refrigeration side refrigerant circuit, 7 Refrigeration side heat storage heat exchanger, 8 Refrigeration side heat storage solenoid valve, 9 Refrigeration side heat storage expansion device, 10 Refrigeration side heat storage refrigerant circuit, 11 Refrigeration side compressor, 12 Refrigeration side condenser , 14 Refrigeration side expansion device, 15 Refrigeration side evaporator, 16 Refrigeration side refrigerant circuit, 18 Heat storage tank, 20 Air conditioning side compressor, 21 Air conditioning side condenser, 22 Air conditioning side expansion device, 23 Air conditioning side heat exchanger, 24 Air conditioning Side evaporator, 25 Air conditioning side refrigerant circuit, 26 Cooling heat supply circuit, 27 Air conditioning side cold heat supply heat exchanger, 29 Air conditioning heat exchanger, 41 Air conditioning side heat radiation solenoid valve, 42 Air conditioning side heat radiation bypass solenoid valve, 44 Ice Temperature detection means, 45 Water level detection means, 46 Operation mode determination means, 47 Output contact point of four-way valve of air conditioning side refrigerant circuit, 49 Piping temperature detection device, 51 Refrigeration side heat exchanger, 52 Refrigeration side cold heat supply circuit, 53 Refrigeration Side heat supply heat exchanger, 440 control circuit.

Claims (6)

冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成された冷蔵側蓄熱用冷媒回路と、
上記冷蔵側冷媒回路の最大冷凍能力と上記冷蔵側冷媒回路の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄熱槽と、
空調側圧縮機、空調側凝縮器、空調側熱交換器、空調側絞り装置及び空調側冷却環境を冷却する空調側蒸発器を主要機器として構成された空調側冷媒回路と、
上記蓄熱槽の蓄熱剤からの冷熱を上記空調側熱交換器を介し上記空調側冷媒回路に供給する冷熱供給用熱交換器が設けられた冷熱供給回路と
上記空調側冷媒回路の空調側熱交換器と直列に接続された空調側放熱用電磁弁と、
上記空調側熱交換器及び上記空調側放熱用電磁弁と並列に接続された空調側放熱バイパス電磁弁と、
上記空調側冷媒回路の運転モードを設定する運転モード決定手段と、
上記運転モード決定手段の設定による暖房運転時に上記空調側放熱用電磁弁を閉成し、かつ上記空調側放熱バイパス電磁弁を開放する制御回路と
を備えたことを特徴とする複合型冷媒回路設備。
A refrigeration-side heat storage refrigerant circuit connected to the refrigeration-side refrigerant circuit and configured with a refrigeration-side heat storage expansion device and a refrigeration-side heat storage heat exchanger as main devices;
A heat storage tank for storing cold heat corresponding to the difference between the maximum refrigeration capacity of the refrigeration side refrigerant circuit and the required refrigeration capacity of the refrigeration side cooling environment of the refrigeration side refrigerant circuit;
An air-conditioning side refrigerant circuit configured with an air-conditioning-side compressor, an air-conditioning-side condenser, an air-conditioning-side heat exchanger, an air-conditioning-side expansion device, and an air-conditioning-side evaporator that cools the air-conditioning-side cooling environment as main devices;
A cold heat supply circuit provided with a heat exchanger for supplying cold heat for supplying cold heat from the heat storage agent of the heat storage tank to the air conditioning side refrigerant circuit via the air conditioning side heat exchanger ;
An air conditioning side heat radiation solenoid valve connected in series with the air conditioning side heat exchanger of the air conditioning side refrigerant circuit;
An air conditioning side heat radiation bypass solenoid valve connected in parallel with the air conditioning side heat exchanger and the air conditioning side heat radiation solenoid valve;
An operation mode determining means for setting an operation mode of the air conditioning side refrigerant circuit;
A control circuit that closes the air-conditioning side heat radiation solenoid valve and opens the air-conditioning side heat radiation bypass solenoid valve during heating operation according to the setting of the operation mode determination means;
A combined refrigerant circuit facility comprising:
冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成された冷蔵側蓄熱用冷媒回路と、
上記冷蔵側冷媒回路の最大冷凍能力と上記冷蔵側冷媒回路の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄熱槽と、
空調側圧縮機、空調側凝縮器、空調側熱交換器、空調側絞り装置及び空調側冷却環境を冷却する空調側蒸発器を主要機器として構成された空調側冷媒回路と、
上記蓄熱槽の蓄熱剤からの冷熱を上記空調側熱交換器を介し上記空調側冷媒回路に供給する冷熱供給用熱交換器が設けられた冷熱供給回路と
上記空調側冷媒回路の上記空調側熱交換器と直列に接続された空調側放熱用電磁弁と、
上記空調側熱交換器及び上記空調側放熱用電磁弁と並列に接続された空調側放熱バイパス電磁弁と、
上記空調側冷媒回路の四方弁の出力接点の閉成時に上記空調側放熱用電磁弁を閉成し、かつ上記空調側放熱バイパス電磁弁を開放する制御回路と
を備えたことを特徴とする複合型冷媒回路設備。
A refrigeration-side heat storage refrigerant circuit connected to the refrigeration-side refrigerant circuit and configured with a refrigeration-side heat storage expansion device and a refrigeration-side heat storage heat exchanger as main devices;
A heat storage tank for storing cold heat corresponding to the difference between the maximum refrigeration capacity of the refrigeration side refrigerant circuit and the required refrigeration capacity of the refrigeration side cooling environment of the refrigeration side refrigerant circuit;
An air-conditioning side refrigerant circuit configured with an air-conditioning-side compressor, an air-conditioning-side condenser, an air-conditioning-side heat exchanger, an air-conditioning-side expansion device, and an air-conditioning-side evaporator that cools the air-conditioning-side cooling environment as main devices;
A cold heat supply circuit provided with a heat exchanger for supplying cold heat for supplying cold heat from the heat storage agent of the heat storage tank to the air conditioning side refrigerant circuit via the air conditioning side heat exchanger ;
An air conditioning side heat radiation solenoid valve connected in series with the air conditioning side heat exchanger of the air conditioning side refrigerant circuit;
An air conditioning side heat radiation bypass solenoid valve connected in parallel with the air conditioning side heat exchanger and the air conditioning side heat radiation solenoid valve;
A control circuit that closes the air conditioning side heat radiation solenoid valve and opens the air conditioning side heat radiation bypass solenoid valve when the output contact of the four-way valve of the air conditioning side refrigerant circuit is closed;
A combined refrigerant circuit facility comprising:
上記蓄熱槽内の氷の温度を検知する氷温検知手段と、Ice temperature detection means for detecting the temperature of ice in the heat storage tank;
上記氷温検知手段の出力値が所定値以下になると上記冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制御回路とA control circuit that closes the refrigeration-side heat storage electromagnetic valve in the refrigeration-side refrigerant circuit when the output value of the ice temperature detection means falls below a predetermined value;
を備えたことを特徴とする請求項1または請求項2に記載の複合型冷媒回路設備。The combined refrigerant circuit facility according to claim 1, wherein the combined refrigerant circuit facility is provided.
上記蓄熱槽内の水位を検知する水位検知手段と、Water level detection means for detecting the water level in the heat storage tank;
上記氷温検知手段の出力値が所定値以下、上記水位検知手段の出力値が所定値以上のいずれかになると上記冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制御回路とA control circuit that closes the refrigeration-side heat storage electromagnetic valve in the refrigeration-side refrigerant circuit when the output value of the ice temperature detection means is equal to or less than a predetermined value and the output value of the water level detection means is greater than or equal to a predetermined value;
を備えたことを特徴とする請求項3に記載の複合型冷媒回路設備。The combined refrigerant circuit facility according to claim 3, comprising:
冷凍側圧縮機、冷凍側凝縮器、冷凍側熱交換器、冷凍側絞り装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主要機器として構成された冷凍側冷媒回路と、A refrigeration side refrigerant circuit composed mainly of a refrigeration side compressor, a refrigeration side condenser, a refrigeration side heat exchanger, a refrigeration side expansion device, and a refrigeration side evaporator for cooling a refrigeration side cooling environment;
上記冷熱を上記空調側熱交換器を介し上記空調側冷媒回路に供給する空調側冷熱供給用熱交換器と、An air conditioner-side cold supply heat exchanger for supplying the cold heat to the air-conditioner-side refrigerant circuit via the air-conditioner-side heat exchanger;
上記冷熱を上記冷凍側熱交換器を介し上記冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器が設けられた冷凍側冷熱供給回路とA refrigeration side cold heat supply circuit provided with a refrigeration side cold heat supply heat exchanger for supplying the cold heat to the refrigeration side refrigerant circuit via the refrigeration side heat exchanger;
を備えたことを特徴とする請求項1〜請求項4のいずれかに記載の複合型冷媒回路設備。The combined refrigerant circuit facility according to any one of claims 1 to 4, further comprising:
上記冷凍側熱交換器を介し上記冷熱を上記冷凍側冷媒回路に供給する上記冷凍側冷熱供給用熱交換器が常時付勢されるThe refrigeration-side cold supply heat exchanger that supplies the cold heat to the refrigeration-side refrigerant circuit via the refrigeration-side heat exchanger is always energized.
ことを特徴とする請求項5に記載の複合型冷媒回路設備。The combined refrigerant circuit facility according to claim 5.
JP24201898A 1998-02-09 1998-08-27 Complex refrigerant circuit equipment Expired - Lifetime JP4188461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24201898A JP4188461B2 (en) 1998-02-09 1998-08-27 Complex refrigerant circuit equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-26850 1998-02-09
JP2685098 1998-02-09
JP24201898A JP4188461B2 (en) 1998-02-09 1998-08-27 Complex refrigerant circuit equipment

Publications (2)

Publication Number Publication Date
JPH11287523A JPH11287523A (en) 1999-10-19
JP4188461B2 true JP4188461B2 (en) 2008-11-26

Family

ID=26364698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24201898A Expired - Lifetime JP4188461B2 (en) 1998-02-09 1998-08-27 Complex refrigerant circuit equipment

Country Status (1)

Country Link
JP (1) JP4188461B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099514A (en) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd Heat storage type air-conditioning and refrigerating device
JP4472383B2 (en) * 2004-03-01 2010-06-02 高砂熱学工業株式会社 Air conditioning system
JP2019168213A (en) * 2018-08-08 2019-10-03 株式会社ヤマト Brine chiller and cooling system
CN109713881A (en) * 2019-02-01 2019-05-03 广东美的暖通设备有限公司 Frequency converter

Also Published As

Publication number Publication date
JPH11287523A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
US9234675B2 (en) Hot water supply apparatus associated with heat pump
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
US9217574B2 (en) Hot water supply apparatus associated with heat pump
KR920000452B1 (en) Refrigerating cycle utilizing cold accumulation material
KR960010634B1 (en) Heat storage type air-conditioning apparatus
JP5312075B2 (en) Defrost equipment in carbon dioxide circulation and cooling system
JP2004003801A (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
KR100852344B1 (en) Air conditioning apparatus
JP4188461B2 (en) Complex refrigerant circuit equipment
WO2016170616A1 (en) Air conditioner
JP2007102680A (en) Automatic vending machine
JP4043348B2 (en) Carbon dioxide secondary refrigerant ice heat storage refrigeration system
JP2013011423A (en) Refrigerating apparatus
JP2757660B2 (en) Thermal storage type air conditioner
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JPH1089729A (en) Ice heat storage device by supercooled water and operation method
JPH1151523A (en) Ice making machine
CN210153993U (en) Double-opening and double-closing single-working-condition ice-storage refrigeration air-conditioning system
JPH09280668A (en) Composite refrigerant circuit equipment
JPH05118696A (en) Heat pump device
JP2007147133A (en) Air conditioner
JPH07269983A (en) Air conditioner for shop
JP2001012812A (en) Heat accumulator for refrigerant
JPH0849938A (en) Regenerative air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term