JP2006023006A - Refrigeration facility - Google Patents

Refrigeration facility Download PDF

Info

Publication number
JP2006023006A
JP2006023006A JP2004201001A JP2004201001A JP2006023006A JP 2006023006 A JP2006023006 A JP 2006023006A JP 2004201001 A JP2004201001 A JP 2004201001A JP 2004201001 A JP2004201001 A JP 2004201001A JP 2006023006 A JP2006023006 A JP 2006023006A
Authority
JP
Japan
Prior art keywords
heat
hot water
cold
heat exchanger
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004201001A
Other languages
Japanese (ja)
Inventor
Masaki Takamatsu
正樹 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004201001A priority Critical patent/JP2006023006A/en
Priority to CNB2005100628933A priority patent/CN100419349C/en
Priority to EP20050013938 priority patent/EP1614980A2/en
Publication of JP2006023006A publication Critical patent/JP2006023006A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigeration facility capable of suppressing thermal loss in heat accumulating operation. <P>SOLUTION: This facility comprises a heat source refrigeration cycle 101 driven by night power to generate cold water and hot water; a first cold and hot water heat accumulation device 102 and a second cold and hot water heat accumulation device 104 independently storing the cold water and hot water generated by this refrigeration cycle, a hot water supply device using the hot water stored in the first heat accumulation device 102 and an air conditioner using the cold water stored in the second heat accumulation device 104 as part of the heat source of an air conditioning refrigeration cycle 105. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷凍設備に係り、夜間電力を利用して駆動される熱源用冷凍サイクルを備えた冷凍設備に関する。   The present invention relates to a refrigeration facility, and more particularly to a refrigeration facility including a refrigeration cycle for a heat source that is driven using nighttime power.

一般に、圧縮機、凝縮器、減圧装置、及び蒸発器を、冷媒配管を介して順に接続して冷凍サイクルを構成し、この冷凍サイクルの蒸発器での熱を熱源として、冷水を生成し、この冷水熱を、氷蓄熱槽に蓄熱し、冷房運転時に、上記冷水熱を利用した蓄熱利用冷房運転を可能にした冷凍設備が知られている(特許文献1参照)。
特開2002−130770号公報
In general, a compressor, a condenser, a decompression device, and an evaporator are connected in order through a refrigerant pipe to constitute a refrigeration cycle, and heat from the evaporator of the refrigeration cycle is used as a heat source to generate cold water. There is known a refrigeration facility that stores cold water heat in an ice heat storage tank and enables the stored heat-use cooling operation using the cold water heat during cooling operation (see Patent Document 1).
JP 2002-130770 A

しかし、従来の構成では、氷蓄熱槽に蓄熱するための蓄熱運転時には、凝縮器の熱が外部に放出されており、当該熱の有効利用がなされていない。   However, in the conventional configuration, during the heat storage operation for storing heat in the ice heat storage tank, the heat of the condenser is released to the outside, and the heat is not effectively used.

この技術に限らず、例えば、ヒートポンプ式の給湯設備などでも、冷凍サイクルの凝縮器での熱を熱源として、温水を生成し、この温水熱を、貯湯槽に貯えているが、この場合においても、貯湯運転時には、今度は、蒸発器の熱が外部に放出されており、当該熱の有効利用がなされていないという問題がある。   In addition to this technology, for example, in a heat pump type hot water supply facility, etc., hot water is generated using heat in the condenser of the refrigeration cycle as a heat source, and this hot water heat is stored in a hot water storage tank. In the hot water storage operation, there is a problem that the heat of the evaporator is released to the outside and the heat is not effectively used.

そこで、本発明の目的は、上述した従来技術が有する課題を解消し、蓄熱運転時における熱損失を抑制した冷凍設備を提供することにある。   Then, the objective of this invention is providing the refrigeration equipment which eliminated the subject which the prior art mentioned above has, and suppressed the heat loss at the time of heat storage operation.

本発明は、夜間電力によって駆動され、冷水と温水を生成する熱源用冷凍サイクルと、この熱源用冷凍サイクルで生成された冷水と温水を個々に貯える第1冷温水蓄熱装置、並びに第2冷温水蓄熱装置と、第1冷温水蓄熱装置に貯えられた冷水を空調用冷凍サイクルの熱源の一部として利用する空調装置と、第2冷温水蓄熱装置に貯えられた温水を利用する給湯装置とを備えたことを特徴とする。   The present invention is a heat source refrigeration cycle that is driven by nighttime electric power to generate cold water and hot water, a first cold / hot water heat storage device that individually stores the cold water and hot water generated by the heat source refrigeration cycle, and a second cold / hot water. A heat storage device, an air conditioner that uses cold water stored in the first cold / hot water heat storage device as part of a heat source of an air conditioning refrigeration cycle, and a hot water supply device that uses hot water stored in the second cold / hot water heat storage device It is characterized by having.

この場合において、第1圧縮機、第1四方弁、第1熱交換器、第1減圧装置、及び第2熱交換器を、冷媒配管を介して順に接続し、第1四方弁の切り換えにより、第1熱交換器を放熱熱源、又は吸熱熱源として作用させると同時に、第2熱交換器を吸熱熱源、又は放熱熱源として作用させる熱源用冷凍サイクルと、前記第1熱交換器に水配管を介して接続され、当該第1熱交換器が、放熱熱源として作用する場合には温水を貯え、吸熱熱源として作用する場合には冷水を貯える第1冷温水蓄熱装置と、この第1冷温水蓄熱装置に接続され、当該第1冷温水蓄熱装置に冷水が貯えられている場合には当該冷水を利用した過冷却運転を可能にした冷凍装置と、前記第2熱交換器に水配管を介して接続され、当該第2熱交換器が、放熱熱源として作用する場合には温水を貯え、吸熱熱源として作用する場合には冷水を貯える第2冷温水蓄熱装置と、この第2冷温水蓄熱装置に接続され、この第2冷温水蓄熱装置に貯えられた冷温水を利用した過冷却運転、又は冷媒加熱運転を可能にした空調用冷凍サイクルと、を備えたものであってもよい。   In this case, the first compressor, the first four-way valve, the first heat exchanger, the first pressure reducing device, and the second heat exchanger are sequentially connected through the refrigerant pipe, and by switching the first four-way valve, A refrigeration cycle for a heat source that causes the first heat exchanger to act as a radiant heat source or an endothermic heat source, while simultaneously causing the second heat exchanger to act as an endothermic heat source or a radiant heat source, and a water pipe to the first heat exchanger A first cold / hot water heat storage device that stores hot water when the first heat exchanger acts as a heat radiation heat source and stores cold water when the first heat exchanger acts as an endothermic heat source, and the first cold / hot water heat storage device. When the cold water is stored in the first cold / hot water heat storage device, a refrigeration device that enables a supercooling operation using the cold water and the second heat exchanger via a water pipe The second heat exchanger is designed as a heat radiation heat source. The hot and cold water storage device is connected to the second cold / hot water heat storage device and the second cold / hot water heat storage device for storing the cold water when acting as an endothermic heat source. An air-conditioning refrigeration cycle that enables a supercooling operation using water or a refrigerant heating operation may be used.

また、前記空調用冷凍サイクルが、第2圧縮機、第2四方弁、第3熱交換器、前記第2冷温水蓄熱装置内の冷温水と熱交換する第4熱交換器、第2減圧装置、及び被調和室内の空気と熱交換する第5熱交換器を、冷媒配管を介して順に接続して構成されていてもよい。さらに、前記空調用冷凍サイクルが、第4熱交換器をバイパスするバイパス回路を備えていてもよい。前記冷凍装置が、第3圧縮機、前記第1冷温水蓄熱装置内の冷温水と熱交換する凝縮器、第3減圧装置、及び蒸発器を、冷媒配管を介して順に接続して構成されていてもよい。また、前記熱源用冷凍サイクルが、第1熱交換器と第1減圧装置間に空気熱源式の第6熱交換器を備えていてもよい。さらに、前記熱源用冷凍サイクルを夜間電力で駆動する制御手段を備えていてもよい。前記熱源用冷凍サイクルに高圧側が超臨界圧力となる冷媒が充填されていてもよい。   The air-conditioning refrigeration cycle includes a second compressor, a second four-way valve, a third heat exchanger, a fourth heat exchanger that exchanges heat with cold / hot water in the second cold / hot water heat storage device, and a second decompression device. And a fifth heat exchanger that exchanges heat with the air in the conditioned room may be connected in order via a refrigerant pipe. Furthermore, the air-conditioning refrigeration cycle may include a bypass circuit that bypasses the fourth heat exchanger. The refrigeration apparatus is configured by sequentially connecting a third compressor, a condenser that exchanges heat with the cold / hot water in the first cold / hot water storage apparatus, a third decompression device, and an evaporator via a refrigerant pipe. May be. The refrigeration cycle for the heat source may include an air heat source type sixth heat exchanger between the first heat exchanger and the first pressure reducing device. Furthermore, you may provide the control means which drives the said refrigeration cycle for heat sources with nighttime electric power. The refrigeration cycle for the heat source may be filled with a refrigerant having a supercritical pressure on the high pressure side.

本発明では、熱源用冷凍サイクルで生成された冷水と温水を個々に貯える第1冷温水蓄熱装置、並びに第2冷温水蓄熱装置を備えるため、熱源用冷凍サイクルを運転した場合には蒸発器、及び凝縮器の両方が有効利用されて、冷水、及び温水が生成されることになるため、蓄熱運転時の熱損失が抑制される。   In the present invention, since the first cold / hot water heat storage device and the second cold / hot water heat storage device for individually storing the cold water and the hot water generated in the heat source refrigeration cycle are provided, the evaporator when operating the heat source refrigeration cycle, Since both the condenser and the condenser are effectively used to generate cold water and hot water, heat loss during the heat storage operation is suppressed.

以下、本発明の実施の形態を、図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態を示す冷媒回路図である。この冷凍設備100は、主として夜間電力で駆動される熱源用冷凍サイクル101と、いわゆる貯湯槽を構成する第1冷温水蓄熱装置102と、店舗用のショーケース、或いは大型の冷蔵・冷凍庫等の冷凍装置103と、第2冷温水蓄熱装置104と、被調和室を空調する空調用冷凍サイクル105とを備えて構成されている。   FIG. 1 is a refrigerant circuit diagram showing an embodiment of the present invention. The refrigeration equipment 100 includes a refrigeration cycle 101 for a heat source driven mainly by night power, a first cold / hot water heat storage device 102 constituting a so-called hot water storage tank, and a freezer such as a store showcase or a large refrigerator / freezer. The apparatus 103, the 2nd cold / hot water thermal storage apparatus 104, and the air-conditioning refrigerating cycle 105 which air-conditions a to-be-conditioned room are comprised.

熱源用冷凍サイクル101は、第1圧縮機1、第1四方弁2、第1熱交換器3、第1減圧装置4、及び第2熱交換器5を、冷媒配管を介して順に接続し、第1熱交換器3と第1減圧装置4との間には、補助減圧装置6、及び空気熱源式の第6熱交換器7を直列に接続して構成されている。8は送風機である。   The refrigeration cycle 101 for heat source connects the first compressor 1, the first four-way valve 2, the first heat exchanger 3, the first pressure reducing device 4, and the second heat exchanger 5 in order through the refrigerant pipe, Between the first heat exchanger 3 and the first pressure reducing device 4, an auxiliary pressure reducing device 6 and an air heat source type sixth heat exchanger 7 are connected in series. 8 is a blower.

この熱源用冷凍サイクル101は、第1四方弁2を適宜に切り換えることにより、第1熱交換器3を放熱熱源、又は吸熱熱源として作用させると同時に、第2熱交換器5を吸熱熱源、又は放熱熱源として作用させる。   The refrigeration cycle 101 for heat source switches the first four-way valve 2 as appropriate so that the first heat exchanger 3 acts as a heat dissipation heat source or an endothermic heat source, and at the same time the second heat exchanger 5 acts as an endothermic heat source or It acts as a heat dissipation heat source.

第1冷温水蓄熱装置102は、貯湯タンク11を含んで構成されている。この貯湯タンク11の底部には、貯湯タンク11に市水を供給する供給管12と、貯湯タンク11の水を、第1熱交換器3に循環する送り管13とが接続されている。この送り管13には、行き管14が接続され、この往管14には、ポンプ15を介して、第1熱交換器3が接続されている。この第1熱交換器3には、復管16が接続され、この復管16は、戻し管17を介して、貯湯タンク11の上部に接続されている。   The first cold / hot water heat storage device 102 includes the hot water storage tank 11. Connected to the bottom of the hot water storage tank 11 are a supply pipe 12 for supplying city water to the hot water storage tank 11 and a feed pipe 13 for circulating the water in the hot water storage tank 11 to the first heat exchanger 3. The outgoing pipe 14 is connected to the feed pipe 13, and the first heat exchanger 3 is connected to the outgoing pipe 14 via a pump 15. A return pipe 16 is connected to the first heat exchanger 3, and the return pipe 16 is connected to the upper part of the hot water storage tank 11 via a return pipe 17.

この貯湯タンク11の中程には、温水供給管20が接続され、この温水供給管20には、図示を省略した風呂や、給湯機等の給湯装置が接続されている。また、復管16には、電動式の三方弁18が接続され、この三方弁18と、ポンプ15の上流点との間には、いわゆるショートサイクル管19が接続されている。   A hot water supply pipe 20 is connected to the middle of the hot water storage tank 11, and a hot water supply apparatus such as a bath or a hot water heater (not shown) is connected to the hot water supply pipe 20. An electric three-way valve 18 is connected to the return pipe 16, and a so-called short cycle pipe 19 is connected between the three-way valve 18 and the upstream point of the pump 15.

この第1冷温水蓄熱装置102には、例えば、店舗用のショーケース、或いは大型の冷蔵・冷凍庫等の冷凍装置103が接続され、この冷凍装置103は、当該第1冷温水蓄熱装置102に冷水が貯えられている場合には、後述するように、当該冷水を利用した過冷却運転を可能に構成されている。   The first cold / hot water heat storage device 102 is connected to a refrigeration device 103 such as a store showcase or a large refrigeration / freezer, for example, and the freezing device 103 is connected to the first cold / hot water heat storage device 102 with cold water. Is stored, the supercooling operation using the cold water is possible as will be described later.

本構成では、冷凍装置103が2台接続され、いずれの冷凍装置103も、第3圧縮機21A,21B、貯湯タンク11の冷温水と熱交換する凝縮器22A,22B、第3減圧装置23A,23B、及び蒸発器24A,24Bを、冷媒配管を介して順に接続して構成されている。各凝縮器22A,22Bは、上記送り管13に接続された水配管25に対して直列に接続されている。この水配管25は、送り管13と、電動式の三方弁26との間に接続され、この三方弁26は、上記別の三方弁18と、貯湯タンク11との間の戻し管17に接続されている。27はポンプである。   In this configuration, two refrigeration devices 103 are connected, and any of the refrigeration devices 103 includes third compressors 21A and 21B, condensers 22A and 22B that exchange heat with cold / hot water in the hot water storage tank 11, and third decompression devices 23A, 23B and evaporators 24A and 24B are connected in order through refrigerant piping. The condensers 22A and 22B are connected in series to the water pipe 25 connected to the feed pipe 13. The water pipe 25 is connected between the feed pipe 13 and the electric three-way valve 26, and the three-way valve 26 is connected to the return pipe 17 between the other three-way valve 18 and the hot water storage tank 11. Has been. 27 is a pump.

第2冷温水蓄熱装置104は蓄熱タンク31を備え、この蓄熱タンク31と第2熱交換器5との間には、水、又はブラインを循環させる水配管33,34が接続され、一方の水配管34にはポンプ35が接続されている。そして、この蓄熱タンク31には、第2熱交換器5が、放熱熱源として作用する場合には温水が貯えられ、吸熱熱源として作用する場合には冷水(この場合、氷)が貯えられる。   The second cold / hot water heat storage device 104 includes a heat storage tank 31, and water pipes 33 and 34 for circulating water or brine are connected between the heat storage tank 31 and the second heat exchanger 5. A pump 35 is connected to the pipe 34. The heat storage tank 31 stores hot water when the second heat exchanger 5 acts as a heat radiation heat source, and cold water (in this case, ice) when the second heat exchanger 5 acts as a heat absorption heat source.

空調用冷凍サイクル105は、第2圧縮機41、第2四方弁42、第3熱交換器43、蓄熱タンク31の冷温水と熱交換する第4熱交換器44、第2減圧装置45、被調和室内の空気と熱交換する第5熱交換器46、及びアキューレータ47を順に接続して構成されている。また、第4熱交換器44をバイパスするバイパス回路48が設けられ、このバイパス回路48には、開閉弁49が接続されている。50は開閉弁、43Aは送風機である。この冷凍サイクル105は、蓄熱タンク31に貯えられた温水、冷水及び/又は氷を利用した過冷却運転、又は冷媒加熱運転が可能である。なお、上記構成では、貯湯タンク11に貯えられるのは、温水、又は冷水のいずれかであり、蓄熱タンク31に貯えられるのは、温水、又は氷(冷水)のいずれかである。   The air-conditioning refrigeration cycle 105 includes a second compressor 41, a second four-way valve 42, a third heat exchanger 43, a fourth heat exchanger 44 that exchanges heat with cold / hot water in the heat storage tank 31, a second decompression device 45, A fifth heat exchanger 46 that exchanges heat with the air in the conditioning room and an accumulator 47 are connected in order. A bypass circuit 48 that bypasses the fourth heat exchanger 44 is provided, and an on-off valve 49 is connected to the bypass circuit 48. 50 is an on-off valve, and 43A is a blower. The refrigeration cycle 105 can perform a supercooling operation using hot water, cold water and / or ice stored in the heat storage tank 31 or a refrigerant heating operation. In the above configuration, either hot water or cold water is stored in the hot water storage tank 11, and either hot water or ice (cold water) is stored in the heat storage tank 31.

上記構成では、熱源用冷凍サイクル101に、運転中に高圧側が超臨界圧力となる冷媒、例えば、二酸化炭素(CO2)冷媒が封入されている。CO2冷媒が封入された場合、例えば、夏場で、外気温度が30℃以上になった場合、或いは、負荷が大きくなった場合等の条件によって、図5のエンタルピ・圧力線図に示すように、高圧回路内は運転中に超臨界圧力で運転される。高圧回路内が、超臨界圧力で運転される冷媒には、CO2冷媒のほかに、例えばエチレン、ディボラン、エタン、酸化窒素等が挙げられる。図5では、圧縮機1の出口は状態aで示される。冷媒は、熱交換器3を通って循環し、そこで状態bまで冷却され、熱を水に放出する。冷媒は、所望により、状態cまで冷却される。ついで、冷媒は、減圧装置4での圧力低下により、状態dに至り、ここではガス/液体の2相混合体が形成される。冷媒は、熱交換器5において、液相の蒸発により熱を吸収する。状態eは、熱交換器5の中間状態であり、ガス相の冷媒は、状態fまで加熱されてから圧縮機1の吸込管に向かう。 In the above configuration, the refrigerant for heat source refrigeration cycle 101 whose supercritical pressure is on the high pressure side during operation, for example, carbon dioxide (CO 2 ) refrigerant is enclosed. As shown in the enthalpy / pressure diagram of FIG. 5 depending on conditions such as when the CO 2 refrigerant is sealed, for example, in the summer, when the outside air temperature becomes 30 ° C. or higher, or when the load increases. The high pressure circuit is operated at supercritical pressure during operation. In the high pressure circuit, the refrigerant which is operated at a supercritical pressure, in addition to the CO 2 refrigerant, such as ethylene, diborane, ethane, nitrogen oxide, and the like. In FIG. 5, the outlet of the compressor 1 is shown in state a. The refrigerant circulates through the heat exchanger 3 where it is cooled to state b and releases heat into the water. The refrigerant is cooled to state c as desired. Subsequently, the refrigerant reaches the state d due to the pressure drop in the decompression device 4, and a gas / liquid two-phase mixture is formed here. The refrigerant absorbs heat in the heat exchanger 5 by evaporation of the liquid phase. The state e is an intermediate state of the heat exchanger 5, and the gas-phase refrigerant is heated to the state f and then goes to the suction pipe of the compressor 1.

本構成では、圧縮機1から吐出される高圧単相ガス冷媒は、凝縮されないが、熱交換器3で温度低下し、水の温度よりも数度低い状態cまで冷却される。この結果、水温は約80℃以上にも昇温される。   In this configuration, the high-pressure single-phase gas refrigerant discharged from the compressor 1 is not condensed, but the temperature is lowered by the heat exchanger 3 and cooled to a state c that is several degrees lower than the temperature of water. As a result, the water temperature is raised to about 80 ° C. or higher.

また、本構成では、熱源用冷凍サイクル101における第1圧縮機1の運転を制御するコントローラ106が設けられており、このコントローラ106は、一般に電力使用量が安価に設定される、夜間電力の使用時間帯(例えば、8:00PM〜6:00AM)にのみ第1圧縮機1を駆動する。   Further, in this configuration, a controller 106 for controlling the operation of the first compressor 1 in the refrigeration cycle 101 for heat source is provided, and this controller 106 is generally used for nighttime power, in which the power consumption is set at a low cost. The first compressor 1 is driven only during a time period (for example, 8:00 PM to 6:00 AM).

つぎに、本実施形態の動作を説明する。   Next, the operation of this embodiment will be described.

A.第1の蓄熱運転
この蓄熱運転は、図1に示すように、蓄熱タンク31に温水熱を貯え、貯湯タンク11に冷水熱を貯える運転であり、夜間電力を使用して、熱源用冷凍サイクル101の第1圧縮機1を駆動して行われる。この運転では、まず、熱源用冷凍サイクル101において、太線で示すように、第1圧縮機1から吐出された冷媒が、第1四方弁2、第2熱交換器5、第1減圧装置4、及び第1熱交換器3を循環し、第1四方弁2を経て、第1圧縮機1に戻される。補助減圧装置6は全開し、送風機8は停止される。上記第2熱交換器5では放熱し、この放熱を利用して、温水が生成される。すなわち、第2冷温水蓄熱装置104では、ポンプ35が駆動され、水配管33,34介して、第2熱交換器5と蓄熱タンク31間を、水、又はブラインが循環し、蓄熱タンク31に温水熱が貯えられる。また、第1熱交換器3では吸熱し、この吸熱を利用して、冷水が生成される。この場合、第1冷温水蓄熱装置102では、ポンプ15が駆動され、貯湯タンク11内の市水が、水配管3,14,16,17を介して、第1熱交換器3と貯湯タンク11間を循環し、貯湯タンク11に冷水熱が貯えられる。
A. First heat storage operation This heat storage operation is an operation in which hot water heat is stored in the heat storage tank 31 and cold water heat is stored in the hot water storage tank 11, as shown in FIG. The first compressor 1 is driven. In this operation, first, in the refrigeration cycle 101 for the heat source, as shown by a thick line, the refrigerant discharged from the first compressor 1 is converted into the first four-way valve 2, the second heat exchanger 5, the first decompression device 4, And circulates through the first heat exchanger 3, passes through the first four-way valve 2, and returns to the first compressor 1. The auxiliary decompression device 6 is fully opened and the blower 8 is stopped. The second heat exchanger 5 dissipates heat, and hot water is generated using this heat dissipation. That is, in the second cold / hot water heat storage device 104, the pump 35 is driven, and water or brine is circulated between the second heat exchanger 5 and the heat storage tank 31 via the water pipes 33 and 34, and the heat storage tank 31. Hot water heat is stored. Further, the first heat exchanger 3 absorbs heat, and cold water is generated by utilizing this heat absorption. In this case, in the first cold / hot water heat storage device 102, the pump 15 is driven, and the city water in the hot water storage tank 11 is supplied to the first heat exchanger 3 and the hot water storage tank 11 through the water pipes 3, 14, 16, and 17. The cold water heat is stored in the hot water storage tank 11.

この運転において、蓄熱タンク31への蓄熱が不要であれば、ポンプ35の運転を停止し、送風機8を運転して、第2熱交換器5の代わりに、空気熱源式の第6熱交換器7を機能させてもよい。また、貯湯タンク11への蓄熱が不要であれば、ポンプ15の運転を停止し、送風機8を運転して、第1熱交換器3の代わりに、空気熱源式の第6熱交換器7を機能させてもよい。   In this operation, if the heat storage in the heat storage tank 31 is unnecessary, the operation of the pump 35 is stopped, the blower 8 is operated, and the air heat source type sixth heat exchanger is used instead of the second heat exchanger 5. 7 may function. If heat storage in the hot water storage tank 11 is unnecessary, the operation of the pump 15 is stopped, the blower 8 is operated, and the air heat source type sixth heat exchanger 7 is installed instead of the first heat exchanger 3. May function.

B.温水利用暖房運転
この暖房運転は、図2に示すように、蓄熱タンク31の温水熱を利用した暖房運転である。この場合、空調用冷凍サイクル105では、太線で示すように、第2圧縮機41から吐出された冷媒が、第2四方弁42、第5熱交換器46、第2減圧装置45、第4熱交換器44、及び第3熱交換器43を循環し、第2四方弁42を経た後、第2圧縮機41に戻される。この状態では、一般的な空調機に比べて、第4熱交換器44で冷媒が温水によって加熱されるため、暖房効率が向上する。また、この温水熱を利用した、低外気温時における第3熱交換器43の効果的なデフロストが可能になり、当該空調用冷凍サイクル105の連続運転が可能になる。
B. Warm water use heating operation This heating operation is a heating operation using the hot water heat of the heat storage tank 31, as shown in FIG. In this case, in the refrigeration cycle 105 for air conditioning, as shown by the thick line, the refrigerant discharged from the second compressor 41 is converted into the second four-way valve 42, the fifth heat exchanger 46, the second decompression device 45, and the fourth heat. It circulates through the exchanger 44 and the third heat exchanger 43, passes through the second four-way valve 42, and then returns to the second compressor 41. In this state, compared with a general air conditioner, since the refrigerant is heated by the hot water in the fourth heat exchanger 44, the heating efficiency is improved. In addition, it is possible to effectively defrost the third heat exchanger 43 using the hot water heat at a low outside air temperature, and the continuous operation of the air-conditioning refrigeration cycle 105 is possible.

上記蓄熱タンク31に、温水がない場合には、開閉弁50を閉じ、開閉弁49を開けばよい。この状態では、冷媒が、第4熱交換器44をバイパスし、バイパス管48を経て第3熱交換器43を循環する。   When there is no hot water in the heat storage tank 31, the on-off valve 50 may be closed and the on-off valve 49 may be opened. In this state, the refrigerant bypasses the fourth heat exchanger 44 and circulates through the third heat exchanger 43 via the bypass pipe 48.

C.冷水利用冷凍運転
この冷凍運転は、図2に太線で示すように、冷凍装置103の運転時に、貯湯タンク11の冷水熱を利用する運転である。この冷凍運転において、冷凍装置103では、第3圧縮機21A,21Bから吐出された冷媒が、凝縮器22A,22B、第3減圧装置23A,23B、及び蒸発器24A,24Bを循環し、当該第3圧縮機21A,21Bに戻される。この場合、ポンプ27が運転され、貯湯タンク11内の冷水が、凝縮器22A,22Bを循環し、三方弁26を経て、当該貯湯タンク11に戻される。この運転では、凝縮器22A,22Bを循環する冷水によって、冷凍装置103側の冷媒が過冷却されるため、冷凍装置103の冷凍効率が向上する。従って、電力消費量が増大する夏期の昼間の電力ピークカットが可能になる。
C. Cold water-use refrigeration operation This refrigeration operation is an operation that uses the cold water heat of the hot water storage tank 11 when the refrigeration apparatus 103 is operated, as indicated by a thick line in FIG. In this refrigeration operation, in the refrigeration apparatus 103, the refrigerant discharged from the third compressors 21A and 21B circulates through the condensers 22A and 22B, the third decompression apparatuses 23A and 23B, and the evaporators 24A and 24B. 3 Returned to the compressors 21A and 21B. In this case, the pump 27 is operated, and the cold water in the hot water storage tank 11 circulates through the condensers 22A and 22B, and returns to the hot water storage tank 11 through the three-way valve 26. In this operation, the refrigerant on the refrigeration apparatus 103 side is supercooled by the cold water circulating through the condensers 22A and 22B, so that the refrigeration efficiency of the refrigeration apparatus 103 is improved. Therefore, it is possible to cut the power peak during the daytime in summer when the power consumption increases.

D.第2の蓄熱運転
この蓄熱運転は、図3に示すように、蓄熱タンク31に冷水熱(氷)を貯え、貯湯タンク11に温水熱を貯える運転であり、夜間電力を使用して、熱源用冷凍サイクル101の第1圧縮機1を駆動して行われる。この運転では、まず、熱源用冷凍サイクル101において、太線で示すように、第1圧縮機1から吐出された冷媒が、第1四方弁2、第1熱交換器3、第1減圧装置4、及び第2熱交換器5を循環し、第1四方弁2を経て、第1圧縮機1に戻される。補助減圧装置6は全開し、送風機8は停止される。上記第1熱交換器3では放熱し、この放熱を利用して、温水が生成される。すなわち、第1冷温水蓄熱装置102では、ポンプ15が駆動され、貯湯タンク11内の市水が、水配管3,14,16,17を介して、第1熱交換器3と貯湯タンク11間を循環し、貯湯タンク11に温水熱が貯えられる。また、第2熱交換器5では吸熱し、この吸熱を利用して、冷水が生成される。この場合、第2冷温水蓄熱装置104では、ポンプ35が駆動され、水配管33,34介して、第2熱交換器5と蓄熱タンク31間を、水、又はブラインが循環し、蓄熱タンク31に冷水熱(氷)が貯えられる。
D. Second heat storage operation This heat storage operation is an operation in which cold water heat (ice) is stored in the heat storage tank 31 and hot water heat is stored in the hot water storage tank 11, as shown in FIG. This is performed by driving the first compressor 1 of the refrigeration cycle 101. In this operation, first, in the refrigeration cycle 101 for the heat source, as shown by a thick line, the refrigerant discharged from the first compressor 1 is converted into the first four-way valve 2, the first heat exchanger 3, the first decompression device 4, And circulates through the second heat exchanger 5, passes through the first four-way valve 2, and returns to the first compressor 1. The auxiliary decompression device 6 is fully opened and the blower 8 is stopped. The first heat exchanger 3 dissipates heat, and hot water is generated using this heat dissipation. That is, in the first cold / hot water heat storage device 102, the pump 15 is driven, and city water in the hot water storage tank 11 passes between the first heat exchanger 3 and the hot water storage tank 11 via the water pipes 3, 14, 16, and 17. The hot water heat is stored in the hot water storage tank 11. Further, the second heat exchanger 5 absorbs heat, and cold water is generated by utilizing this heat absorption. In this case, in the second cold / hot water heat storage device 104, the pump 35 is driven, and water or brine circulates between the second heat exchanger 5 and the heat storage tank 31 via the water pipes 33 and 34, and the heat storage tank 31. Cold water heat (ice) is stored.

この運転においても、蓄熱タンク31への蓄熱が不要であれば、ポンプ35の運転を停止し、送風機8を運転して、第2熱交換器5の代わりに、空気熱源式の第6熱交換器7を機能させればよい。このように機能させれば、空気熱源を利用して、貯湯タンク11に貯湯することができる。また、貯湯タンク11への蓄熱が不要であれば、ポンプ15の運転を停止し、送風機8を運転して、第1熱交換器3の代わりに、空気熱源式の第6熱交換器7を機能させればよい。   Also in this operation, if the heat storage in the heat storage tank 31 is unnecessary, the operation of the pump 35 is stopped, the blower 8 is operated, and the air heat source type sixth heat exchange is performed instead of the second heat exchanger 5. What is necessary is just to make the device 7 function. If it functions in this way, hot water can be stored in the hot water storage tank 11 using an air heat source. If heat storage in the hot water storage tank 11 is unnecessary, the operation of the pump 15 is stopped, the blower 8 is operated, and the air heat source type sixth heat exchanger 7 is installed instead of the first heat exchanger 3. Just make it work.

E.冷水(氷)利用冷房運転
この冷房運転は、図4に示すように、蓄熱タンク31の冷水熱(氷)を利用した冷房運転である。この場合、空調用冷凍サイクル105では、太線で示すように、第2圧縮機41から吐出された冷媒が、第2四方弁42、第3熱交換器43、第4熱交換器44、第2減圧装置45、第5熱交換器46を循環し、第2四方弁42、及びアキューレータ47を経た後、第2圧縮機41に戻される。この状態では、一般的な空調機に比べて、第4熱交換器44で冷媒が冷水によって過冷却されるため、冷房効率が向上する。
E. Cooling operation using cold water (ice) This cooling operation is a cooling operation using the cold water heat (ice) of the heat storage tank 31, as shown in FIG. In this case, in the refrigeration cycle 105 for air conditioning, as shown by the thick line, the refrigerant discharged from the second compressor 41 is transferred to the second four-way valve 42, the third heat exchanger 43, the fourth heat exchanger 44, and the second heat exchanger 44. It circulates through the decompression device 45 and the fifth heat exchanger 46, passes through the second four-way valve 42 and the accumulator 47, and then returns to the second compressor 41. In this state, the cooling efficiency is improved because the refrigerant is supercooled by the cold water in the fourth heat exchanger 44 as compared with a general air conditioner.

なお、蓄熱タンク31に、冷水(氷)が蓄熱されていない場合、開閉弁50を閉じ、開閉弁49を開いて運転すれば、冷媒が、第4熱交換器44をバイパスして、バイパス管48を経て第2減圧装置45に向かうため、冷水(氷)を利用しない冷房運転が可能になり、昼間から夜間に至る連続冷房運転が可能になる。   When cold water (ice) is not stored in the heat storage tank 31, if the on-off valve 50 is closed and the on-off valve 49 is opened for operation, the refrigerant bypasses the fourth heat exchanger 44 and bypass pipe Since it goes to the 2nd decompression device 45 via 48, the cooling operation which does not use cold water (ice) is attained, and the continuous cooling operation from the daytime to the night is attained.

F.給湯
貯湯タンク11には、図4に太線で示すように、温水供給管20が接続され、この供給管20には、図示を省略した風呂や、給湯機等の給湯装置が接続されている。従って、本構成では、上述した冷水利用冷房運転を行いながらも、貯湯タンク11内の温水を、給湯装置に供給することができる。
F. As shown by a thick line in FIG. 4, a hot water supply pipe 20 is connected to the hot water storage tank 11, and a hot water supply apparatus such as a bath (not shown) or a hot water heater is connected to the supply pipe 20. Therefore, in this configuration, the hot water in the hot water storage tank 11 can be supplied to the hot water supply device while performing the above-described cold water cooling operation.

以上、一実施形態に基づいて本発明を説明したが、本発明は、これに限定されるものではなく、種々の変更実施が可能である。例えば、上記構成では、冷媒回路中にCO2冷媒を封入したが、これに限定されず、それ以外のフロン系冷媒等を封入したものにも適用可能なことは云うまでもない。 As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to this, A various change implementation is possible. For example, in the above configuration, the CO 2 refrigerant is enclosed in the refrigerant circuit. However, the present invention is not limited to this, and it is needless to say that the invention can be applied to other refrigerant-filled refrigerants.

本発明に係る冷凍設備の一実施形態を示す冷媒回路図である。It is a refrigerant circuit figure showing one embodiment of the refrigeration equipment concerning the present invention. 同じく冷媒回路図である。It is a refrigerant circuit diagram similarly. 同じく冷媒回路図である。It is a refrigerant circuit diagram similarly. 同じく冷媒回路図である。It is a refrigerant circuit diagram similarly. エンタルピ・圧力線図である。It is an enthalpy and pressure diagram.

符号の説明Explanation of symbols

1 第1圧縮機
3 第1熱交換器
4 第1減圧装置
5 第2熱交換器
7 第6熱交換器
11 貯湯タンク
21A,21B 第3圧縮機
22A,22B 凝縮器
23A,23B 第3減圧装置
24A,24B 蒸発器
31 蓄熱タンク
41 第2圧縮機
43 第3熱交換器
44 第4熱交換器
45 第2減圧装置
46 第5熱交換器
100 冷凍設備
101 熱源用冷凍サイクル
102 第1冷温水蓄熱装置
103 冷凍装置
104 第2冷温水蓄熱装置
105 空調用冷凍サイクル
DESCRIPTION OF SYMBOLS 1 1st compressor 3 1st heat exchanger 4 1st pressure reduction apparatus 5 2nd heat exchanger 7 6th heat exchanger 11 Hot water storage tank 21A, 21B 3rd compressor 22A, 22B Condenser 23A, 23B 3rd pressure reduction apparatus 24A, 24B Evaporator 31 Heat storage tank 41 2nd compressor 43 3rd heat exchanger 44 4th heat exchanger 45 2nd decompression device 46 5th heat exchanger 100 Refrigeration equipment 101 Refrigeration cycle for heat source 102 1st cold / hot water heat storage Apparatus 103 Refrigeration apparatus 104 Second cold / hot water heat storage apparatus 105 Refrigeration cycle for air conditioning

Claims (8)

夜間電力によって駆動され、冷水と温水を生成する熱源用冷凍サイクルと、この熱源用冷凍サイクルで生成された温水と冷水を個々に貯える第1冷温水蓄熱装置、並びに第2冷温水蓄熱装置と、第1冷温水蓄熱装置に貯えられた温水を利用する給湯装置と、第2冷温水蓄熱装置に貯えられた冷水を空調用冷凍サイクルの熱源の一部として利用する空調装置とを備えたことを特徴とする冷凍設備。   A heat source refrigeration cycle that is driven by nighttime power to generate cold water and hot water, a first cold / hot water heat storage device that individually stores the hot water and cold water generated in the heat source refrigeration cycle, and a second cold / hot water heat storage device; A hot water supply device that uses hot water stored in the first cold / hot water heat storage device and an air conditioner that uses cold water stored in the second cold / hot water heat storage device as part of the heat source of the air-conditioning refrigeration cycle. Features refrigeration equipment. 第1圧縮機、第1四方弁、第1熱交換器、第1減圧装置、及び第2熱交換器を、冷媒配管を介して順に接続し、第1四方弁の切り換えにより、第1熱交換器を放熱熱源、又は吸熱熱源として作用させると同時に、第2熱交換器を吸熱熱源、又は放熱熱源として作用させる熱源用冷凍サイクルと、前記第1熱交換器に水配管を介して接続され、当該第1熱交換器が、放熱熱源として作用する場合には温水を貯え、吸熱熱源として作用する場合には冷水を貯える第1冷温水蓄熱装置と、この第1冷温水蓄熱装置に接続され、当該第1冷温水蓄熱装置に冷水が貯えられている場合には当該冷水を利用した過冷却運転を可能にした冷凍装置と、前記第2熱交換器に水配管を介して接続され、当該第2熱交換器が、放熱熱源として作用する場合には温水を貯え、吸熱熱源として作用する場合には冷水を貯える第2冷温水蓄熱装置と、この第2冷温水蓄熱装置に接続され、この第2冷温水蓄熱装置に貯えられた冷温水を利用した過冷却運転、又は冷媒加熱運転を可能にした空調用冷凍サイクルと、を備えたことを特徴とする冷凍設備。   The first compressor, the first four-way valve, the first heat exchanger, the first pressure reducing device, and the second heat exchanger are connected in order through the refrigerant pipe, and the first heat exchange is performed by switching the first four-way valve. A heat source that acts as a heat dissipation heat source or an endothermic heat source, and at the same time a heat source refrigeration cycle that causes the second heat exchanger to act as an endothermic heat source or a heat radiation heat source, and is connected to the first heat exchanger via a water pipe, When the first heat exchanger acts as a heat radiation heat source, the hot water is stored, and when acting as an endothermic heat source, it is connected to a first cold / hot water heat storage device that stores cold water, and the first cold / hot water heat storage device, When cold water is stored in the first cold / hot water heat storage device, the first cold / hot water storage device is connected to a refrigerating device that enables a supercooling operation using the cold water and the second heat exchanger via a water pipe, 2 Hot water when the heat exchanger acts as a heat dissipation heat source A second cold / hot water heat storage device for storing cold water when stored and acting as an endothermic heat source, and a supercooling using the cold / hot water stored in the second cold / hot water heat storage device connected to the second cold / hot water heat storage device A refrigeration facility comprising: an air conditioning refrigeration cycle that enables operation or refrigerant heating operation. 前記空調用冷凍サイクルが、第2圧縮機、第2四方弁、第3熱交換器、前記第2冷温水蓄熱装置内の冷温水と熱交換する第4熱交換器、第2減圧装置、及び被調和室内の空気と熱交換する第5熱交換器を、冷媒配管を介して順に接続して構成されていることを特徴とする請求項2記載の冷凍設備。   The refrigeration cycle for air conditioning includes a second compressor, a second four-way valve, a third heat exchanger, a fourth heat exchanger for exchanging heat with cold / hot water in the second cold / hot water heat storage device, a second decompression device, and The refrigeration equipment according to claim 2, wherein the fifth heat exchanger for exchanging heat with the air in the conditioned room is connected in order through a refrigerant pipe. 前記空調用冷凍サイクルが、第4熱交換器をバイパスするバイパス回路を備えることを特徴とする請求項3記載の冷凍設備。   The refrigeration equipment according to claim 3, wherein the air-conditioning refrigeration cycle includes a bypass circuit that bypasses the fourth heat exchanger. 前記冷凍装置が、第3圧縮機、前記第1冷温水蓄熱装置内の冷温水と熱交換する凝縮器、第3減圧装置、及び蒸発器を、冷媒配管を介して順に接続して構成されていることを特徴とする請求項2乃至4のいずれか一項記載の冷凍設備。   The refrigeration apparatus is configured by connecting a third compressor, a condenser that exchanges heat with the cold / hot water in the first cold / hot water heat storage apparatus, a third decompression device, and an evaporator in order through a refrigerant pipe. The refrigeration equipment according to any one of claims 2 to 4, wherein the refrigeration equipment is provided. 前記熱源用冷凍サイクルが、第1熱交換器と第1減圧装置間に空気熱源式の第6熱交換器を備えることを特徴とする請求項2乃至5のいずれか一項記載の冷凍設備。   The refrigeration equipment according to any one of claims 2 to 5, wherein the refrigeration cycle for the heat source includes an air heat source type sixth heat exchanger between the first heat exchanger and the first decompression device. 前記熱源用冷凍サイクルを夜間電力で駆動する制御手段を備えることを特徴とする請求項2乃至6のいずれか一項記載の冷凍設備。   The refrigeration equipment according to any one of claims 2 to 6, further comprising control means for driving the refrigeration cycle for the heat source with nighttime electric power. 前記熱源用冷凍サイクルに高圧側が超臨界圧力となる冷媒が充填されていることを特徴とする請求項2乃至7のいずれか一項記載の冷凍設備。   The refrigeration equipment according to any one of claims 2 to 7, wherein the refrigeration cycle for the heat source is filled with a refrigerant having a supercritical pressure on the high pressure side.
JP2004201001A 2004-07-07 2004-07-07 Refrigeration facility Withdrawn JP2006023006A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004201001A JP2006023006A (en) 2004-07-07 2004-07-07 Refrigeration facility
CNB2005100628933A CN100419349C (en) 2004-07-07 2005-04-05 Refrigeration system
EP20050013938 EP1614980A2 (en) 2004-07-07 2005-06-28 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201001A JP2006023006A (en) 2004-07-07 2004-07-07 Refrigeration facility

Publications (1)

Publication Number Publication Date
JP2006023006A true JP2006023006A (en) 2006-01-26

Family

ID=35241062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201001A Withdrawn JP2006023006A (en) 2004-07-07 2004-07-07 Refrigeration facility

Country Status (3)

Country Link
EP (1) EP1614980A2 (en)
JP (1) JP2006023006A (en)
CN (1) CN100419349C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040387A1 (en) * 2009-09-29 2011-04-07 三菱電機株式会社 Heat storage water-heating and air-conditioning machine
WO2013046723A1 (en) * 2011-09-30 2013-04-04 ダイキン工業株式会社 Hot-water-supplying, air-conditioning system
WO2013046720A1 (en) * 2011-09-30 2013-04-04 ダイキン工業株式会社 Hot-water-supplying, air-conditioning system
WO2014117664A1 (en) * 2013-01-30 2014-08-07 深圳市庄合智能产业科技有限公司 Heat balance all-in-on machine
CN104315739A (en) * 2014-10-17 2015-01-28 合肥天鹅制冷科技有限公司 Liquid cooling machine with double condensation and double heat dissipation

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241203A (en) * 2007-03-28 2008-10-09 Toshiba Carrier Corp Heat pump air-conditioning and heating water heater
JP2010175106A (en) * 2009-01-28 2010-08-12 Sanyo Electric Co Ltd Refrigerating apparatus
IT1393128B1 (en) * 2009-03-06 2012-04-11 Ecold S N C Di Colferai Roberta & C THERMAL SYSTEM PARTICULARLY FOR POINTS OF SALE OF FOODSTUFFS LIKE SUPERMARKETS AND SIMILAR.
CN101504210B (en) * 2009-03-17 2011-07-20 贝莱特空调有限公司 Six-in-one air-cooling heat pump unit
JP5585003B2 (en) * 2009-05-27 2014-09-10 三洋電機株式会社 Refrigeration equipment
NL2003113C2 (en) * 2009-07-01 2011-01-04 Hoogvliet B V HEAT RECOVERY UNIT, UTILITY BUILDING WITH HEAT RECOVERY UNIT, METHOD FOR RECOVERING HEAT, USE OF A HEAT PUMP.
JP2013104605A (en) * 2011-11-14 2013-05-30 Panasonic Corp Cold/hot water heater
CN102679622A (en) * 2012-05-22 2012-09-19 青岛大学 Modularized variable heat capacity self-matched multi-temperature system
CN103075843A (en) * 2013-01-21 2013-05-01 深圳市庄合地能产业科技有限公司 Hot and cold inner balance set
CN103090592A (en) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 Cold and hot external balancer set
CN106500399A (en) * 2015-09-08 2017-03-15 吴伟佳 A kind of energy-storage type heat pump or air-conditioning
CN106765916B (en) * 2016-12-07 2022-09-30 重庆中源绿蓝能源科技有限公司 Temperature control system and temperature control method
CN107655126A (en) * 2017-11-01 2018-02-02 江苏高菱蓄能科技有限公司 A kind of full-effective water cold accumulation system
JP6729653B2 (en) * 2018-09-28 2020-07-22 ダイキン工業株式会社 Air conditioning system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179970A (en) * 1998-12-11 2000-06-30 Sanyo Electric Co Ltd Air conditioning system
JP2002081815A (en) * 2000-09-07 2002-03-22 Sanyo Electric Co Ltd Duct type cold storage system
JP2002089957A (en) * 2000-09-12 2002-03-27 Sanyo Electric Co Ltd Warm water and chilled water supplying system
JP2003139434A (en) * 2001-11-06 2003-05-14 Hitachi Air Conditioning System Co Ltd Regenerative air conditioning and hot water supply system
JP4062663B2 (en) * 2001-12-25 2008-03-19 清水建設株式会社 Production system for supercooled water and hot water

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040387A1 (en) * 2009-09-29 2011-04-07 三菱電機株式会社 Heat storage water-heating and air-conditioning machine
EP2469195A1 (en) * 2009-09-29 2012-06-27 Mitsubishi Electric Corporation Heat storage water-heating and air-conditioning machine
JP5253582B2 (en) * 2009-09-29 2013-07-31 三菱電機株式会社 Thermal storage hot water supply air conditioner
EP2469195A4 (en) * 2009-09-29 2016-09-07 Mitsubishi Electric Corp Heat storage water-heating and air-conditioning machine
US9765977B2 (en) 2009-09-29 2017-09-19 Mitsubishi Electric Corporation Heat-accumulating hot-water-supplying air conditioner
WO2013046723A1 (en) * 2011-09-30 2013-04-04 ダイキン工業株式会社 Hot-water-supplying, air-conditioning system
WO2013046720A1 (en) * 2011-09-30 2013-04-04 ダイキン工業株式会社 Hot-water-supplying, air-conditioning system
JP2013076509A (en) * 2011-09-30 2013-04-25 Daikin Industries Ltd Hot-water-supply and air-conditioning system
JP2013083421A (en) * 2011-09-30 2013-05-09 Daikin Industries Ltd Hot water supply air conditioning system
WO2014117664A1 (en) * 2013-01-30 2014-08-07 深圳市庄合智能产业科技有限公司 Heat balance all-in-on machine
CN104315739A (en) * 2014-10-17 2015-01-28 合肥天鹅制冷科技有限公司 Liquid cooling machine with double condensation and double heat dissipation

Also Published As

Publication number Publication date
CN1719159A (en) 2006-01-11
EP1614980A2 (en) 2006-01-11
CN100419349C (en) 2008-09-17

Similar Documents

Publication Publication Date Title
CN100419349C (en) Refrigeration system
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
WO2013046720A1 (en) Hot-water-supplying, air-conditioning system
JP2015218912A (en) Air conditioner and load adjustment device used for the same
JP2004257586A (en) Refrigerator using carbon dioxide as refrigerant
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2009228979A (en) Air conditioner
JP2011069529A (en) Air-conditioning hot water supply system and heat pump unit
KR101864636B1 (en) Waste heat recovery type hybrid heat pump system
JP2006017427A (en) Cooling system
JP2013083439A (en) Hot water supply air conditioning system
JP2013083439A5 (en)
JP4651452B2 (en) Refrigeration air conditioner
JP2007198730A (en) Air conditioning refrigeration device
JP4033788B2 (en) Heat pump equipment
JP2001263848A (en) Air conditioner
JP2006336949A (en) Heat storage type air conditioner
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP3814877B2 (en) Thermal storage air conditioner
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
KR100500954B1 (en) Ice thermal storage heat pump unit
JP6455752B2 (en) Refrigeration system
JP2013092342A (en) Refrigerating device
JP2002061897A (en) Heat storage type air conditioner
JP3197107B2 (en) Thermal storage type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090701