JPH1126719A - 半導体集積回路装置の製造方法 - Google Patents

半導体集積回路装置の製造方法

Info

Publication number
JPH1126719A
JPH1126719A JP9173700A JP17370097A JPH1126719A JP H1126719 A JPH1126719 A JP H1126719A JP 9173700 A JP9173700 A JP 9173700A JP 17370097 A JP17370097 A JP 17370097A JP H1126719 A JPH1126719 A JP H1126719A
Authority
JP
Japan
Prior art keywords
film
groove
insulating film
manufacturing
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9173700A
Other languages
English (en)
Inventor
Isamu Asano
勇 浅野
Keizo Kawakita
惠三 川北
Satoru Yamada
悟 山田
Akira Imai
彰 今井
Yoshitaka Nakamura
吉孝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9173700A priority Critical patent/JPH1126719A/ja
Publication of JPH1126719A publication Critical patent/JPH1126719A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

(57)【要約】 【課題】 厚い絶縁膜に形成された大面積の溝の側壁の
絶縁膜が剥離する不良を防止する。 【解決手段】 酸化シリコン膜53に形成した溝55お
よび長溝59を埋め込むのに十分な膜厚のSOG膜57
を堆積した後、SOG膜57をエッチバックして下部電
極用の多結晶シリコン膜56を露出させ、続いてこの多
結晶シリコン膜56をエッチバックして溝55および長
溝59のみに残す。このとき、大面積の溝80の上部を
フォトレジスト膜81で覆い、溝80の内部のSOG膜
57がエッチバックされないようにする。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、半導体集積回路装
置の製造技術に関し、特に、DRAM(DynamicRandom
Access Memory)を有する半導体集積回路装置に適用し
て有効な技術に関するものである。
【0002】
【従来の技術】DRAMのメモリセルは、半導体基板の
主面上にマトリクス状に配置された複数のワード線と複
数のビット線との交点に配置され、1個のメモリセル選
択用MISFET(Metal Insulator Semiconductor Fie
ld Effect Transistor) とこれに直列に接続された1個
の情報蓄積用容量素子(キャパシタ)とで構成される。
メモリセル選択用MISFETは、周囲を素子分離領域
で囲まれた活性領域に形成され、主としてゲート酸化
膜、ワード線と一体に構成されたゲート電極およびソー
ス、ドレインを構成する一対の半導体領域により構成さ
れる。ビット線は、メモリセル選択用MISFETの上
部に配置され、その延在方向に隣接する2個のメモリセ
ル選択用MISFETによって共有されるソース、ドレ
インの一方と電気的に接続される。情報蓄積用容量素子
は、同じくメモリセル選択用MISFETの上部に配置
され、ソース、ドレインの他方と電気的に接続される。
【0003】特開平7−7084号公報は、ビット線の
上部に情報蓄積用容量素子を配置するキャパシタ・オー
バー・ビットライン(Capacitor Over Bitline)構造のD
RAMを開示している。この公報に記載されたDRAM
は、メモリセルの微細化に伴う情報蓄積用容量素子の蓄
積電荷量(Cs)の減少を補うために、ビット線の上部に
配置した情報蓄積用容量素子の下部電極(蓄積電極)を
円筒状に加工することによってその表面積を増やし、そ
の上部に容量絶縁膜と上部電極(プレート電極)とを形
成している。
【0004】また、この公報に記載されたDRAMは、
メモリアレイと周辺回路領域との境界部にメモリアレイ
を囲む枠状の長溝(チャネル)を形成し、その外側の周
辺回路領域に厚い絶縁膜を堆積することによって、メモ
リアレイと周辺回路領域との段差を解消すると共に周辺
回路領域の平坦化を図っている。この長溝は、情報蓄積
用容量素子の下部電極を円筒状に加工する工程で同時に
形成され、その内壁は、下部電極と同じ材料(多結晶シ
リコン膜)で構成されている。
【0005】
【発明が解決しようとする課題】本発明者は、前記のよ
うな周囲を長溝で囲まれたメモリアレイに情報蓄積用容
量素子の下部電極を形成する方法について検討した。そ
の内容は、次の通りである。
【0006】前記のような円筒形の下部電極を形成する
には、まず、メモリセル選択用MISFETおよび周辺
回路のMISFETの上部にビット線を形成し、このビ
ット線の上部に情報蓄積用容量素子の高さに相当する膜
厚の絶縁膜を堆積する。次に、フォトレジスト膜をマス
クにしたドライエッチングでこの絶縁膜を開孔すること
により、メモリアレイに溝を形成し、同時にメモリアレ
イと周辺回路領域との境界部にメモリアレイを囲む長溝
を形成する。
【0007】次に、上記溝および長溝の内部を含む絶縁
膜の上部に下部電極用の導電膜を堆積し、さらにその上
部に溝および長溝を埋め込む厚い膜厚の第2絶縁膜を堆
積した後、この第2絶縁膜をエッチバックして絶縁膜の
上部の導電膜を露出させ、続いて絶縁膜の上部に露出し
た導電膜をエッチングすることにより、溝と長溝の内部
のみに導電膜を残す。
【0008】その後、周辺回路領域を覆うフォトレジス
ト膜をマスクにして溝と溝の隙間に残った絶縁膜および
溝の内部の第2絶縁膜をウェットエッチングすることに
より、円筒形の下部電極を形成する。
【0009】上記したプロセスでは、フォトレジスト膜
をマスクにしたドライエッチングでメモリアレイの厚い
絶縁膜に溝を形成し、同時にメモリアレイと周辺回路領
域との境界部の絶縁膜にメモリアレイを囲む長溝を形成
する。このときに使用するフォトレジスト膜に溝と長溝
のパターンを転写するフォトマスク(レチクル)には、
フォトマスク(レチクル)と半導体基板とを位置合わせ
するために使用するアライメントマークやTEGパター
ンのように、溝や長溝に比べて面積の大きいパターンが
形成されていることから、アライメントマークやTEG
パターンに対応する領域の上記厚い絶縁膜には、これら
の大面積パターンに対応する大面積でかつ深い溝が同時
に形成される。
【0010】そのため、次の工程でこれらの溝(および
長溝)の内部を含む絶縁膜の上部に下部電極用の導電膜
を堆積し、続いてその上部にこれらの溝(および長溝)
を埋め込むのに十分な膜厚の厚い第2絶縁膜を堆積した
場合、前述したアライメントマークやTEGパターンに
対応する大面積で深い溝の内部には第2絶縁膜が十分に
埋め込まれないので、この第2絶縁膜をエッチバックし
て導電膜を露出させる際、大面積の溝の中央部すなわち
第2絶縁膜の膜厚が薄い部分が深く削られる。
【0011】その結果、後の工程で溝と溝の隙間に残っ
た絶縁膜や溝の内部の第2絶縁膜をウェットエッチング
した際などに、大面積の溝の底部の導電膜が剥離して飛
散し、これが異物となってDRAMの製造歩留まりを低
下させるという問題が生じる。
【0012】本発明の目的は、大面積の溝の底部の導電
膜が剥離する不良を防止する技術を提供することにあ
る。
【0013】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
【0014】
【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
次のとおりである。
【0015】(1)本発明の半導体集積回路装置の製造
方法は、メモリセル選択用MISFETとこれに直列に
接続された情報蓄積用容量素子とでメモリセルを構成
し、前記情報蓄積用容量素子を前記メモリセル選択用M
ISFETの上部に配置したDRAMを有する半導体集
積回路装置の製造方法であって、(a)半導体基板の主
面のメモリアレイにメモリセル選択用MISFETを形
成し、周辺回路領域に周辺回路のMISFETを形成す
る工程、(b)前記メモリセル選択用MISFETおよ
び周辺回路のMISFETの上部に、後の工程で形成さ
れる情報蓄積用容量素子の高さに相当する膜厚を有する
第1絶縁膜を堆積する工程、(c)フォトレジスト膜を
マスクにしたエッチングでメモリアレイの前記第1絶縁
膜を開孔して溝を形成し、メモリアレイと周辺回路領域
との境界部の前記第1絶縁膜を開孔して前記メモリアレ
イを囲む長溝を形成すると共に、前記半導体基板の他の
領域の前記絶縁膜を開孔して前記溝および前記長溝より
も面積が大きい第2の溝を形成する工程、(d)前記溝
および前記長溝の内部を含む前記第1絶縁膜の上部に、
情報蓄積用容量素子の下部電極を構成する第1導電膜を
堆積した後、前記第1導電膜の上部に、前記溝および前
記長溝を埋め込む第2絶縁膜を堆積する工程、(e)前
記第2絶縁膜と前記第1絶縁膜の上部の前記第1導電膜
とをエッチバックすることにより、前記溝および前記長
溝の内部のみに前記第1導電膜を残す工程、(f)周辺
回路領域を覆うフォトレジスト膜をマスクにして前記溝
とこれに隣接する溝との隙間の前記第1絶縁膜および前
記溝の内部の前記第2絶縁膜をエッチングすることによ
り、上方に開孔部を有する筒形の下部電極を形成する工
程、(g)前記下部電極の上部に第3絶縁膜および第2
導電膜を堆積した後、前記第2導電膜および前記第2絶
縁膜をパターニングすることにより、前記第1導電膜か
らなる下部電極と、前記第3絶縁膜からなる容量絶縁膜
と、前記第2導電膜からなる上部電極とで構成される情
報蓄積用容量素子を形成する工程、を含み、前記(e)
工程で前記第2絶縁膜と前記第1絶縁膜の上部の前記第
1導電膜とをエッチバックする際に前記第2の溝の上部
をフォトレジスト膜で覆う。
【0016】(2)本発明の半導体集積回路装置の製造
方法は、前記前記第2の溝がアライメントマークまたは
TEGパターンである。
【0017】(3)本発明の半導体集積回路装置の製造
方法は、前記第1絶縁膜が酸化シリコン膜であり、前記
第2絶縁膜がSOG膜である。
【0018】(4)本発明の半導体集積回路装置の製造
方法は、前記第1導電膜が多結晶シリコン膜である。
【0019】(5)本発明の半導体集積回路装置の製造
方法は、前記(f)工程のエッチングがウェットエッチ
ングである。
【0020】
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。なお、実施の形態を説明す
るための全図において、同一の機能を有する部材には同
一の符号を付し、その繰り返しの説明は省略する。
【0021】図1は、本実施の形態のDRAMを形成し
た半導体チップの全体平面図である。図示のように、単
結晶シリコンからなる半導体チップ1Aの主面には、X
方向(半導体チップ1Aの長辺方向)およびY方向(半
導体チップ1Aの短辺方向)に沿って多数のメモリアレ
イMARYがマトリクス状に配置されている。X方向に
沿って互いに隣接するメモリアレイMARYの間にはセ
ンスアンプSAが配置されている。半導体チップ1Aの
主面の中央部には、ワードドライバWD、データ線選択
回路などの制御回路や、入出力回路、ボンディングパッ
ドなどが配置されている。
【0022】図2は、上記DRAMの等価回路図であ
る。図示のように、このDRAMのメモリアレイ(MA
RY)は、マトリクス状に配置された複数のワード線W
L(WLn-1 、WLn 、WLn+1 …)と複数のビット線
BLおよびそれらの交点に配置された複数のメモリセル
(MC)により構成されている。1ビットの情報を記憶
する1個のメモリセルは、1個の情報蓄積用容量素子C
とこれに直列に接続された1個のメモリセル選択用MI
SFETQsとで構成されている。メモリセル選択用M
ISFETQsのソース、ドレインの一方は、情報蓄積
用容量素子Cと電気的に接続され、他方はビット線BL
と電気的に接続されている。ワード線WLの一端は、ワ
ードドライバWDに接続され、ビット線BLの一端は、
センスアンプSAに接続されている。
【0023】次に、本実施の形態のDRAMの製造方法
を図3〜図45を用いて工程順に説明する。
【0024】まず、図3に示すように、p型で比抵抗が
10Ωcm程度の半導体基板1を850℃程度でウェット
酸化してその表面に膜厚10nm程度の薄い酸化シリコン
膜2を形成した後、この酸化シリコン膜2の上部にCV
D(Chemical Vapor Deposition )法で膜厚140nm程
度の窒化シリコン膜3を堆積する。酸化シリコン膜2
は、後の工程で素子分離溝の内部に埋め込まれる酸化シ
リコン膜をシンタリング(焼き締め)するときなどに基
板に加わるストレスを緩和するために形成される。窒化
シリコン膜3は酸化されにくい性質を持つので、その下
部(活性領域)の基板表面の酸化を防止するマスクとし
て利用される。
【0025】次に、図4に示すように、フォトレジスト
膜4をマスクにして窒化シリコン膜3、酸化シリコン膜
2および半導体基板1をドライエッチングすることによ
り、素子分離領域の半導体基板1に深さ300〜400
nm程度の溝5aを形成する。溝5aを形成するには、フ
ォトレジスト膜4をマスクにして窒化シリコン膜3をド
ライエッチングし、次いでフォトレジスト膜4を除去し
た後、窒化シリコン膜3をマスクにして酸化シリコン膜
2および半導体基板1をドライエッチングしてもよい。
【0026】次に、フォトレジスト膜4を除去した後、
図5に示すように、前記のエッチングによって溝5aの
内壁に生じたダメージ層を除去するために、半導体基板
1を850〜900℃程度でウェット酸化して溝5aの
内壁に膜厚10nm程度の薄い酸化シリコン膜6を形成す
る。
【0027】次に、図6に示すように、半導体基板1上
に膜厚300〜400nm程度の酸化シリコン膜7を堆積
した後、半導体基板1を1000℃程度でドライ酸化す
ることにより、溝5aに埋め込まれた酸化シリコン膜7
の膜質を改善するためのシンタリング(焼き締め)を行
う。酸化シリコン膜7は、例えばオゾン(O3 )とテト
ラエトキシシラン(TEOS)とをソースガスに用いた
熱CVD法で堆積する。
【0028】次に、図7に示すように、酸化シリコン膜
7の上部にCVD法で膜厚100nm程度の窒化シリコン
膜8を堆積した後、図8に示すように、フォトレジスト
膜9をマスクにして窒化シリコン膜8をドライエッチン
グすることにより、メモリアレイと周辺回路との境界部
のような相対的に広い面積の溝5aの上部のみに窒化シ
リコン膜8を残す。溝5aの上部に残った窒化シリコン
膜8は、次の工程で酸化シリコン膜7をCMP法で研磨
して平坦化する際に、相対的に広い面積の溝5aの内部
の酸化シリコン膜7が相対的に狭い面積の溝5aの内部
の酸化シリコン膜7に比べて深く研磨される現象(ディ
ッシング;dishing )を防止するために形成される。
【0029】次に、フォトレジスト膜9を除去した後、
図9に示すように、窒化シリコン膜3、8をストッパに
用いたCMP法で酸化シリコン膜7を研磨して溝5aの
内部に残すことにより、素子分離溝5を形成する。
【0030】次に、熱リン酸を用いたウェットエッチン
グで窒化シリコン膜3、8を除去した後、図10に示す
ように、メモリセルを形成する領域(メモリアレイ)の
半導体基板1にn型不純物、例えばP(リン)をイオン
打ち込みしてn型半導体領域10を形成し、メモリアレ
イと周辺回路の一部(nチャネル型MISFETを形成
する領域)にp型不純物、例えばB(ホウ素)をイオン
打ち込みしてp型ウエル11を形成し、周辺回路の他の
一部(pチャネル型MISFETを形成する領域)にn
型不純物、例えばP(リン)をイオン打ち込みしてn型
ウエル12を形成する。また、このイオン打ち込みに続
いて、MISFETのしきい値電圧を調整するための不
純物、例えばBF2(フッ化ホウ素) をp型ウエル11お
よびn型ウエル12にイオン打ち込みする。n型半導体
領域10は、入出力回路などから半導体基板1を通じて
メモリアレイのp型ウエル11にノイズが侵入するのを
防止するために形成される。
【0031】次に、p型ウエル11およびn型ウエル1
2の各表面の酸化シリコン膜2をHF(フッ酸)系の洗
浄液を使って除去した後、半導体基板1を850℃程度
でウェット酸化してp型ウエル11およびn型ウエル1
2の各表面に膜厚7nm程度の清浄なゲート酸化膜13を
形成する。
【0032】特に限定はされないが、上記ゲート酸化膜
13を形成した後、半導体基板1をNO(酸化窒素)雰
囲気中またはN2 O(亜酸化窒素)雰囲気中で熱処理す
ることによって、ゲート酸化膜13と半導体基板1との
界面に窒素を偏析させてもよい(酸窒化処理)。ゲート
酸化膜13が7nm程度まで薄くなると、半導体基板1と
の熱膨張係数差に起因して両者の界面に生じる歪みが顕
在化し、ホットキャリアの発生を誘発する。半導体基板
1との界面に偏析した窒素はこの歪みを緩和するので、
上記の酸窒化処理は、極薄ゲート酸化膜13の信頼性を
向上できる。
【0033】次に、図11に示すように、ゲート酸化膜
13の上部にゲート電極14A、14B、14Cを形成
する。ゲート電極14Aは、メモリセル選択用MISF
ETの一部を構成し、活性領域以外の領域ではワード線
WLとして使用される。このゲート電極14A(ワード
線WL)の幅、すなわちゲート長は、メモリセル選択用
MISFETの短チャネル効果を抑制して、しきい値電
圧を一定値以上に確保できる許容範囲内の最小寸法(例
えば0.24μm程度)で構成される。また、隣接するゲ
ート電極14A(ワード線WL)同士の間隔は、フォト
リソグラフィの解像限界で決まる最小寸法(例えば0.2
2μm)で構成される。ゲート電極14Bおよびゲート
電極14Cは、周辺回路のnチャネル型MISFETお
よびpチャネル型MISFETの各一部を構成する。
【0034】ゲート電極14A(ワード線WL)および
ゲート電極14B、14Cは、例えばP(リン)などの
n型不純物をドープした膜厚70nm程度の多結晶シリコ
ン膜を半導体基板1上にCVD法で堆積し、次いでその
上部に膜厚50nm程度のWN(タングステンナイトライ
ド)膜と膜厚100nm程度のW膜とをスパッタリング法
で堆積し、さらにその上部に膜厚150nm程度の窒化シ
リコン膜15をCVD法で堆積した後、フォトレジスト
膜16をマスクにしてこれらの膜をパターニングするこ
とにより形成する。WN膜は、高温熱処理時にW膜と多
結晶シリコン膜とが反応して両者の界面に高抵抗のシリ
サイド層が形成されるのを防止するバリア層として機能
する。バリア層は、WN膜の他、TiN(チタンナイト
ライド)膜などを使用することもできる。
【0035】ゲート電極14A(ワード線WL)の一部
を低抵抗の金属(W)で構成した場合には、そのシート
抵抗を2〜2.5Ω/□程度にまで低減できるので、ワー
ド線遅延を低減することができる。また、ゲート電極1
4(ワード線WL)をAl配線などで裏打ちしなくとも
ワード線遅延を低減できるので、メモリセルの上部に形
成される配線層の数を1層減らすことができる。
【0036】次に、フォトレジスト膜16を除去した
後、フッ酸などのエッチング液を使って、半導体基板1
の表面に残ったドライエッチング残渣やフォトレジスト
残渣などを除去する。このウェットエッチングを行う
と、ゲート電極14A(ワード線WL)およびゲート電
極14B、14Cの下部以外の領域のゲート酸化膜13
が削られると同時に、ゲート側壁下部のゲート酸化膜1
3も等方的にエッチングされてアンダーカットが生じる
ため、そのままではゲート酸化膜13の耐圧が低下す
る。そこで、半導体基板1を900℃程度でウェット酸
化することによって、削れたゲート酸化膜13の膜質を
改善する。
【0037】次に、図12に示すように、n型ウエル1
2にp型不純物、例えばB(ホウ素)をイオン打ち込み
してゲート電極14Cの両側のn型ウエル12にp-
半導体領域17を形成する。また、p型ウエル11にn
型不純物、例えばP(リン)をイオン打ち込みしてゲー
ト電極14Bの両側のp型ウエル11にn- 型半導体領
域18を形成し、ゲート電極14Aの両側のp型ウエル
11にn型半導体領域19を形成する。これにより、メ
モリアレイにメモリセル選択用MISFETQsが形成
される。
【0038】次に、図13に示すように、半導体基板1
上にCVD法で膜厚50〜100nm程度の窒化シリコ
ン膜20を堆積した後、図14に示すように、メモリア
レイの窒化シリコン膜20をフォトレジスト膜21で覆
い、周辺回路の窒化シリコン膜20を異方性エッチング
することにより、ゲート電極14B、14Cの側壁にサ
イドウォールスペーサ20aを形成する。このエッチン
グは、ゲート酸化膜13や素子分離溝5に埋め込まれた
酸化シリコン膜7の削れ量を最少とするために、酸化シ
リコン膜に対する窒化シリコン膜20のエッチングレー
トが大きくなるようなエッチングガスを使用して行う。
また、ゲート電極14B、14C上の窒化シリコン膜1
5の削れ量を最少とするために、オーバーエッチング量
を必要最小限にとどめるようにする。
【0039】次に、フォトレジスト膜21を除去した
後、図15に示すように、周辺回路領域のn型ウエル1
2にp型不純物、例えばB(ホウ素)をイオン打ち込み
してpチャネル型MISFETのp型半導体領域2
2(ソース、ドレイン)を形成し、周辺回路領域のp型
ウエル11にn型不純物、例えばAs(ヒ素)をイオン
打ち込みしてnチャネル型MISFETのn+ 型半導体
領域23(ソース、ドレイン)を形成する。これによ
り、周辺回路領域にLDD(Lightly Doped Drain) 構造
のpチャネル型MISFETQpおよびnチャネル型M
ISFETQnが形成される。
【0040】次に、図16に示すように、半導体基板1
上に膜厚300nm程度のS0G(スピンオングラス)膜
24をスピン塗布した後、半導体基板1を800℃、1
分程度熱処理してSOG膜24をシンタリング(焼き締
め)する。
【0041】次に、図17に示すように、SOG膜24
の上部に膜厚600nm程度の酸化シリコン膜25を堆積
した後、この酸化シリコン膜25をCMP法で研磨して
その表面を平坦化する。酸化シリコン膜25は、例えば
オゾン(O3 )とテトラエトキシシラン(TEOS)と
をソースガスに用いたプラズマCVD法で堆積する。
【0042】このように、本実施の形態では、ゲート電
極14A(ワード線WL)およびゲート電極14B、1
4Cの上部に成膜直後でも平坦性が良好なSOG膜24
を塗布し、さらにその上部に堆積した酸化シリコン膜2
5をCMP法で平坦化する。これにより、ゲート電極1
4A(ワード線WL)同士の微細な隙間のギャップフィ
ル性が向上すると共に、ゲート電極14A(ワード線W
L)およびゲート電極14B、14Cの上部の絶縁膜の
平坦化を実現することができる。
【0043】次に、図18に示すように、酸化シリコン
膜25の上部に膜厚100nm程度の酸化シリコン膜26
を堆積する。この酸化シリコン膜26は、CMP法で研
磨されたときに生じた前記酸化シリコン膜25の表面の
微細な傷を補修するために堆積する。酸化シリコン膜2
6は、例えばオゾン(O3 )とテトラエトキシシラン
(TEOS)とをソースガスに用いたプラズマCVD法
で堆積する。酸化シリコン膜25の上部には、上記酸化
シリコン膜26に代えてPSG(Phospho Silicate Glas
s)膜などを堆積してもよい。
【0044】次に、図19に示すように、フォトレジス
ト膜27をマスクにしたドライエッチングでメモリセル
選択用MISFETQsのn型半導体領域19(ソー
ス、ドレイン)の上部の酸化シリコン膜26、25およ
びSOG膜24を除去する。このエッチングは、窒化シ
リコン膜20に対する酸化シリコン膜26、25および
SOG膜24のエッチングレートが大きくなるような条
件で行い、n型半導体領域19や素子分離溝5の上部を
覆っている窒化シリコン膜20が完全には除去されない
ようにする。
【0045】続いて、図20に示すように、上記フォト
レジスト膜27をマスクにしたドライエッチングでメモ
リセル選択用MISFETQsのn型半導体領域19
(ソース、ドレイン)の上部の窒化シリコン膜15とゲ
ート酸化膜13とを除去することにより、n型半導体領
域19(ソース、ドレイン)の一方の上部にコンタクト
ホール28を形成し、他方の上部にコンタクトホール2
9を形成する。
【0046】このエッチングは、酸化シリコン膜(ゲー
ト酸化膜13および素子分離溝5内の酸化シリコン膜
7)に対する窒化シリコン膜20のエッチングレートが
大きくなるような条件で行い、n型半導体領域19や素
子分離溝5が深く削れないようにする。また、このエッ
チングは、窒化シリコン膜20が異方的にエッチングさ
れるような条件で行い、ゲート電極14A(ワード線W
L)の側壁に窒化シリコン膜20が残るようにする。こ
れにより、フォトリソグラフィの解像限界以下の微細な
径を有するコンタクトホール28、29がゲート電極1
4A(ワード線WL)に対して自己整合で形成される。
コンタクトホール28、29をゲート電極14A(ワー
ド線WL)に対して自己整合で形成するには、あらかじ
め窒化シリコン膜20を異方性エッチングしてゲート電
極14A(ワード線WL)の側壁にサイドウォールスペ
ーサを形成しておいてもよい。
【0047】次に、フォトレジスト膜27を除去した
後、フッ酸+フッ化アンモニウム混液などのエッチング
液を使って、コンタクトホール28、29の底部に露出
した基板表面のドライエッチング残渣やフォトレジスト
残渣などを除去する。その際、コンタクトホール28、
29の側壁に露出したSOG膜24もエッチング液に曝
されるが、SOG膜24は、前述した800℃程度のシ
ンタリングによってフッ酸系のエッチング液に対するエ
ッチングレートが低減されているので、このウェットエ
ッチング処理によってコンタクトホール28、29の側
壁が大きくアンダーカットされることはない。これによ
り、次の工程でコンタクトホール28、29の内部に埋
め込まれるプラグ同士のショートを確実に防止すること
ができる。
【0048】次に、図21に示すように、コンタクトホ
ール28、29の内部にプラグ30を形成する。プラグ
30は、酸化シリコン膜26の上部にn型不純物(例え
ばP(リン))をドープした多結晶シリコン膜をCVD
法で堆積した後、この多結晶シリコン膜をCMP法で研
磨してコンタクトホール28、29の内部に残すことに
より形成する。
【0049】次に、図22に示すように、酸化シリコン
膜26の上部に膜厚200nm程度の酸化シリコン膜31
を堆積した後、半導体基板1を800℃程度で熱処理す
る。酸化シリコン膜31は、例えばオゾン(O3 )とテ
トラエトキシシラン(TEOS)とをソースガスに用い
たプラズマCVD法で堆積する。この熱処理によって、
プラグ30を構成する多結晶シリコン膜中のn型不純物
がコンタクトホール28、29の底部からメモリセル選
択用MISFETQsのn型半導体領域19(ソース、
ドレイン)に拡散し、n型半導体領域19が低抵抗化さ
れる。
【0050】次に、図23に示すように、フォトレジス
ト膜32をマスクにしたドライエッチングで前記コンタ
クトホール28の上部の酸化シリコン膜31を除去して
プラグ30の表面を露出させる。次に、フォトレジスト
膜32を除去した後、図24に示すように、フォトレジ
スト膜33をマスクにしたドライエッチングで周辺回路
領域の酸化シリコン膜31、26、25、SOG膜24
およびゲート酸化膜13を除去することにより、nチャ
ネル型MISFETQnのn+ 型半導体領域23(ソー
ス、ドレイン)の上部にコンタクトホール34、35を
形成し、pチャネル型MISFETQpのp+ 型半導体
領域22(ソース、ドレイン)の上部にコンタクトホー
ル36、37を形成する。
【0051】次に、フォトレジスト膜33を除去した
後、図25に示すように、酸化シリコン膜31の上部に
ビット線BLおよび周辺回路の第1層配線38、39を
形成する。ビット線BLおよび第1層配線38、39を
形成するには、まず酸化シリコン膜31の上部に膜厚5
0nm程度のTi膜をスパッタリング法で堆積し、半導体
基板1を800℃程度で熱処理する。次いで、Ti膜の
上部に膜厚50nm程度のTiN膜をスパッタリング法で
堆積し、さらにその上部に膜厚150nm程度のW膜と膜
厚200nm程度の窒化シリコン膜40とをCVD法で堆
積した後、フォトレジスト膜41をマスクにしてこれら
の膜をパターニングする。
【0052】酸化シリコン膜31の上部にTi膜を堆積
した後、半導体基板1を800℃程度で熱処理すること
により、Ti膜とSi基板とが反応し、nチャネル型M
ISFETQnのn+ 型半導体領域23(ソース、ドレ
イン)の表面とpチャネル型MISFETQpのp+
半導体領域22(ソース、ドレイン)の表面とに低抵抗
のTiSi2 (チタンシリサイド)層42が形成され
る。図示は省略するが、このとき、メモリセル選択用M
ISFETQsのn型半導体領域19の上部のコンタク
トホール28に埋め込まれたプラグ30の表面にもTi
Si2 層42が形成される。
【0053】これにより、n+ 型半導体領域23および
+ 型半導体領域22に接続される配線(ビット線B
L、第1層配線38、39)のコンタクト抵抗を低減す
ることができる。また、ビット線BLをW膜/TiN膜
/Ti膜で構成することにより、そのシート抵抗を2Ω
/□以下にまで低減できるので、情報の読み出し速度お
よび書き込み速度を向上させることができると共に、ビ
ット線BLと周辺回路の第1層配線38、39とを一つ
の工程で同時に形成することができるので、DRAMの
製造工程を短縮することができる。さらに、周辺回路の
第1層配線(38、39)をビット線BLと同層の配線
で構成した場合には、第1層配線をメモリセルの上層の
Al配線で構成する場合に比べて周辺回路のMISFE
T(nチャネル型MISFETQn、pチャネル型MI
SFETQp)と第1層配線とを接続するコンタクトホ
ール(34〜37)のアスペクト比が低減されるため、
第1層配線の接続信頼性が向上する。
【0054】ビット線BLは、隣接するビット線BLと
の間に形成される寄生容量をできるだけ低減して情報の
読み出し速度および書き込み速度を向上させるために、
その間隔がその幅よりも長くなるように形成する。ビッ
ト線BLの間隔は例えば0.24μm程度とし、その幅は
例えば0.22μm程度とする。
【0055】次に、フォトレジスト膜41を除去した
後、図26に示すように、ビット線BLの側壁と第1層
配線38、39の側壁とにサイドウォールスペーサ43
を形成する。サイドウォールスペーサ43は、ビット線
BLおよび第1層配線38、39の上部にCVD法で窒
化シリコン膜を堆積した後、この窒化シリコン膜を異方
性エッチングして形成する。
【0056】次に、図27に示すように、ビット線BL
および第1層配線38、39の上部に膜厚300nm程度
のSOG膜44をスピン塗布する。次いで、半導体基板
1を800℃、1分程度熱処理してSOG膜44をシン
タリング(焼き締め)する。
【0057】SOG膜44は、BPSG膜に比べてリフ
ロー性が高く、微細な配線間のギャップフィル性に優れ
ているので、フォトリソグラフィの解像限界程度まで微
細化されたビット線BL同士の隙間を良好に埋め込むこ
とができる。また、SOG膜44は、BPSG膜で必要
とされる高温、長時間の熱処理を行わなくとも高いリフ
ロー性が得られるため、ビット線BLの下層に形成され
たメモリセル選択用MISFETQsのソース、ドレイ
ンや周辺回路のMISFET(nチャネル型MISFE
TQn、pチャネル型MISFETQp)のソース、ド
レインに含まれる不純物の熱拡散を抑制して浅接合化を
図ることができる。さらに、ゲート電極14A(ワード
線WL)およびゲート電極14B、14Cを構成するメ
タル(W膜)の劣化を抑制できるので、DRAMのメモ
リセルおよび周辺回路を構成するMISFETの高性能
化を実現することができる。また、ビット線BLおよび
第1層配線38、39を構成するTi膜、TiN膜、W
膜の劣化を抑制して配線抵抗の低減を図ることができ
る。
【0058】次に、図28に示すように、SOG膜44
の上部に膜厚600nm程度の酸化シリコン膜45を堆積
した後、この酸化シリコン膜45をCMP法で研磨して
その表面を平坦化する。酸化シリコン膜45は、例えば
オゾン(O3 )とテトラエトキシシラン(TEOS)と
をソースガスに用いたプラズマCVD法で堆積する。
【0059】このように、本実施の形態では、ビット線
BLおよび第1層配線38、39の上部に成膜直後でも
平坦性が良好なSOG膜44を塗布し、さらにその上部
に堆積した酸化シリコン膜45をCMP法で平坦化す
る。これにより、ビット線BL同士の微細な隙間のギャ
ップフィル性が向上すると共に、ビット線BLおよび第
1層配線38、39の上部の絶縁膜の平坦化を実現する
ことができる。また、高温・長時間の熱処理を行わない
ため、メモリセルおよび周辺回路を構成するMISFE
Tの特性劣化を防止して高性能化を実現することができ
ると共に、ビット線BLおよび第1層配線38、39の
低抵抗化を図ることができる。
【0060】次に、図29に示すように、酸化シリコン
膜45の上部に膜厚100nm程度の酸化シリコン膜46
を堆積する。この酸化シリコン膜46は、CMP法で研
磨されたときに生じた前記酸化シリコン膜45の表面の
微細な傷を補修するために堆積する。酸化シリコン膜4
6は、例えばオゾン(O3 )とテトラエトキシシラン
(TEOS)とをソースガスに用いたプラズマCVD法
で堆積する。
【0061】次に、図30に示すように、フォトレジス
ト膜47をマスクにしたドライエッチングでコンタクト
ホール29の上部の酸化シリコン膜46、45、SOG
膜44および酸化シリコン膜31を除去してプラグ30
の表面に達するスルーホール48を形成する。このエッ
チングは、酸化シリコン膜46、45、31およびSO
G膜44に対する窒化シリコン膜のエッチングレートが
小さくなるような条件で行い、スルーホール48とビッ
ト線BLの合わせずれが生じた場合でも、ビット線BL
の上部の窒化シリコン膜40やサイドウォールスペーサ
43が深く削れないようにする。これにより、スルーホ
ール48がビット線BLに対して自己整合で形成され
る。
【0062】次に、フォトレジスト膜47を除去した
後、フッ酸+フッ化アンモニウム混液などのエッチング
液を使って、スルーホール48の底部に露出したプラグ
30の表面のドライエッチング残渣やフォトレジスト残
渣などを除去する。その際、スルーホール48の側壁に
露出したSOG膜44もエッチング液に曝されるが、S
OG膜44は、前記800℃程度のシンタリングによっ
てフッ酸系のエッチング液に対するエッチングレートが
低減されているので、このウェットエッチング処理によ
ってスルーホール48の側壁が大きくアンダーカットさ
れることはない。これにより、次の工程でスルーホール
48の内部に埋め込まれるプラグとビット線BLとのシ
ョートを確実に防止することができる。また、プラグと
ビット線BLとを十分に離間させることができるので、
ビット線BLの寄生容量の増加を抑制することができ
る。
【0063】次に、図31に示すように、スルーホール
48の内部にプラグ49を形成する。プラグ49は、酸
化シリコン膜46の上部にn型不純物(例えばP(リ
ン))をドープした多結晶シリコン膜をCVD法で堆積
した後、この多結晶シリコン膜をエッチバックしてスル
ーホール48の内部に残すことにより形成する。
【0064】次に、図32に示すように、酸化シリコン
膜46の上部に膜厚100nm程度の窒化シリコン膜51
をCVD法で堆積した後、フォトレジスト膜52をマス
クにしたドライエッチングで周辺回路領域の窒化シリコ
ン膜51を除去する。メモリアレイに残った窒化シリコ
ン膜51は、後述する情報蓄積用容量素子の下部電極を
形成する工程で下部電極の間の酸化シリコン膜をエッチ
ングする際のエッチングストッパとして使用される。
【0065】次に、フォトレジスト膜52を除去した
後、図33に示すように、窒化シリコン膜51の上部
に、例えばオゾン(O3 )とテトラエトキシシラン(T
EOS)とをソースガスに用いたプラズマCVD法で膜
厚1.3μm程度の酸化シリコン膜53を堆積し、フォト
レジスト膜54をマスクにしたドライエッチングで酸化
シリコン膜53および窒化シリコン膜51を除去するこ
とにより、プラグ49を埋め込んだスルーホール48の
上部に深い溝55を形成すると共に、メモリアレイの周
囲にメモリアレイを取り囲む枠状の深い長溝59を形成
する。
【0066】図34は、上記フォトレジスト膜54に溝
55のパターンと長溝59のパターンとを転写するため
に使用するフォトマスク(レチクル)70の要部平面図
である。
【0067】このフォトマスク70の中央部(メモリア
レイに対応する領域)には、溝55に対応する遮光パタ
ーン55Aが1個のメモリセルに1個の割合で格子状に
形成されている。また、これらの遮光パターン55A群
の外側(メモリアレイと周辺回路領域との境界部に対応
する領域)には、長溝59に対応する枠状の遮光パター
ン59Aが遮光パターン55A群を囲むように配置され
ている。
【0068】上記フォトマスク70の他の領域には、半
導体基板1との位置合わせに使用するアライメントマー
クAMが形成されている。また、フォトマスク70の図
示しない領域には、TEGパターンが形成されている。
これらのアライメントマークAMやTEGパターンは、
溝55に対応する遮光パターン55Aや長溝59に対応
する遮光パターン59Aに比べて面積の大きい遮光パタ
ーンで構成されている。そのため、上記フォトレジスト
膜54をマスクにして酸化シリコン膜53をドライエッ
チングすると、図35に示すように、上記酸化シリコン
膜53にはこれらの大面積パターンに対応する大面積で
深い溝80が同時に形成される。
【0069】次に、フォトレジスト膜54を除去した
後、図36および図37に示すように、酸化シリコン膜
53の上部にn型不純物(例えばP(リン))をドープ
した膜厚60nm程度の多結晶シリコン膜56をCVD法
で堆積する。この多結晶シリコン膜56は、情報蓄積用
容量素子の下部電極材料として使用される。
【0070】次に、図38に示すように、多結晶シリコ
ン膜56の上部に溝55および長溝59を埋め込むのに
十分な膜厚(例えば300〜400nm程度)のSOG膜
57を堆積した後、400℃程度の熱処理でSOG膜5
7をベークする。このとき、図39に示すように、前述
したアライメントマークAMやTEGパターンに対応す
る溝80は、その面積が溝55や長溝59に比べて十分
に大きいため、その内部にSOG膜57が完全には埋め
込まれない。
【0071】次に、図40に示すように、SOG膜57
をエッチバックして酸化シリコン膜53の上部の多結晶
シリコン膜56を露出させ、続いてこの多結晶シリコン
膜56をエッチバックすることにより、溝55および長
溝59の内側(内壁および底部)に多結晶シリコン膜5
6を残す。このとき、本実施の形態では、図41に示す
ように、大面積の溝80の上部をフォトレジスト膜81
を形成してSOG膜57と多結晶シリコン膜55とをエ
ッチバックする。このようにすると、同図に示すよう
に、フォトレジスト膜81で覆われた溝80の内部には
SOG膜57がほとんど除去されずに残る。これに対
し、溝80の上部にフォトレジスト膜81を形成しない
で上記のエッチバックを行うと、図42に示すように、
SOG膜57の膜厚が薄い溝80の中央部が深く削られ
るために、溝80の底部の多結晶シリコン膜56までも
が削られてしまい、その下部の酸化シリコン膜46の表
面が露出する。そのため、後のウェットエッチング工程
などで溝80の底部の多結晶シリコン膜56が剥離、飛
散して異物となる。
【0072】次に、溝80の上部のフォトレジスト膜8
1を除去した後、図43に示すように、周辺回路領域の
酸化シリコン膜53をフォトレジスト膜58で覆い、フ
ッ酸系のエッチング液を用いて溝55の内部のSOG膜
57と溝55の隙間の酸化シリコン膜53とをウェット
エッチングすることにより、情報蓄積用容量素子の下部
電極60を形成する。このとき、溝55の隙間の底部に
は窒化シリコン膜51が形成されているので、酸化シリ
コン膜53が全部除去されても、その下部の酸化シリコ
ン膜46がエッチング液によって削られることはない。
【0073】周辺回路領域の酸化シリコン膜53を覆う
上記フォトレジスト膜58の一端部は、メモリアレイと
周辺回路領域との境界部、すなわち長溝59の上部に配
置される。従って、上記のウェットエッチングを行う
と、この長溝59の内部のSOG膜57も除去される
が、長溝59の内壁の下部電極材料(多結晶シリコン膜
56)がエッチングストッパとなるので、SOG膜57
の側壁が削られることはない。また、周辺回路領域の酸
化シリコン膜53の表面はフォトレジスト膜58によっ
て覆われているので、その表面が削られることもない。
これにより、メモリアレイと周辺回路との段差が解消さ
れ、併せて周辺回路領域の平坦化が実現される。
【0074】次に、周辺回路領域を覆うフォトレジスト
膜58を除去し、次いで下部電極60を構成する多結晶
シリコン膜(56)の酸化を防止するために、半導体基
板1をアンモニア雰囲気中、800℃程度で熱処理して
多結晶シリコン膜(56)の表面を窒化した後、図44
に示すように、下部電極60の上部に膜厚20nm程度の
Ta2 5(酸化タンタル) 膜61をCVD法で堆積し、
次いで半導体基板1を800℃程度で熱処理してTa2
5 膜61の欠陥を修復する。このTa2 5膜61
は、情報蓄積用容量素子の容量絶縁膜材料として使用さ
れる。
【0075】次に、図45に示すように、Ta2 5
61の上部にCVD法とスパッタリング法とで膜厚15
0nm程度のTiN膜62を堆積した後、フォトレジスト
膜63をマスクにしたドライエッチングでTiN膜62
およびTa2 5 膜61をパターニングすることによ
り、TiN膜62からなる上部電極と、Ta2 5 膜6
1からなる容量絶縁膜と、多結晶シリコン膜56からな
る下部電極60とで構成される情報蓄積用容量素子Cを
形成する。これにより、メモリセル選択用MISFET
Qsとこれに直列に接続された情報蓄積用容量素子Cと
で構成されるDRAMのメモリセルが完成する。
【0076】その後、図示は省略するが、上記情報蓄積
用容量素子Cの上部に層間絶縁膜を挟んで2層程度のA
l(アルミニウム)配線を形成することにより、本実施
の形態のDRAMが略完成する。
【0077】以上、本発明者によってなされた発明を発
明の実施の形態に基づき具体的に説明したが、本発明は
前記実施の形態に限定されるものではなく、その要旨を
逸脱しない範囲で種々変更可能であることは言うまでも
ない。
【0078】例えば、下部電極材料は多結晶シリコン膜
に限定されるものではなく、金属膜などで構成してもよ
い。また、本発明は、ロジックLSIとDRAMとを混
載したLSIなどに適用することもできる。
【0079】
【発明の効果】本願において開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば以
下のとおりである。
【0080】本発明によるDRAMの製造方法によれ
ば、情報蓄積用容量素子の下部電極を形成する際に、厚
い絶縁膜に形成された大面積の溝の底部の下部電極材料
が剥離する不良を防止することができるので、DRAM
の製造歩留まりを向上することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態であるDRAMを形成し
た半導体チップの全体平面図である。
【図2】本発明の一実施の形態であるDRAMの等価回
路図である。
【図3】本発明の一実施の形態であるDRAMの製造方
法を示す半導体基板の要部断面図である。
【図4】本発明の一実施の形態であるDRAMの製造方
法を示す半導体基板の要部断面図である。
【図5】本発明の一実施の形態であるDRAMの製造方
法を示す半導体基板の要部断面図である。
【図6】本発明の一実施の形態であるDRAMの製造方
法を示す半導体基板の要部断面図である。
【図7】本発明の一実施の形態であるDRAMの製造方
法を示す半導体基板の要部断面図である。
【図8】本発明の一実施の形態であるDRAMの製造方
法を示す半導体基板の要部断面図である。
【図9】本発明の一実施の形態であるDRAMの製造方
法を示す半導体基板の要部断面図である。
【図10】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図11】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図12】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図13】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図14】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図15】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図16】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図17】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図18】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図19】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図20】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図21】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図22】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図23】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図24】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図25】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図26】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図27】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図28】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図29】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図30】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図31】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図32】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図33】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図34】本発明の一実施の形態で使用するフォトマス
ク(レチクル)の要部平面図である。
【図35】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図36】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図37】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図38】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図39】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図40】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図41】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図42】本発明者によって検討されたDRAMの製造
方法を示す半導体基板の要部断面図である。
【図43】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図44】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【図45】本発明の一実施の形態であるDRAMの製造
方法を示す半導体基板の要部断面図である。
【符号の説明】
1 半導体基板 1A 半導体チップ 2 酸化シリコン膜 3 窒化シリコン膜 4 フォトレジスト膜 5 素子分離溝 5a 溝 6 酸化シリコン膜 7 酸化シリコン膜 8 窒化シリコン膜 9 フォトレジスト膜 10 n型半導体領域 11 p型ウエル 12 n型ウエル 13 ゲート酸化膜 14A〜14C ゲート電極 15 窒化シリコン膜 16 フォトレジスト膜 17 p- 型半導体領域 18 n- 型半導体領域 19 n型半導体領域 20 窒化シリコン膜 20a サイドウォールスペーサ 21 フォトレジスト膜 22 p+ 型半導体領域 23 n+ 型半導体領域 24 SOG膜 24a、24b SOG膜 25 酸化シリコン膜 26 酸化シリコン膜 27 フォトレジスト膜 28 コンタクトホール 29 コンタクトホール 30 プラグ 31 酸化シリコン膜 32 フォトレジスト膜 33 フォトレジスト膜 34〜37 コンタクトホール 38、39 第1層配線 40 窒化シリコン膜 41 フォトレジスト膜 42 TiSi2 層 43 サイドウォールスペーサ 44 SOG膜 45 酸化シリコン膜 46 酸化シリコン膜 47 フォトレジスト膜 48 スルーホール 49 プラグ 51 窒化シリコン膜 52 フォトレジスト膜 53 酸化シリコン膜 54 フォトレジスト膜 55 溝 55A 遮光パターン 56 多結晶シリコン膜 57 SOG膜 58 フォトレジスト膜 59 長溝 59A 遮光パターン 60 下部電極 61 Ta2 5(酸化タンタル) 膜 62 TiN膜(上部電極) 63 フォトレジスト膜 64 酸化シリコン膜 65 フォトレジスト膜 66 スルーホール 67 プラグ 68、69 第2層配線 70 フォトマスク(レチクル) 71 酸化シリコン膜 72 SOG膜 73 酸化シリコン膜 74、75 スルーホール 76 プラグ 77〜79 第3層配線 80 溝 AM アライメントマーク BL ビット線 C 情報蓄積用容量素子 MARY メモリアレイ Qn nチャネル型MISFET Qp pチャネル型MISFET Qs メモリセル選択用MISFET SA センスアンプ WD ワードドライバ
───────────────────────────────────────────────────── フロントページの続き (72)発明者 今井 彰 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体事業部内 (72)発明者 中村 吉孝 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体事業部内

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 メモリセル選択用MISFETとこれに
    直列に接続された情報蓄積用容量素子とでメモリセルを
    構成し、前記情報蓄積用容量素子を前記メモリセル選択
    用MISFETの上部に配置したDRAMを有する半導
    体集積回路装置の製造方法であって、(a)半導体基板
    の主面のメモリアレイにメモリセル選択用MISFET
    を形成し、周辺回路領域に周辺回路のMISFETを形
    成する工程、(b)前記メモリセル選択用MISFET
    および前記周辺回路のMISFETの上部に、後の工程
    で形成される情報蓄積用容量素子の高さに相当する膜厚
    を有する第1絶縁膜を堆積する工程、(c)フォトレジ
    スト膜をマスクにしたエッチングでメモリアレイの前記
    第1絶縁膜を開孔して溝を形成し、メモリアレイと周辺
    回路領域との境界部の前記第1絶縁膜を開孔して前記メ
    モリアレイを囲む長溝を形成し、前記半導体基板の他の
    領域の前記絶縁膜を開孔して前記溝および前記長溝より
    も面積が大きい第2の溝を形成する工程、(d)前記溝
    および前記長溝の内部を含む前記第1絶縁膜の上部に、
    情報蓄積用容量素子の下部電極を構成する第1導電膜を
    堆積した後、前記第1導電膜の上部に、前記溝および前
    記長溝を埋め込む第2絶縁膜を堆積する工程、(e)前
    記第2絶縁膜と前記第1絶縁膜の上部の前記第1導電膜
    とをエッチバックすることにより、前記溝および前記長
    溝の内部のみに前記第1導電膜を残す工程、(f)周辺
    回路領域を覆うフォトレジスト膜をマスクにして前記溝
    とこれに隣接する溝との隙間の前記第1絶縁膜および前
    記溝の内部の前記第2絶縁膜をエッチングすることによ
    り、上方に開孔部を有する筒形の下部電極を形成する工
    程、(g)前記下部電極の上部に第3絶縁膜および第2
    導電膜を堆積した後、前記第2導電膜および前記第2絶
    縁膜をパターニングすることにより、前記第1導電膜か
    らなる下部電極と、前記第3絶縁膜からなる容量絶縁膜
    と、前記第2導電膜からなる上部電極とで構成される情
    報蓄積用容量素子を形成する工程、を含み、前記(e)
    工程で前記第2絶縁膜と前記第1絶縁膜の上部の前記第
    1導電膜とをエッチバックする際に前記第2の溝の上部
    をフォトレジスト膜で覆うことを特徴する半導体集積回
    路装置の製造方法。
  2. 【請求項2】 請求項1記載の半導体集積回路装置の製
    造方法であって、前記第2の溝は、アライメントマーク
    またはTEGパターンであることを特徴とする半導体集
    積回路装置の製造方法。
  3. 【請求項3】 請求項1記載の半導体集積回路装置の製
    造方法であって、前記第1絶縁膜が酸化シリコン膜であ
    り、前記第2絶縁膜がSOG膜であることを特徴する半
    導体集積回路装置の製造方法。
  4. 【請求項4】 請求項1記載の半導体集積回路装置の製
    造方法であって、前記第1導電膜が多結晶シリコン膜で
    あることを特徴する半導体集積回路装置の製造方法。
  5. 【請求項5】 請求項1記載の半導体集積回路装置の製
    造方法であって、前記(f)工程のエッチングがウェッ
    トエッチングであることを特徴する半導体集積回路装置
    の製造方法。
JP9173700A 1997-06-30 1997-06-30 半導体集積回路装置の製造方法 Pending JPH1126719A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9173700A JPH1126719A (ja) 1997-06-30 1997-06-30 半導体集積回路装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9173700A JPH1126719A (ja) 1997-06-30 1997-06-30 半導体集積回路装置の製造方法

Publications (1)

Publication Number Publication Date
JPH1126719A true JPH1126719A (ja) 1999-01-29

Family

ID=15965510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9173700A Pending JPH1126719A (ja) 1997-06-30 1997-06-30 半導体集積回路装置の製造方法

Country Status (1)

Country Link
JP (1) JPH1126719A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009056A (ja) * 2000-06-22 2002-01-11 Mitsubishi Electric Corp 微細パターン形成方法およびその方法により製造した装置
JP2008159962A (ja) * 2006-12-26 2008-07-10 Toshiba Corp 半導体記憶装置
JP2010537405A (ja) * 2007-08-13 2010-12-02 マイクロン テクノロジー, インク. 複数のキャパシタを形成する方法
US8946043B2 (en) 2011-12-21 2015-02-03 Micron Technology, Inc. Methods of forming capacitors
US9076757B2 (en) 2010-08-11 2015-07-07 Micron Technology, Inc. Methods of forming a plurality of capacitors
US9076680B2 (en) 2011-10-18 2015-07-07 Micron Technology, Inc. Integrated circuitry, methods of forming capacitors, and methods of forming integrated circuitry comprising an array of capacitors and circuitry peripheral to the array
US9196673B2 (en) 2012-07-26 2015-11-24 Micron Technology, Inc. Methods of forming capacitors
US9224798B2 (en) 2008-01-08 2015-12-29 Micron Technology, Inc. Capacitor forming methods
US10515801B2 (en) 2007-06-04 2019-12-24 Micron Technology, Inc. Pitch multiplication using self-assembling materials

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009056A (ja) * 2000-06-22 2002-01-11 Mitsubishi Electric Corp 微細パターン形成方法およびその方法により製造した装置
JP2008159962A (ja) * 2006-12-26 2008-07-10 Toshiba Corp 半導体記憶装置
US8036021B2 (en) 2006-12-26 2011-10-11 Kabushiki Kaisha Toshiba Semiconductor memory device
US10515801B2 (en) 2007-06-04 2019-12-24 Micron Technology, Inc. Pitch multiplication using self-assembling materials
JP2010537405A (ja) * 2007-08-13 2010-12-02 マイクロン テクノロジー, インク. 複数のキャパシタを形成する方法
US9224798B2 (en) 2008-01-08 2015-12-29 Micron Technology, Inc. Capacitor forming methods
US9076757B2 (en) 2010-08-11 2015-07-07 Micron Technology, Inc. Methods of forming a plurality of capacitors
US9076680B2 (en) 2011-10-18 2015-07-07 Micron Technology, Inc. Integrated circuitry, methods of forming capacitors, and methods of forming integrated circuitry comprising an array of capacitors and circuitry peripheral to the array
US8946043B2 (en) 2011-12-21 2015-02-03 Micron Technology, Inc. Methods of forming capacitors
US9196673B2 (en) 2012-07-26 2015-11-24 Micron Technology, Inc. Methods of forming capacitors

Similar Documents

Publication Publication Date Title
US7026679B2 (en) Semiconductor integrated circuit device and the process of manufacturing the same having poly-silicon plug, wiring trenches and bit lines formed in the wiring trenches having a width finer than a predetermined size
KR100681851B1 (ko) 반도체집적회로장치 및 그 제조방법
KR100378183B1 (ko) 반도체 메모리 장치 및 그의 제조 방법
KR100579365B1 (ko) 메모리 어레이 및 지지 트랜지스터의 형성 방법, 및 이중일함수 지지 트랜지스터 및 매립형 dram 어레이를포함하는 반도체 장치
US6770527B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
US7145193B2 (en) Semiconductor integrated circuit device and process for manufacturing the same
JPH11214644A (ja) 半導体集積回路装置およびその製造方法
KR100765682B1 (ko) 반도체 장치 및 그 제조 방법
JPH10214894A (ja) 半導体装置及びその製造方法
JPH11121713A (ja) 半導体集積回路装置およびその製造方法
JP2000077625A (ja) 半導体集積回路装置の製造方法
JPH11145286A (ja) 半導体集積回路装置の製造方法
JPH1126719A (ja) 半導体集積回路装置の製造方法
JPH1126713A (ja) 半導体集積回路装置およびその製造方法
US6734479B1 (en) Semiconductor integrated circuit device and the method of producing the same
JPH1117144A (ja) 半導体集積回路装置およびその製造方法
JPH1126718A (ja) 半導体集積回路装置の製造方法
JPH1126715A (ja) 半導体集積回路装置およびその製造方法
JPH1126712A (ja) 半導体集積回路装置およびその製造方法ならびにその製造装置
JP2000058776A (ja) 半導体装置およびその製造方法
JPH1117139A (ja) 半導体集積回路装置およびその製造方法
JP2000077624A (ja) 高集積半導体メモリ装置及びその製造方法
JPH11297951A (ja) 半導体集積回路装置およびその製造方法
JPH1117146A (ja) 半導体集積回路装置の製造方法
JPH1117147A (ja) 半導体集積回路装置の製造方法