JPH11242984A - Carbonic heating element - Google Patents

Carbonic heating element

Info

Publication number
JPH11242984A
JPH11242984A JP28001898A JP28001898A JPH11242984A JP H11242984 A JPH11242984 A JP H11242984A JP 28001898 A JP28001898 A JP 28001898A JP 28001898 A JP28001898 A JP 28001898A JP H11242984 A JPH11242984 A JP H11242984A
Authority
JP
Japan
Prior art keywords
carbon
heating element
boron nitride
composition
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28001898A
Other languages
Japanese (ja)
Inventor
Yoshihisa Suda
吉久 須田
Osamu Shimizu
修 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP28001898A priority Critical patent/JPH11242984A/en
Publication of JPH11242984A publication Critical patent/JPH11242984A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve an aging deterioration characteristic and thermal stability by mixing and baking a composition having a formable property and showing a substantially nonzero carbon residue yield after baking and boron nitride which has high purity and of which both crystallite lengths in the directions of its (a) and (c) axes have the degree of crystallization not less than specific angstroms. SOLUTION: A composition and boron nitride are thoroughly mixed by the use of a kneading machine, the obtained mixture is formed in to a designed shape by the use of a forming technique such as a vacuum forming machine, an injection molding machine and an extrusion molding machine. Next, the formed body is processed into a carbon precursor, the obtained carbon precursor is heated to raise its temperature at a temperature of around 1000 deg.C in the atmosphere of inert gas such as argon or the like or under vacuum and is thus carbonized. In this case, an organic substance showing a carbonization yield not less than 5% by the baking in the atmosphere of inert gas is used as the composition. Boron nitride which has a purity not less than 99% and of which both crystallite lengths in the directions of its (a) and (c) axes have the degree of crystallization not less than 500 Å is used as the boron nitride.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発熱体として必要
な任意の固有抵抗値と形状を有する炭素系発熱体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon-based heating element having an arbitrary specific resistance value and shape required for a heating element.

【0002】[0002]

【従来の技術】従来、抵抗用発熱体としては主としてタ
ングステン線やニクロム線などの金属線加工品と等方性
炭素材料やガラス状炭素などの炭素の切削加工品、炭化
珪素などの金属化合物が使用されてきた。その中でも金
属線の加工品は主として小型の民生機器のヒーター用発
熱体として、炭素や金属化合物は産業用炉などに使用さ
れている。
2. Description of the Related Art Conventionally, as a heating element for resistance, a metal wire product such as a tungsten wire or a nichrome wire, a carbon cut product such as an isotropic carbon material or glassy carbon, and a metal compound such as silicon carbide are mainly used. Have been used. Of these, processed metal wires are mainly used as heating elements for heaters of small consumer appliances, and carbon and metal compounds are used in industrial furnaces and the like.

【0003】従来の発熱体用素材の中でも炭素は、金属
線などと異なり、発熱速度、発熱効率、遠赤外線の発生
効率が良いなど優れた特徴を有している。しかし従来の
炭素発熱体は、大きな板形状体やブロック形状体より切
削加工により作製するため製造工程が煩雑で高価なうえ
細い物や薄い物など作製することが困難である。また、
ある規格範囲の固有抵抗値を有するブロック体などから
切削するため発熱量の制御は形状を変えるしか方策がな
いなどの問題点を有している。
[0003] Among the conventional heating element materials, carbon has excellent characteristics such as good heat generation speed, heat generation efficiency, and far infrared ray generation efficiency, unlike metal wires and the like. However, since the conventional carbon heating element is manufactured by cutting a large plate-shaped body or block-shaped body, the manufacturing process is complicated, expensive, and it is difficult to manufacture a thin or thin object. Also,
In order to cut from a block or the like having a specific resistance value within a certain standard range, there is a problem that the control of the heat generation amount has no alternative but to change the shape.

【0004】そこで本発明者らは特願平9−25889
3号において、薄板形状だけでなく細い棒形状体、細い
円柱形状体など従来の炭素材料では得ることのできない
形状を得ることが可能なうえ任意の固有抵抗値を有する
ことで広範な設定電流・電位の印加による発熱制御が可
能で、発熱体としての炭素材料が持つ発熱速度、発熱効
率、遠赤外線の発生効率に優れた炭素系発熱体として、
賦形性を有し焼成後実質的に零でない炭素残査収率を示
す組成物と、金属或いは半金属化合物の一種または二種
以上を混合し、焼成することによって、製造される炭素
系発熱体を提案した。
Accordingly, the present inventors have filed Japanese Patent Application No. 9-25889.
In No. 3, it is possible to obtain a shape that cannot be obtained with conventional carbon materials, such as a thin rod shape, a thin rod shape, a thin columnar shape, and the like. Heat generation can be controlled by applying potential, and as a carbon-based heating element with excellent heat generation rate, heat generation efficiency, and far-infrared ray generation efficiency of carbon material as a heating element,
A carbon-based heating element manufactured by mixing a composition having a shapeability and exhibiting a carbon residue yield that is not substantially zero after firing with one or more of a metal or metalloid compound and firing the mixture. Suggested.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記出願
では、金属あるいは半金属化合物としての窒化硼素の純
度または結晶化度(クリスタリットの大きさ)に関する
言及はなく、それが通電の際の経年変化或いは熱安定性
にいかなる影響を及ぼすかが明らかでなかった。したが
って本発明の目的は、炭素含有組成物と窒化硼素を混合
して焼成することによって得られる炭素系発熱体に使用
される窒化硼素の純度または結晶化度と発熱体の特性と
の関係を明らかにして、その経年変化特性または熱安定
性を改善することにある。
However, in the above application, there is no mention of the purity or crystallinity (size of crystallite) of boron nitride as a metal or metalloid compound. It was not clear what effect it had on thermal stability. Accordingly, an object of the present invention is to clarify the relationship between the purity or crystallinity of boron nitride used for a carbon-based heating element obtained by mixing and firing a carbon-containing composition and boron nitride, and the properties of the heating element. To improve its aging characteristics or thermal stability.

【0006】[0006]

【課題を解決するための手段】本発明によれば、賦形性
を有し焼成後実質的に零でない炭素残査収率を示す組成
物と、純度99%以上でa軸およびc軸方向のクリスタ
リットの長さがいずれも500オングストローム以上の
結晶化度を有する窒化硼素を混合し、焼成して得られる
炭素系発熱体が提供される。
According to the present invention, there is provided a composition having a shape-forming property and a substantially non-zero carbon residue yield after firing, and a composition having a purity of 99% or more in the a-axis and c-axis directions. The present invention provides a carbon-based heating element obtained by mixing boron nitride having a crystallinity of at least 500 angstroms or more in crystallite length and firing the mixture.

【0007】窒化硼素の純度が99%未満であると連続
通電時に不純物の析出のために抵抗値が許されるレベル
以上に変化し、クラックが発生する。また、たとえ純度
が99%以上であっても結晶化度が上記の値未満である
と連続通電時に結晶成長のためにやはり抵抗値が変化し
クラックが発生する。前述の組成物としては、不活性ガ
ス雰囲気中での焼成により5%以上の炭化収率を示す有
機物質を使用するものである。具体的には、ポリ塩化ビ
ニル、ポリアクリロニトリル、ポリビニルアルコール、
ポリ塩化ビニル−ポリ酢酸ビニル共重合体、ポリアミド
等の熱可塑性樹脂、フェノール樹脂、フラン樹脂、エポ
キシ樹脂、不飽和ポリエステル樹脂、ポリイミド等の熱
硬化性樹脂、リグニン、セルロース、トラガントガム、
アラビアガム、糖類等の縮合多環芳香族を分子の基本構
造内に持つ天然高分子物質、及び前記には含有されな
い、ナフタレンスルホン酸のホルマリン縮合物、コプナ
樹脂等の縮合多環芳香族を分子の基本構造内に持つ合成
高分子物質が挙げられる。使用する組成物種と量は、目
的とする発熱体の形状により適宜選択され、単独でも二
種以上の混合体でも使用することができるが、特にポリ
塩化ビニル樹脂、フラン樹脂を使用することが好まし
く、炭素の持つ優れた特性を堅持するためにもその使用
量は30重量部以上が好ましい。
If the purity of boron nitride is less than 99%, the resistance value changes to an allowable level or more due to precipitation of impurities during continuous energization, and cracks occur. Further, even if the purity is 99% or more, if the crystallinity is less than the above value, the resistance value changes due to crystal growth during continuous energization, and cracks occur. As the above-mentioned composition, an organic substance which shows a carbonization yield of 5% or more by firing in an inert gas atmosphere is used. Specifically, polyvinyl chloride, polyacrylonitrile, polyvinyl alcohol,
Polyvinyl chloride-polyvinyl acetate copolymer, thermoplastic resin such as polyamide, phenol resin, furan resin, epoxy resin, unsaturated polyester resin, thermosetting resin such as polyimide, lignin, cellulose, tragacanth gum,
Gum arabic, natural macromolecular substances having condensed polycyclic aromatics such as saccharides in the basic structure of the molecule, and condensed polycyclic aromatics such as formalin condensate of naphthalenesulfonic acid and copna resin, which are not contained in the above, The synthetic high molecular substance which has in the basic structure of is mentioned. The type and amount of the composition to be used are appropriately selected depending on the shape of the intended heating element, and can be used alone or in a mixture of two or more kinds, but it is particularly preferable to use a polyvinyl chloride resin or a furan resin. In order to maintain the excellent properties of carbon, its use amount is preferably at least 30 parts by weight.

【0008】前述の組成物中には炭素粉末が含有されて
いることが好ましい。炭素粉末としては、カーボンブラ
ック、黒鉛、コークス粉等が挙げられるが、使用する炭
素粉末種と量は、目的とする発熱体の抵抗値・形状によ
り適宜選択され、単独でも二種以上の混合体でも使用す
ることができるが、特に形状制御の簡易さから黒鉛を使
用することが好ましい。
It is preferable that the above-mentioned composition contains a carbon powder. Examples of the carbon powder include carbon black, graphite, and coke powder. The type and amount of the carbon powder to be used are appropriately selected depending on the resistance and shape of the intended heating element, and a mixture of two or more kinds may be used alone. Although graphite can be used, it is particularly preferable to use graphite from the viewpoint of easy shape control.

【0009】本発明では、前述の有機物質の焼成により
生じる炭素材料及び炭素粉は電気良導体として、そして
窒化硼素は導電阻害物質として作用しており、電流は導
電阻害物質である窒化硼素を飛び越え、いわゆるホッピ
ングしながら炭素材料またはそれと炭素粉末を媒体とし
て流れる。この為これら2つないし3つの成分の種類や
その比率等を変え、それらを均一に混合、分散させ焼成
することにより、所望の固有抵抗値を有する本発明の炭
素系発熱体を得ることができる。
In the present invention, the carbon material and the carbon powder generated by the above-mentioned firing of the organic substance act as a good electrical conductor, and the boron nitride acts as a conduction inhibitor, and the electric current jumps over the boron nitride as the conduction inhibitor. It flows while so-called hopping using the carbon material or the carbon material and the carbon powder as a medium. Therefore, by changing the types and ratios of these two or three components, uniformly mixing and dispersing them and firing, the carbon-based heating element of the present invention having a desired specific resistance value can be obtained. .

【0010】また本発明の炭素系発熱体は、発熱速度、
発熱効率、遠赤外線の発生効率など発熱体としての優れ
た特徴を具備し、設計どおりの抵抗値と形状を有するた
め、設定電流・電位の印加により発熱量を容易に制御す
ることが可能である。但し、発熱量を制御する際には、
場合によりかなりの高温になることから、アルゴンガス
等の不活性ガス雰囲気とした容器中で使用することで、
酸化を防止する必要がある。またこの時遠赤外線の発生
効率の妨げとならずに高温に耐える石英等の透明な容器
を用いることが望ましい。
The carbon-based heating element of the present invention has a heating rate,
It has excellent characteristics as a heating element, such as heat generation efficiency and far-infrared ray generation efficiency, and has the designed resistance value and shape. Therefore, it is possible to easily control the amount of heat generation by applying a set current and potential. . However, when controlling the calorific value,
In some cases, the temperature can be quite high, so by using it in a container with an inert gas atmosphere such as argon gas,
It is necessary to prevent oxidation. At this time, it is desirable to use a transparent container made of quartz or the like that can withstand high temperatures without hindering the generation efficiency of far infrared rays.

【0011】[0011]

【発明の実施の形態】以下に、本発明による炭素系発熱
体の製造方法を説明する。まず、組成物と窒化硼素とを
混練機を用いて良く混合させる。得られた混合体を、真
空成型機、射出成型機、押し出し成型機などの既存の成
形手法により設計形状に賦形する。次に賦形体を、炭素
前駆体化処理し、得られた炭素前駆体を窒素、アルゴン
等の不活性ガス雰囲気中もしくは真空下で1000℃程
度、好ましくは2000℃程度まで加熱昇温し、炭素化
し炭素系発熱体を得る。昇温速度は、特に500℃迄は
3〜100℃/h、好ましくは5〜50℃/hとゆっく
りと焼成するのが適当で、昇温速度が大きいと変形した
り微細なクラックが生じるなどの欠陥が生じる。したが
って、500℃迄は100℃/h以上の昇温速度を避け
た方が良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for producing a carbon-based heating element according to the present invention will be described. First, the composition and boron nitride are mixed well using a kneader. The obtained mixture is shaped into a design shape by an existing molding technique such as a vacuum molding machine, an injection molding machine, and an extrusion molding machine. Next, the excipient is subjected to a carbon precursor treatment, and the obtained carbon precursor is heated to about 1000 ° C., preferably about 2000 ° C. in an inert gas atmosphere such as nitrogen or argon or under vacuum, and carbon is heated. To obtain a carbon-based heating element. It is appropriate that the temperature is raised slowly at a rate of 3 to 100 ° C./h, preferably 5 to 50 ° C./h, particularly up to 500 ° C. If the rate of temperature rise is high, deformation or fine cracks may occur. Defects occur. Therefore, it is better to avoid a heating rate of 100 ° C./h or more up to 500 ° C.

【0012】本発明の炭素系発熱体は、発熱速度、発熱
効率、遠赤外線の発生効率など発熱体としての優れた特
徴を具備し、設計どおりの抵抗値と形状を有するため、
設定電流・電位の印加により発熱量を容易に制御するこ
とが可能である。
The carbon-based heating element of the present invention has excellent characteristics as a heating element, such as heat generation rate, heat generation efficiency, and far-infrared ray generation efficiency, and has a designed resistance value and shape.
The amount of heat generated can be easily controlled by applying the set current / potential.

【0013】[0013]

【実施例】以下に、実施例によって本発明を更に具体的
に説明するが、本願発明はこの実施例によって何等限定
されるものではない。 (実施例1)塩素化塩化ビニル樹脂(日本カーバイド社
製 T−741)40重量%に天然黒鉛微粉末(日本黒
鉛製 平均粒径5μm)5重量%を複合した組成物、窒
化硼素(信越化学工業製 平均粒径2μm、純度99.
5%、結晶化度(Lc:730Å、La:720Å))
55重量%に対し、可塑剤としてジアリルフタレートモ
ノマー20重量%を添加して、ヘンシェルミキサーを用
いて分散した後、表面温度を120℃に保ったミキシン
グ用二本ロールを用いて十分に混練を繰り返して組成物
を得、ペレタイザーによってペレット化し、成形用組成
物を得た。このペレットをスクリュー型押出機で直径
1.5mmφのダイスを用い脱気を行いつつ130℃で3
m/秒の速度で押し出し、これを200℃に加熱された
エアオーブン中で10時間処理してブレカーサー(炭素
前駆体)線材とした。次に、これを窒素ガス雰囲気中で
1800℃で焼成し、円柱状の炭素系発熱体を得た。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. (Example 1) A composition in which 40% by weight of a chlorinated vinyl chloride resin (T-741 manufactured by Nippon Carbide Co., Ltd.) is combined with 5% by weight of natural graphite fine powder (average particle size: 5 μm manufactured by Nippon Graphite), boron nitride (Shin-Etsu Chemical) Industrial product, average particle size 2 μm, purity 99.
5%, crystallinity (Lc: 730 °, La: 720 °))
After adding 20% by weight of diallyl phthalate monomer as a plasticizer to 55% by weight and dispersing using a Henschel mixer, kneading was sufficiently repeated using two rolls for mixing with the surface temperature kept at 120 ° C. Thus, a composition was obtained and pelletized with a pelletizer to obtain a molding composition. The pellets were deaerated with a screw extruder using a 1.5 mm diameter die at 130 ° C.
The extruded material was extruded at a speed of m / sec and treated in an air oven heated to 200 ° C. for 10 hours to obtain a breaker (carbon precursor) wire. Next, this was fired at 1800 ° C. in a nitrogen gas atmosphere to obtain a columnar carbon-based heating element.

【0014】得られた炭素系発熱体は断面の直径1.2
mmφ、曲げ強度が300MPa であった。ホイートストー
ンブリッジ法により固有抵抗を測定したところ、15.
2×103 Ω・cmの値を有していた。この炭素系発熱体
を長さ300mmに切断し、端部にリードを接続し、アル
ゴンガス雰囲気の石英管中で通電したところ100Vで
瞬時1500℃に達するとともに、遠赤外線の放射が確
認できた。また使用中にクラックの発生もなく安定した
発熱量を得ることができた。 (比較例1)塩素化塩化ビニル樹脂(日本カーバイド社
製 T−741)40重量%に天然黒鉛微粉末(日本黒
鉛製 平均粒径5μm)5重量%を複合した組成物、窒
化硼素(信越化学工業製 平均粒径2μm、純度98.
3%、結晶化度(Lc:480Å、La:450Å))
55重量%に対し、可塑剤としてジアリルフタレートモ
ノマー20重量%を添加して、分散、混合し、押し出し
成形を行い、エアオーブン中で10時間処理してブレカ
ーサー(炭素前駆体)線材とし、その後窒素ガス雰囲気
中で1800℃で焼成し、円柱状の炭素系発熱体を得
た。
The obtained carbon-based heating element has a sectional diameter of 1.2.
mmφ and bending strength were 300 MPa. 14. When the specific resistance was measured by the Wheatstone bridge method,
It had a value of 2 × 10 3 Ω · cm. This carbon-based heating element was cut into a length of 300 mm, a lead was connected to the end, and when electricity was supplied in a quartz tube in an argon gas atmosphere, the temperature reached instantaneously 1500 ° C. at 100 V and radiation of far infrared rays was confirmed. In addition, a stable calorific value could be obtained without generation of cracks during use. (Comparative Example 1) A composition in which 40% by weight of a chlorinated vinyl chloride resin (T-741 manufactured by Nippon Carbide Co., Ltd.) is combined with 5% by weight of natural graphite fine powder (average particle size: 5 μm manufactured by Nippon Graphite), boron nitride (Shin-Etsu Chemical) Industrial average particle size 2 μm, purity 98.
3%, crystallinity (Lc: 480 °, La: 450 °))
To 55% by weight, 20% by weight of diallyl phthalate monomer as a plasticizer was added, dispersed, mixed, extruded, and treated in an air oven for 10 hours to form a breaker (carbon precursor) wire, and then nitrogen was added. It was fired at 1800 ° C. in a gas atmosphere to obtain a columnar carbon-based heating element.

【0015】得られた炭素系発熱体は断面の直径1.2
mmφ、曲げ強度が290MPa であった。ホイートストー
ンブリッジ法により固有抵抗を測定したところ、14.
5×10-3Ω・cmの値を有していた。この炭素系発熱体
を長さ300mmに切断し、端部にリードを接続し、アル
ゴンガス雰囲気の石英管中で通電したところ100Vで
瞬時1500℃に達するとともに、遠赤外線の放射が確
認できたが、連続使用中にクラックの発生、抵抗値の減
少が生じ、安定した発熱量を得ることができなかった。
The obtained carbon-based heating element has a sectional diameter of 1.2.
mmφ and bending strength were 290 MPa. 13. When the specific resistance was measured by the Wheatstone bridge method,
It had a value of 5 × 10 −3 Ω · cm. This carbon-based heating element was cut into a length of 300 mm, a lead was connected to the end, and when electricity was supplied in a quartz tube in an argon gas atmosphere, the temperature instantaneously reached 1500 ° C. at 100 V and radiation of far-infrared rays was confirmed. During the continuous use, cracks were generated and the resistance value was reduced, so that a stable calorific value could not be obtained.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
経年変化特性または熱安定性に優れた炭素系発熱体が提
供される。
As described above, according to the present invention,
A carbon-based heating element excellent in aging characteristics or thermal stability is provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 賦形性を有し焼成後実質的に零でない炭
素残査収率を示す組成物と、純度99%以上でa軸およ
びc軸方向のクリスタリットの長さがいずれも500オ
ングストローム以上の結晶化度を有する窒化硼素を混合
し、焼成して得られる炭素系発熱体。
1. A composition having a shape-forming property and a substantially non-zero carbon residue yield after firing, and a crystallite having a purity of 99% or more and a-axis and c-axis lengths of 500 Å each. A carbon-based heating element obtained by mixing and firing boron nitride having the above crystallinity.
【請求項2】 前記組成物は、樹脂を含むことを特徴と
する請求項1記載の炭素系発熱体。
2. The carbon-based heating element according to claim 1, wherein the composition contains a resin.
【請求項3】 前記組成物中には、カーボンブラック、
黒鉛及びコークス粉からなる群から選ばれた1種または
2種以上の炭素粉末が含有されていることを特徴とする
請求項1または2記載の炭素系発熱体。
3. The composition according to claim 1, wherein the composition comprises carbon black,
The carbon-based heating element according to claim 1, comprising one or more carbon powders selected from the group consisting of graphite and coke powder.
JP28001898A 1997-12-26 1998-10-01 Carbonic heating element Withdrawn JPH11242984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28001898A JPH11242984A (en) 1997-12-26 1998-10-01 Carbonic heating element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP36036197 1997-12-26
JP9-360361 1997-12-26
JP28001898A JPH11242984A (en) 1997-12-26 1998-10-01 Carbonic heating element

Publications (1)

Publication Number Publication Date
JPH11242984A true JPH11242984A (en) 1999-09-07

Family

ID=26553581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28001898A Withdrawn JPH11242984A (en) 1997-12-26 1998-10-01 Carbonic heating element

Country Status (1)

Country Link
JP (1) JPH11242984A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501056B1 (en) 1998-04-28 2002-12-31 E. Tec Corporation Carbon heating element and method of manufacturing the same
US7332695B2 (en) * 1997-06-25 2008-02-19 Mitsubishi Pencil Co., Ltd. Carbon heating element and method of producing same
CN108147777A (en) * 2017-12-22 2018-06-12 郑州中南杰特超硬材料有限公司 It is a kind of to be pressed into method with heating tube using recycling synthesizing cubic boron nitride solid waste and prepare superelevation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332695B2 (en) * 1997-06-25 2008-02-19 Mitsubishi Pencil Co., Ltd. Carbon heating element and method of producing same
US6501056B1 (en) 1998-04-28 2002-12-31 E. Tec Corporation Carbon heating element and method of manufacturing the same
CN108147777A (en) * 2017-12-22 2018-06-12 郑州中南杰特超硬材料有限公司 It is a kind of to be pressed into method with heating tube using recycling synthesizing cubic boron nitride solid waste and prepare superelevation

Similar Documents

Publication Publication Date Title
JP3173800B2 (en) Manufacturing method of carbon heating element
US4681717A (en) Process for the chemical preparation of high-field ZnO varistors
JPH11242984A (en) Carbonic heating element
JP5303103B2 (en) Silicon carbide sintered body and method for producing the same
US20080108494A1 (en) Composition of molybdenum disilicide and the application of the same
JPH11242988A (en) Carbonic heating element
JP4623778B2 (en) Method for producing carbon-based heating element
JPH11242987A (en) Carbonic heating element
JPH11242986A (en) Carbonic heating element
JP4766742B2 (en) Method for producing carbon-based heating element
US4609694A (en) Process for preparing metamorphosed alkaline titanates
JPH11242985A (en) Carbonic heating element
WO2004011690A1 (en) Sputtering target
JPH0259468A (en) Production of isotropic graphite material modified to have high specific resistance
JP2001261441A (en) Production process of electrically conductive silicon carbide sintered body
JP2002100278A (en) Carbonaceous emitter and manufacturing method thereof
JP5130099B2 (en) Method for producing sintered silicon carbide
JP2996539B2 (en) Acetylene black and its production method and use
JP4827616B2 (en) Diamond manufacturing method
JP2002158080A (en) Carbon system heating element
JP2001106574A (en) Carbon-based spring member and its manufacturing process
KR102065524B1 (en) SiOIC FIBER AND METAL DOPED SiOIC FIBER, MICROWAVE ABSORPTION AND HEATING ELEMENT INCLUDING THE SAME, AND METHOD FOR PREPARING THE SAME
JPH0826827A (en) Electrically conductive reactional silicon carbide sintered compact, its production and use
JP2003206196A (en) Hot-filament cvd apparatus
JPH0367316B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110