JP4623778B2 - Method for producing carbon-based heating element - Google Patents

Method for producing carbon-based heating element Download PDF

Info

Publication number
JP4623778B2
JP4623778B2 JP18181799A JP18181799A JP4623778B2 JP 4623778 B2 JP4623778 B2 JP 4623778B2 JP 18181799 A JP18181799 A JP 18181799A JP 18181799 A JP18181799 A JP 18181799A JP 4623778 B2 JP4623778 B2 JP 4623778B2
Authority
JP
Japan
Prior art keywords
carbon
heating element
resistance value
temperature
based heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18181799A
Other languages
Japanese (ja)
Other versions
JP2001015250A (en
Inventor
吉久 須田
昇 神庭
修 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP18181799A priority Critical patent/JP4623778B2/en
Publication of JP2001015250A publication Critical patent/JP2001015250A/en
Application granted granted Critical
Publication of JP4623778B2 publication Critical patent/JP4623778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、発熱体として必要な任意の固有抵抗値、形状及び温度係数を有する炭素系発熱体の製造方法に関する。
【0002】
【従来の技術】
従来、抵抗用発熱体としては主としてタングステン線やニクロム線などの金属線加工品と等方性炭素材料やガラス状炭素などの炭素の切削加工品、炭化珪素などの金属化合物が使用されてきた。その中でも金属線の加工品は主として小型の民生機器のヒーター用発熱体として、炭素や金属化合物は産業用炉などに使用されている。
【0003】
【発明が解決しようとする課題】
従来の発熱体用素材の中でも炭素は、金属線などと異なり、発熱速度、発熱効率、遠赤外線の発生効率が良いなど優れた特徴を有している。しかし従来の炭素発熱体は、大きな板形状体やブロック形状体より切削加工により作製するため製造工程が煩雑で高価なうえ細い物や薄い物など作製することが困難である。また、ある規格範囲の固有抵抗値を有するブロック体などから切削するため発熱量の制御は形状を変えるしか方策がないなどの問題点を有している。
【0004】
また、一般の炭素発熱体は負の温度係数を持ち、高温になると常温での抵抗より抵抗値が下がる。炭素発熱体は通電時に瞬時に目的の温度まで上昇するとはいえ、この抵抗値の変化率によっては、温度の自動制御等がやりにくくなる可能性がある。
したがって本発明の目的は、任意の形状、固有抵抗値及び温度係数、特に、実質的に零に近い温度係数を有する炭素系発熱体の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明によれば、賦形性を有し焼成後実質的に零でない炭素残査収率を示す組成物に、金属或いは半金属化合物の一種または二種以上を、所望の固有抵抗値に応じた割合で混合し、室温での抵抗値に対する使用温度での抵抗値の割合を抵抗変化率とするとき、所望の抵抗変化率から決定される温度で焼成するステップを具備する炭素系発熱体の製造方法が提供される。
【0006】
前記の所望の抵抗変化率から決定される温度は1700℃以上1800℃以下であることが望ましい。
焼成温度が1700℃未満では、使用時に負の抵抗変化(減少)を起こし、焼成温度が低いほど使用時に温度に依存する抵抗値の減少量が大きくなる。1800℃を超える焼成温度では、使用時に正の抵抗変化(増加)を起こし、焼成温度の増加に伴い、使用時に温度に依存する抵抗値の増加量も大きくなる。前述の定義による抵抗変化率と焼成温度の関係が予めわかっていれば、目的に応じて抵抗変化率を焼成温度で調整することが可能となり、温度の自動制御等も容易になる。
【0007】
前述の金属或いは半金属化合物とは一般に入手可能な金属炭化物、金属硼化物、金属珪化物、金属窒化物、金属酸化物、半金属窒化物、半金属酸化物、半金属炭化物等が挙げられる。使用する金属或いは半金属化合物種と量は、目的とする発熱体の抵抗値・形状により適宜選択され、単独でも二種以上の混合体でも使用することができるが、抵抗値制御の簡易さから、特に炭化硼素、炭化珪素、窒化硼素、酸化アルミを使用することが好ましく、炭素の持つ優れた特性を堅持するためにもその使用量は70重量部以下が好ましい。
【0008】
前述の組成物としては、不活性ガス雰囲気中での焼成により5%以上の炭化収率を示す有機物質を使用するものである。具体的には、ポリ塩化ビニル、ポリアクリロニトリル、ポリビニルアルコール、ポリ塩化ビニル−ポリ酢酸ビニル共重合体、ポリアミド等の熱可塑性樹脂、フェノール樹脂、フラン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリイミド等の熱硬化性樹脂、リグニン、セルロース、トラガントガム、アラビアガム、糖類等の縮合多環芳香族を分子の基本構造内に持つ天然高分子物質、及び前記には含有されない、ナフタレンスルホン酸のホルマリン縮合物、コプナ樹脂等の縮合多環芳香族を分子の基本構造内に持つ合成高分子物質が挙げられる。使用する組成物種と量は、目的とする発熱体の形状により適宜選択され、単独でも二種以上の混合体でも使用することができるが、特にポリ塩化ビニル樹脂、フラン樹脂を使用することが好ましく、炭素の持つ優れた特性を堅持するためにもその使用量は30重量部以上が好ましい。
【0009】
前述の組成物中には炭素粉末が含有されていることが好ましい。炭素粉末としては、カーボンブラック、黒鉛、コークス粉等が挙げられるが、使用する炭素粉末種と量は、目的とする発熱体の抵抗値・形状により適宜選択され、単独でも二種以上の混合体でも使用することができるが、特に形状制御の簡易さから黒鉛を使用することが好ましい。
【0010】
本発明では、前述の有機物質の焼成により生じる炭素材料及び炭素粉は電気良導体として、そして金属或いは半金属化合物は導電阻害物質として作用しており、電流は導電阻害物質である金属或いは半金属化合物を飛び越え、いわゆるホッピングしながら炭素材料またはそれと炭素粉末を媒体として流れる。このためこれら2つないし3つの成分の種類やその比率等を変え、それらを均一に混合、分散させ焼成することにより、所望の固有抵抗値を有する本発明の炭素系発熱体を得ることができる。
【0011】
また本発明の炭素系発熱体は、発熱速度、発熱効率、遠赤外線の発生効率など発熱体としての優れた特徴を具備し、設計どおりの抵抗値と形状を有するため、設定電流・電位の印加により発熱量を容易に制御することが可能である。
但し、発熱量を制御する際には、場合によりかなりの高温になることから、アルゴンガス等の不活性ガス雰囲気とした容器中で使用することで、酸化を防止する必要がある。またこの時遠赤外線の発生効率の妨げとならずに高温に耐える石英等の透明を容器を用いることが望ましい。
【0012】
【実施例】
本明細書において、抵抗変化率とは、室温での抵抗値に対する使用温度(1200℃)での抵抗値の割合(%)と定義する。
(実施例1)塩素化塩化ビニル樹脂(日本カーバイド社製 T−741)33重量%に天然黒鉛微粉末(日本黒鉛製 平均粒径5μm)1重量%、窒化硼素(信越化学工業製 平均粒径2μm)66重量%に、可塑剤としてジアリルフタレートモノマー20重量%を添加して、ヘンシェルミキサーを用いて分散した後、表面温度を120℃に保ったミキシング用二本ロールを用いて十分に混練を繰り返して組成物を得、ペレタイザーによってペレット化し、成形用組成物を得た。このペレットをスクリュー型押出機成形し、これを200℃に加熱されたエアオーブン中で10時間処理してプレカーサー(炭素前駆体)線材とした。次に、これを1×10-2Pa以下の真空中で1500℃で焼成し、丸棒状の炭素系発熱体を得た。
【0013】
得られた炭素系発熱体は直径1.3mmφ、ホイートストーンブリッジ法により固有抵抗を測定したところ、24×10-3Ω・cmの値を有していた。
この炭素系発熱体を長さ300mmに切断し、端部にリードを接続し、アルゴンガス雰囲気の石英管中で通電し、1200℃での抵抗値は31.1Ωで、抵抗変化率は約74%であった。また使用中にクラックの発生もなく安定した発熱量を得ることができた。
(実施例2)真空中での焼成温度を1650℃にした以外、実施例1と同様にして、直径1.3mmφ、固有抵抗17×10-3Ω・cmの丸棒状の炭素系発熱体を得た。
【0014】
この炭素系発熱体を長さ300mmに切断し、端部にリードを接続し、アルゴンガス雰囲気の石英管中で通電し、1200℃での抵抗値は27.9Ωで、抵抗変化率は約79%であった。また使用中にクラックの発生もなく安定した発熱量を得ることができた。
(実施例3)真空中での焼成温度を1700℃にした以外、実施例1と同様にして、直径1.3mmφ、固有抵抗13×10-3Ω・cmの丸棒状の炭素系発熱体を得た。
【0015】
この炭素系発熱体を長さ300mmに切断し、端部にリードを接続し、アルゴンガス雰囲気の石英管中で通電し、1200℃での抵抗値は25.2Ωで、抵抗変化率は約86%であった。また使用中にクラックの発生もなく安定した発熱量を得ることができた。
(実施例4)真空中での焼成温度を1800℃にした以外、実施例1と同様にして、直径1.3mmφ、固有抵抗8×10-3Ω・cmの丸棒状の炭素系発熱体を得た。
【0016】
この炭素系発熱体を長さ300mmに切断し、端部にリードを接続し、アルゴンガス雰囲気の石英管中で通電し、1200℃での抵抗値は19.6Ωで、抵抗変化率は約108%であった。また使用中にクラックの発生もなく安定した発熱量を得ることができた。
(実施例5)真空中での焼成温度を1900℃にした以外、実施例1と同様にして、直径1.3mmφ、固有抵抗7×10-3Ω・cmの丸棒状の炭素系発熱体を得た。
【0017】
この炭素系発熱体を長さ300mmに切断し、端部にリードを接続し、アルゴンガス雰囲気の石英管中で通電し、1200℃での抵抗値は16.2Ωで、抵抗変化率は約115%であった。また使用中にクラックの発生もなく安定した発熱量を得ることができた。
【0018】
【発明の効果】
以上説明したように本発明によれば、任意の形状・固有抵抗値及び温度係数、特に、実質的に零に近い温度係数を有する炭素系発熱体の製造方法が提供される。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a carbon-based heating element having an arbitrary specific resistance value, shape, and temperature coefficient necessary as a heating element.
[0002]
[Prior art]
Conventionally, metal wire processed products such as tungsten wires and nichrome wires, cutting products of carbon such as isotropic carbon materials and glassy carbon, and metal compounds such as silicon carbide have been used as resistance heating elements. Among them, processed metal wires are mainly used as heaters for heaters of small consumer devices, and carbon and metal compounds are used in industrial furnaces.
[0003]
[Problems to be solved by the invention]
Among conventional heating element materials, carbon, unlike metal wires, has excellent characteristics such as high heat generation rate, heat generation efficiency, and far infrared generation efficiency. However, since the conventional carbon heating element is manufactured by cutting from a large plate-shaped body or block-shaped body, the manufacturing process is complicated and expensive, and it is difficult to manufacture a thin or thin object. In addition, since cutting is performed from a block body having a specific resistance value within a certain standard range, there is a problem that control of the amount of generated heat has no other way than to change the shape.
[0004]
In addition, a general carbon heating element has a negative temperature coefficient, and at a high temperature, the resistance value is lower than the resistance at normal temperature. Although the carbon heating element instantaneously rises to a target temperature when energized, depending on the rate of change of the resistance value, it may be difficult to perform automatic temperature control or the like.
Accordingly, an object of the present invention is to provide a method for producing a carbon-based heating element having an arbitrary shape, specific resistance value, and temperature coefficient, particularly a temperature coefficient substantially close to zero.
[0005]
[Means for Solving the Problems]
According to the present invention, a composition having a formability and showing a carbon residue yield that is substantially non-zero after firing is selected from one or more metals or metalloid compounds according to a desired specific resistance value. Production of a carbon-based heating element comprising a step of firing at a temperature determined from a desired resistance change rate when the ratio of the resistance value at the use temperature to the resistance value at room temperature is the resistance change rate. A method is provided.
[0006]
The temperature determined from the desired resistance change rate is preferably 1700 ° C. or higher and 1800 ° C. or lower.
When the firing temperature is less than 1700 ° C., negative resistance change (decrease) occurs during use, and the lower the firing temperature, the greater the amount of decrease in resistance value depending on the temperature during use. When the firing temperature exceeds 1800 ° C., a positive resistance change (increase) occurs during use, and as the firing temperature increases, the amount of increase in resistance value that depends on temperature during use increases. If the relationship between the resistance change rate and the firing temperature according to the above definition is known in advance, the resistance change rate can be adjusted by the firing temperature according to the purpose, and automatic control of the temperature and the like is facilitated.
[0007]
Examples of the aforementioned metal or metalloid compound include generally available metal carbide, metal boride, metal silicide, metal nitride, metal oxide, metalloid nitride, metalloid oxide, metalloid carbide, and the like. The metal or metalloid compound type and amount to be used are appropriately selected depending on the resistance value and shape of the target heating element, and can be used alone or in a mixture of two or more, but from the simplicity of resistance value control In particular, boron carbide, silicon carbide, boron nitride, and aluminum oxide are preferably used, and the amount used is preferably 70 parts by weight or less in order to maintain the excellent characteristics of carbon.
[0008]
As the above-mentioned composition, an organic substance showing a carbonization yield of 5% or more by firing in an inert gas atmosphere is used. Specifically, polyvinyl chloride, polyacrylonitrile, polyvinyl alcohol, polyvinyl chloride-polyvinyl acetate copolymer, polyamide and other thermoplastic resins, phenol resin, furan resin, epoxy resin, unsaturated polyester resin, polyimide, etc. A natural polymeric substance having a condensed polycyclic aromatic group in the basic structure of the molecule, such as thermosetting resin, lignin, cellulose, tragacanth gum, gum arabic, and saccharides, and a formalin condensate of naphthalenesulfonic acid not contained in the above, Examples thereof include synthetic polymer substances having condensed polycyclic aromatics such as copna resin in the basic structure of the molecule. The type and amount of the composition to be used are appropriately selected depending on the shape of the target heating element, and can be used alone or as a mixture of two or more, but it is particularly preferable to use a polyvinyl chloride resin or a furan resin. In order to maintain the excellent characteristics of carbon, the amount used is preferably 30 parts by weight or more.
[0009]
It is preferable that carbon powder is contained in the aforementioned composition. Examples of the carbon powder include carbon black, graphite, and coke powder. The type and amount of carbon powder to be used are appropriately selected depending on the resistance value and shape of the target heating element, and can be used alone or in combination of two or more. However, it is preferable to use graphite from the viewpoint of easy shape control.
[0010]
In the present invention, the carbon material and carbon powder produced by firing the organic substance described above act as a good electrical conductor, the metal or metalloid compound acts as a conductivity inhibitor, and the current is a metal or metalloid compound that is a conductivity inhibitor. The carbon material or it and the carbon powder flow as a medium while jumping over and so-called hopping. For this reason, the carbon-based heating element of the present invention having a desired specific resistance value can be obtained by changing the types and ratios of these two to three components, and uniformly mixing, dispersing and firing them. .
[0011]
In addition, the carbon-based heating element of the present invention has excellent characteristics as a heating element such as a heating rate, a heating efficiency, and a far-infrared generation efficiency, and has a resistance value and a shape as designed, so that a set current and potential can be applied. Therefore, it is possible to easily control the heat generation amount.
However, when controlling the calorific value, it may be considerably high in some cases, so that it is necessary to prevent oxidation by using it in a container having an inert gas atmosphere such as argon gas. At this time, it is desirable to use a transparent container such as quartz that can withstand high temperatures without hindering the generation efficiency of far infrared rays.
[0012]
【Example】
In this specification, the resistance change rate is defined as a ratio (%) of a resistance value at a use temperature (1200 ° C.) to a resistance value at room temperature.
(Example 1) Chlorinated vinyl chloride resin (N-Carbide T-741) 33% by weight, natural graphite fine powder (Nippon Graphite average particle size 5 μm) 1% by weight, boron nitride (Shin-Etsu Chemical average particle size) 2 μm) After adding 20% by weight of diallyl phthalate monomer as a plasticizer to 66% by weight and dispersing using a Henschel mixer, the mixture is sufficiently kneaded using a two-roll mixing roll whose surface temperature is kept at 120 ° C. The composition was repeatedly obtained and pelletized by a pelletizer to obtain a molding composition. This pellet was formed into a screw type extruder and processed in an air oven heated to 200 ° C. for 10 hours to obtain a precursor (carbon precursor) wire. Next, this was fired at 1500 ° C. in a vacuum of 1 × 10 −2 Pa or less to obtain a round bar-like carbon-based heating element.
[0013]
The obtained carbon-based heating element had a diameter of 1.3 mmφ and a specific resistance measured by the Wheatstone bridge method, and had a value of 24 × 10 −3 Ω · cm.
This carbon-based heating element was cut to a length of 300 mm, connected to a lead at the end, and energized in a quartz tube in an argon gas atmosphere. The resistance value at 1200 ° C. was 31.1Ω, and the resistance change rate was about 74. %Met. In addition, a stable calorific value was obtained without cracks during use.
(Example 2) A round bar-shaped carbon-based heating element having a diameter of 1.3 mmφ and a specific resistance of 17 × 10 −3 Ω · cm was prepared in the same manner as in Example 1 except that the firing temperature in vacuum was 1650 ° C. Obtained.
[0014]
This carbon-based heating element was cut to a length of 300 mm, a lead was connected to the end, and the current was passed through a quartz tube in an argon gas atmosphere. The resistance value at 1200 ° C. was 27.9 Ω, and the resistance change rate was about 79. %Met. In addition, a stable calorific value was obtained without cracks during use.
(Example 3) A round bar-shaped carbon-based heating element having a diameter of 1.3 mmφ and a specific resistance of 13 × 10 −3 Ω · cm was obtained in the same manner as in Example 1 except that the firing temperature in vacuum was 1700 ° C. Obtained.
[0015]
This carbon-based heating element was cut to a length of 300 mm, a lead was connected to the end, and electricity was passed through a quartz tube in an argon gas atmosphere. The resistance value at 1200 ° C. was 25.2 Ω, and the resistance change rate was about 86. %Met. In addition, a stable calorific value was obtained without cracks during use.
(Example 4) A round bar-shaped carbon-based heating element having a diameter of 1.3 mmφ and a specific resistance of 8 × 10 -3 Ω · cm was obtained in the same manner as in Example 1 except that the firing temperature in vacuum was 1800 ° C. Obtained.
[0016]
This carbon-based heating element was cut to a length of 300 mm, a lead was connected to the end, and a current was passed through a quartz tube in an argon gas atmosphere. The resistance value at 1200 ° C. was 19.6Ω, and the resistance change rate was about 108. %Met. In addition, a stable calorific value was obtained without cracks during use.
(Example 5) A round bar-shaped carbon-based heating element having a diameter of 1.3 mmφ and a specific resistance of 7 × 10 −3 Ω · cm was prepared in the same manner as in Example 1 except that the firing temperature in vacuum was 1900 ° C. Obtained.
[0017]
This carbon-based heating element was cut to a length of 300 mm, a lead was connected to the end, and electricity was passed through a quartz tube in an argon gas atmosphere. The resistance value at 1200 ° C. was 16.2Ω, and the resistance change rate was about 115. %Met. In addition, a stable calorific value was obtained without cracks during use.
[0018]
【The invention's effect】
As described above, according to the present invention, a method for producing a carbon-based heating element having an arbitrary shape / specific resistance value and temperature coefficient, in particular, a temperature coefficient substantially close to zero is provided.

Claims (1)

賦形性を有し焼成後実質的に零でない炭素残査収率を示す組成物に、窒化硼素、組成物および窒化硼素の合計を100重量部として0重量部を超え70重量部以下である割合で混合し、室温での抵抗値に対する使用温度での抵抗値の割合を抵抗変化率とするとき、真空中で1700℃以上1800℃以下の温度で焼成することにより、86%以上108%以下の抵抗変化率を有する発熱体とする炭素系発熱体の製造方法。 Boron nitride is added to the composition having a shapeability and showing a substantially non-zero carbon residue yield after firing , and the total amount of the composition and boron nitride is 100 parts by weight and more than 0 part by weight and 70 parts by weight or less. When the ratio of the resistance value at the operating temperature to the resistance value at room temperature is defined as the resistance change rate , mixing at a ratio, and firing at a temperature of 1700 ° C. or higher and 1800 ° C. or lower in a vacuum, 86% or higher and 108% or lower Of producing a carbon-based heating element having a resistance change rate of 5%.
JP18181799A 1999-06-28 1999-06-28 Method for producing carbon-based heating element Expired - Fee Related JP4623778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18181799A JP4623778B2 (en) 1999-06-28 1999-06-28 Method for producing carbon-based heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18181799A JP4623778B2 (en) 1999-06-28 1999-06-28 Method for producing carbon-based heating element

Publications (2)

Publication Number Publication Date
JP2001015250A JP2001015250A (en) 2001-01-19
JP4623778B2 true JP4623778B2 (en) 2011-02-02

Family

ID=16107355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18181799A Expired - Fee Related JP4623778B2 (en) 1999-06-28 1999-06-28 Method for producing carbon-based heating element

Country Status (1)

Country Link
JP (1) JP4623778B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766742B2 (en) * 2000-12-18 2011-09-07 三菱鉛筆株式会社 Method for producing carbon-based heating element
EP1757996B1 (en) * 2004-06-16 2015-02-18 MITSUBISHI PENCIL Co., Ltd. Heater for fixing and method of manufacturing the same
CN112011268A (en) * 2019-05-30 2020-12-01 贵州火焰山电器股份有限公司 Far infrared nano carbon material electric heating coating

Also Published As

Publication number Publication date
JP2001015250A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
JP4738537B2 (en) Fixing heater and manufacturing method thereof
CN1129348C (en) Ceramic heater device and method of making same and glow plug into which ceramic heater device is incorporated
WO1998059526A1 (en) Carbonaceous heating element and process for producing the same
JP2000223245A (en) Carbon heating unit and manufacture thereof
JP4623778B2 (en) Method for producing carbon-based heating element
JPH08288103A (en) Electric resistance element
JP4766742B2 (en) Method for producing carbon-based heating element
EP2996118B1 (en) Ptc thermistor member
WO2008054040A1 (en) Composition of mosi2 and the application of the same
JPH11242988A (en) Carbonic heating element
JPH11242986A (en) Carbonic heating element
JPH11242985A (en) Carbonic heating element
CN1055368C (en) Electrothermal lanthanum chromate body and its mfg. method
JPH11242984A (en) Carbonic heating element
JP4753456B2 (en) Carbon-based heating element
JP2001261441A (en) Production process of electrically conductive silicon carbide sintered body
JP2002158080A (en) Carbon system heating element
JP6703328B2 (en) PTC thermistor member and PTC thermistor element
JPH0753265A (en) Electrically conductive silicon carbide-based ceramic material
JP2016219467A (en) Ptc thermistor member and ptc thermistor element
JPH11242987A (en) Carbonic heating element
JPH09213462A (en) Silicon carbide heating element
US20070295933A1 (en) Fixing Heater and Manufacturing Method Thereof
JPS6014092B2 (en) heating element
JP2000048938A (en) Manufacture of carbon heating element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090108

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090319

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees